

Lecture Notes in Computer Science 4759
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jesús Labarta Kazuki Joe
Toshinori Sato (Eds.)

High-Performance
Computing

6th International Symposium, ISHPC 2005
Nara, Japan, September 7-9, 2005
and First International Workshop
on Advanced Low Power Systems, ALPS 2006
Revised Selected Papers

13

Volume Editors

Jesús Labarta
Universidad Politecnica de Catalunya
Spain
E-mail: jesus@ac.upc.edu

Kazuki Joe
Nara Women’s University
Japan
E-mail: joe@ics.nara-wu.ac.jp

Toshinori Sato
Kyushu University
Japan
E-mail: toshinori.sato@computer.org

Library of Congress Control Number: 2007943157

CR Subject Classification (1998): D.1, D.2, F.2, E.4, G.1-4, J.1-2, J.6, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77703-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77703-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12216628 06/3180 5 4 3 2 1 0

Preface

This is the joint post-proceedings of the 6th International Symposium on High
Performance Computing (ISHPC-VI) and the First International Workshop on
Advanced Low Power Systems 2006 (ALPS2006). The post-proceedings also
contain the papers presented at the Second HPF International Workshop: Ex-
periences and Progress (HiWEP2005) and the Workshop on Applications for
PetaFLOPS Computing (APC2005), which are workshops of ISHPC-VI.

ISHPC-VI, HiWEP2005 and APC2005 were held in Nara, Japan during
September 7–9, 2005. Fifty-eight papers from 11 countries were submitted to
ISHPC-VI. After the reviews of the submitted papers, the ISHPC-VI Program
Committee selected 15 regular (12-page) papers for oral presentation. In addi-
tion, several other papers with favorable reviews were recommended for poster
presentation, and 14 short (8-page) papers were also selected. Twenty-eight
papers out of 29 ISHPC-VI papers are contained in the post-proceedings. Hi-
WEP2005 and APC2005 received eight and ten submissions, with six and eight
papers being accepted for oral presentation after reviews, respectively. All the
HiWEP2005 and APC2005 papers are included in the post-proceedings.

ALPS2006 was held in Cairns, Australia on July 1, 2006 in conjunction with
the ACM 20th International Conference on Supercomputing. The number of
submitted papers was 15, and eight papers were accepted for oral presentation.
The post-proceedings contain six of the eight papers.

Initially, the ISHPC-VI Program Committee tried to publish on-site proceed-
ings, but could not make it because of the very tight schedule. After ISHPC-VI,
the ISHPC-VI Organizing Chair discussed with the General Chair of ALPS2006
(Hironori Nakajo) the possibility of a joint post-proceedings. After ALPS2006,
we made a proposal of having joint post-proceedings to Springer, and it was
accepted as an LNCS volume. Then we organized the post-proceedings com-
mittee, which is based on the PCs of ISHPC-VI, HiWEP2005, APC2005 and
ALPS2006, to ask all authors to submit their papers to the post-proceedings be-
cause it took a long time since their paper presentations. All submitted papers
were re-reviewed and most papers were accepted for the post-proceedings.

The post-proceedings consist of six sections. The first section is of ISHPC-VI
award papers. The ISHPC-VI Program Committee selected a distinguished pa-
per award and a best student paper award. The distinguished paper award was
given for “Multiple Stream Prediction” by Oliverio J. Santana. The best student
paper award was given for “Enhanced Loop Coalescing: A Compiler Technique
for Transforming Non-Uniform Iteration Spaces” by Arun Kejariwal. The second
and the third sections are of ISHPC-VI regular and short papers, respectively.
The second section on ISHPC-VI regular papers contains many architecture-
related papers, while the third section on ISHPC-VI short papers has more vari-
ety such as HPC applications or visualization. The fourth section of HiWEP2005

VI Preface

shows the recent trend in HPF research. The fifth section on APC2005 includes
HPC applications which require Peta scale supercomputers. The last section on
ALPS2006 includes low-power processor-related papers, which is a key issue for
the future innovative HPC processors and systems.

We hope that the post-proceedings are of significant interest to many readers.
Last but not least, we thank the members of the Program Committee and the
referees for all the hard work that made the post-proceedings possible.

October 2007 Jesús Labarta
Kazuki Joe

Toshinori Sato

Organization

ISHPC–VI Executive Committee

Conference Chair Hideo Aiso (Tokyo University of Technology)
Program Chair Jesús Labarta (Technical University of Catalonia)
Program Co-chairs Hironori Nakajo (Tokyo University of Agriculture

and Technology)
Utpal Banerjee (Intel)
Theodore S. Papatheodorou (University of Patras)

Organizing Chair Kazuki Joe (Nara Women’s University)
Local Arrangements Chair Noriyuki Fujimoto (Osaka University)
Workshop Chairs Yasuo Okabe (Kyoto University)

Masahiro Fukuda (Japan Aerospace Exploration
Agency)

ISHPC–VI Program Committee Members

Hamid R. Arabnia (University of Georgia)
Nicholas Carter (University of Illinois at Urbana-Champaign)
Claudia Dinapoli (National Research Council)
Rudolf Eigenmann (Purdue University)
Ophir Frieder (Illinois Institute of Technology)
Mario Furnari (National Research Council)
Dennis Gannon (Indiana University)
Kyle Gallivan (Florida State University)
Steve Lumetta (University of Illinois at Urbana-Champaign)
Allen Malony (University of Oregon)
Trevor Mudge (University of Michigan)
Alex Nicolau (University of California Irvine)
Constantine Polychronopoulos (University of Illinois at Urbana-Champaign)
Eleftherios Polychronopoulos(University of Patras)
Mateo Valero (Technical University of Catalonia)
Alex Veidenbaum (University of California Irvine)
Harry Wijshoff (Leiden University)

HiWEP2005 Program Committee

Program Chair Hitoshi Sakagami (National Institute of Fusion Science)
PC members PC members: Yoshiki Seo (NEC)

Hidetoshi Iwashita (Fujitsu)

VIII Organization

Kunihiko Watanabe (Earth Simulator Center)
Masahiro Fukuda (Japan Aerospace Exploration Agency)
Mitsuhisa Sato (University of Tsukuba)

APC2005 Program Committee

Program Chair Masahiro Fukuda (Japan Aerospace Exploration Agency)
PC members Hidehiko Hasegawa (University of Tsukuba)

Masanori Kanazawa (Kyoto University)
Ryo Nagai (Nagoya University)
Naoki Hirose (Japan Aerospace Exploration Agency/Asian

Technology Information Program)
Shinji Hioki (Tezukayama University)

ALPS2006 Program Committee

Program Chair Toshinori Sato (Kyushu University)
PC Members David Albonesi (Cornell University)

Pradip Bose (IBM T.J. Watson Research Center)
David Brooks (Harvard University)
Naehyuck Chang (Seoul National University)
Pai Chou (University of California Irvine)
Nikil Dutt (University of California Irvine)
Farzan Fallah (Fujitsu Labs of America)
Pierfrancesco Foglia (University of Pisa)
Masahiro Goshima (University of Tokyo)
José González (Intel Barcelona Research Center)
Kenji Kise (Tokyo Institute of Technology)
Tadahiro Kuroda (Keio University)
José F. Mart́ınez (Cornell University)
Vasily Moshnyaga (Fukuoka University)
Hiroshi Nakashima (Toyohashi University of Technology)
Vijaykrishnan Narayanan (Pennsylvania State University)
Sri Parameswaran (University of New South Wales)
Mitsuhisa Sato (University of Tsukuba)
Youngsoo Shin (Korea Advanced Institute of Science

and Technology)
Hiroyuki Tomiyama (Nagoya University)

Organization IX

Sponsoring Institutions1

Information Processing Society Japan Kansai Branch
Intel (r) Corporation
Fujitsu Limited
HPF Promoting Consortium
Nara Convention Breau
Advance Soft Corporation

1 These institutions have supported ISHPC-VI.

Table of Contents

High Performance Computing

I ISHPC-VI Award Papers

Multiple Stream Prediction . 1
Oliverio J. Santana, Alex Ramirez, and Mateo Valero

Enhanced Loop Coalescing: A Compiler Technique for Transforming
Non-uniform Iteration Spaces . 17

Arun Kejariwal, Alexandru Nicolau, and
Constantine D. Polychronopoulos

II ISHPC-VI Regular Papers

Folding Active List for High Performance and Low Power 33
Yuichiro Imaizumi and Toshinori Sato

Reducing Misspeculation Penalty in Trace-Level Speculative
Multithreaded Architectures . 43

Carlos Molina, Jordi Tubella, and Antonio González

Exploiting Execution Locality with a Decoupled Kilo-Instruction
Processor . 56

Miquel Pericàs, Adrian Cristal, Ruben González,
Daniel A. Jiménez, and Mateo Valero

Decoupled State-Execute Architecture . 68
Miquel Pericàs, Adrian Cristal, Ruben González,
Alex Veidenbaum, and Mateo Valero

A Scalable Methodology for Computing Fault-Free Paths in InfiniBand
Torus Networks . 79

José M. Montañana, José Flich, Antonio Robles, and José Duato

Using a Way Cache to Improve Performance of Set-Associative
Caches . 93

Dan Nicolaescu, Alexander Veidenbaum, and Alexandru Nicolau

Design of Fast Collective Communication Functions on Clustered
Workstations with Ethernet and Myrinet . 105

Dongyoung Kim and Dongseung Kim

XII Table of Contents

Dynamic Load Balancing in MPI Jobs . 117
Gladys Utrera, Julita Corbalán, and Jesús Labarta

Workload Characterization of Stateful Networking Applications 130
Javier Verdú, Mario Nemirovsky, Jorge Garćıa, and Mateo Valero

Using Recursion to Boost ATLAS’s Performance . 142
Paolo D’Alberto and Alexandru Nicolau

Towards Generic Solver of Combinatorial Optimization Problems with
Autonomous Agents in P2P Networks . 152

Shigeaki Tagashira, Masaya Mito, and Satoshi Fujita

New Evaluation Index of Incomplete Cholesky Preconditioning Effect . . . 164
Takeshi Iwashita and Masaaki Shimasaki

T-Map: A Topological Approach to Visual Exploration of Time-Varying
Volume Data . 176

Issei Fujishiro, Rieko Otsuka, Shigeo Takahashi, and
Yuriko Takeshima

III ISHPC-VI Short Papers

Cross-Line—A Globally Adaptive Control Method of Interconnection
Network . 191

Takashi Yokota, Masashi Nishitani, Kanemitsu Ootsu,
Fumihito Furukawa, and Takanobu Baba

The Bandwidth Expansion Effectiveness of Cache Levels Block
Prefetch . 199

Youngkwan Ju, Bongyong Uh, and Sukil Kim

Implementation and Evaluation of the Mechanisms for Low Latency
Communication on DIMMnet-2 . 211

Yasuo Miyabe, Akira Kitamura, Yoshihiro Hamada,
Tomotaka Miyasiro, Tetsu Izawa, Noboru Tanabe,
Hironori Nakajo, and Hideharu Amano

Computationally Efficient Parallel Matrix-Matrix Multiplication on the
Torus . 219

Ahmed S. Zekri and Stanislav G. Sedukhin

A New Dynamic Load Balancing Technique for Parallel Modified
PrefixSpan with Distributed Worker Paradigm and Its Performance
Evaluation . 227

Makoto Takaki, Keiichi Tamura, Toshihide Sutou, and
Hajime Kitakami

Table of Contents XIII

Performance-Based Loop Scheduling on Grid Environments 238
Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng

Reconfigurable Middleware for Grid Environment . 246
Sungju Kwon, Jaeyoung Choi, and Jysoo Lee

Netfiles: An Enhanced Stream-Based Communication Mechanism 254
Philip Chan and David Abramson

Performance of Coupled Parallel Finite Element Analysis in Grid
Computing Environment . 262

Tomoya Niho and Tomoyoshi Horie

Photo-Realistic Visualization for the Blast Wave of TNT Explosion by
Grid-Based Rendering . 271

Kaori Kato, Takayuki Aoki, Tei Saburi, and Masatake Yoshida

Development of an Interactive Visual Data Mining System for
Atmospheric Science . 279

Chiemi Watanabe, Eriko Touma, Kazuko Yamauchi,
Katsuyuki Noguchi, Sachiko Hayashida, and Kazuki Joe

A Calculus Effectively Performing Event Formation with
Visualization . 287

Susumu Yamasaki and Mariko Sasakura

A Similarity Evaluation Method for Volume Data Sets by Using Critical
Point Graph . 295

Tomoki Minami, Koji Sakai, and Koji Koyamada

IV HiWEP2005

Hybrid Parallelization and Flat Parallelization in HPF (High
Performance Fortran) . 305

Yasuharu Hayashi and Kenji Suehiro

Mapping Normalization Technique on the HPF Compiler fhpf 315
Hidetoshi Iwashita and Masaki Aoki

Development of Electromagnetic Particle Simulation Code in an Open
System . 329

Hiroaki Ohtani, Seiji Ishiguro, Ritoku Horiuchi,
Yasuharu Hayashi, and Nobutoshi Horiuchi

Development of Three-Dimensional Neoclassical Transport Simulation
Code with High Performance Fortran on a Vector-Parallel Computer . . . 344

Shinsuke Satake, Masao Okamoto, Noriyoshi Nakajima, and
Hisanori Takamaru

XIV Table of Contents

Distributed Parallelization of Exact Charge Conservative Particle
Simulation Code by High Performance Fortran . 358

Hiroki Hasegawa, Seiji Ishiguro, and Masao Okamoto

Pipelined Parallelization in HPF Programs on the Earth Simulator 365
Hitoshi Murai and Yasuo Okabe

V APC2005

Sampling of Protein Conformations with Computers to Predict the
Native Structure . 374

Junichi Higo

Spacecraft Plasma Environment Analysis Via Large Scale 3D Plasma
Particle Simulation . 383

Masaki Okada, Hideyuki Usui, Yoshiharu Omura, Hiroko O. Ueda,
Takeshi Murata, and Tooru Sugiyama

PetaFLOPS Computing and Computational Nanotechnology on
Industrial Issues . 393

Shuhei Ohnishi and Satoshi Itoh

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator: Exact
Diagonalization for Ultra Largescale Hamiltonian Matrix 402

Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida

Numerical Simulation of Combustion Dynamics at ISTA/JAXA 414
Junji Shinjo, Shingo Matsuyama, Yasuhiro Mizobuchi, and
Satoru Ogawa

Realization of a Computer Simulation Environment Based on ITBL
and a Large Scale GW Calculation Performed on This Platform 427

Yoshiyuki Kawazoe, Marcel Sluiter, Hiroshi Mizuseki,
Kyoko Ichinoseki, Amit Jain, Kaoru Ohno, Soh Ishii,
Hitoshi Adachi, and Hiroshi Yamaguchi

Computations of Global Seismic Wave Propagation in Three
Dimensional Earth Model . 434

Seiji Tsuboi, Dimitri Komatitsch, Chen Ji, and Jeroen Tromp

Lattice QCD Simulations as an HPC Challenge . 444
Atsushi Nakamura

VI ALPS2006

Energy-Efficient Embedded System Design at 90nm and Below – A
System-Level Perspective – . 452

Tohru Ishihara

Table of Contents XV

Empirical Study for Optimization of Power-Performance with On-Chip
Memory . 466

Chikafumi Takahashi, Mitsuhisa Sato, Daisuke Takahashi,
Taisuke Boku, Hiroshi Nakamura, Masaaki Kondo, and
Motonobu Fujita

Performance Evaluation of Compiler Controlled Power Saving
Scheme . 480

Jun Shirako, Munehiro Yoshida, Naoto Oshiyama, Yasutaka Wada,
Hirofumi Nakano, Hiroaki Shikano, Keiji Kimura, and
Hironori Kasahara

Program Phase Detection Based Dynamic Control Mechanisms for
Pipeline Stage Unification Adoption . 494

Jun Yao, Hajime Shimada, Yasuhiko Nakashima,
Shin-ichiro Mori, and Shinji Tomita

Reducing Energy in Instruction Caches by Using Multiple Line Buffers
with Prediction . 508

Kashif Ali, Mokhtar Aboelaze, and Suprakash Datta

Author Index . 523

Multiple Stream Prediction

Oliverio J. Santana1, Alex Ramirez1,2, and Mateo Valero1,2

1 Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

Barcelona, Spain
2 Barcelona Supercomputing Center

Barcelona, Spain
{osantana,aramirez,mateo}@ac.upc.edu

Abstract. The next stream predictor is an accurate branch predictor
that provides stream level sequencing. Every stream prediction contains
a full stream of instructions, that is, a sequence of instructions from the
target of a taken branch to the next taken branch, potentially contain-
ing multiple basic blocks. The long size of instruction streams makes it
possible for the stream predictor to provide high fetch bandwidth and to
tolerate the prediction table access latency. Therefore, an excellent way
for improving the behavior of the next stream predictor is to enlarge
instruction streams.

In this paper, we provide a comprehensive analysis of dynamic instruc-
tion streams, showing that there are several kinds of streams according to
the terminating branch type. Consequently, focusing on particular kinds
of stream is not a good strategy due to Amdahl’s law. We propose the
multiple stream predictor, a novel mechanism that deals with all kinds of
streams by combining single streams into long virtual streams. We show
that our multiple stream predictor is able to tolerate the prediction ta-
ble access latency without requiring the complexity caused by additional
hardware mechanisms like prediction overriding, also reducing the over-
all branch predictor energy consumption.

Keywords: microarchitecture, branch prediction, access latency, instruc-
tion stream.

1 Introduction

High performance superscalar processors require high fetch bandwidth to ex-
ploit all the available instruction-level parallelism. The development of accurate
branch prediction mechanisms has provided important improvements in the fetch
engine performance. However, it has also increased the fetch architecture com-
plexity. Our approach to achieve high fetch bandwidth, while maintaining the
complexity under control, is the stream fetch engine [11,16].

This fetch engine design is based on the next stream predictor, an accurate
branch prediction mechanism that uses instruction streams as the basic predic-
tion unit. We call stream to a sequence of instructions from the target of a taken

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 O.J. Santana, A. Ramirez, and M. Valero

Control Flow Code Layout

A

B C

D

A

CB

D

Possible Streams

A

B

D

A C D

Not a Stream

B

D

A

B

Fig. 1. Example of instruction streams

branch to the next taken branch, potentially containing multiple basic blocks.
Figure 1 shows an example control flow graph from which we will find the pos-
sible streams. The figure shows a loop containing an if-then-else structure. Let
us suppose that our profile data shows that A → B → D is the most frequently
followed path through the loop. Using this information, we lay out the code so
that the path A → B goes through a not-taken branch, and falls-through from
B → D. Basic block C is mapped somewhere else, and can only be reached
through a taken branch at the end of basic block A.

From the resulting code layout we may encounter four possible streams com-
posed by basic blocks ABD, A, C, and D. The first stream corresponds to the
sequential path starting at basic block A and going through the frequent path
found by our profile. Basic block A is the target of a taken branch, and the
next taken branch is found at the end of basic block D. Neither the sequence
AB, nor the sequence BD can be considered streams because the first one does
not end in a taken branch, and the second one does not start in the target of
a taken branch. The infrequent case follows the taken branch at the end of A,
goes through C, and jumps back into basic block D.

Although a fetch engine based on streams is not able to fetch instructions be-
yond a taken branch in a single cycle, streams are long enough to provide high
fetch bandwidth. In addition, since streams are sequentially stored in the instruc-
tion cache, the stream fetch engine does not need a special-purpose storage, nor a
complex dynamic building engine. However, taking into account current technol-
ogy trends, accurate branch prediction and high fetch bandwidth is not enough.
The continuous increase in processor clock frequency, as well as the larger wire
delays caused by modern technologies, prevent branch prediction tables from
being accessed in a single cycle [1,7]. This fact limits fetch engine performance
because each branch prediction depends on the previous one, that is, the target
address of a branch prediction is the starting address of the following one.

A common solution for this problem is prediction overriding [7,19]. A small
and fast predictor is used to obtain a first prediction in a single cycle. A slower
but more accurate predictor provides a new prediction some cycles later, over-
riding the first prediction if they differ. This mechanism partially hides the
branch predictor access latency. However, it also causes an increase in the fetch

Multiple Stream Prediction 3

architecture complexity, since prediction overriding requires a complex recovery
mechanism to discard the wrong speculative work based on overridden
predictions.

An alternative to the overriding mechanism is using long basic prediction
units. A stream prediction contains enough instructions to feed the execution
engine during multiple cycles [16]. Therefore, the longer a stream is, the more
cycles the execution engine will be busy without requiring a new prediction. If
streams are long enough, the execution engine of the processor can be kept busy
during multiple cycles while a new prediction is being generated. Overlapping the
execution of a prediction with the generation of the following prediction allows
to partially hide the access delay of this second prediction, removing the need
for an overriding mechanism, and thus reducing the fetch engine complexity.

Since instruction streams are limited by taken branches, a good way to ob-
tain longer streams is removing taken branches through code optimizations.
Code layout optimizations have a beneficial effect on the length of instruction
streams [16]. These optimizations try to map together those basic blocks that are
frequently executed as a sequence. Therefore, most conditional branches in op-
timized code are not taken, enlarging instruction streams. However, code layout
optimizations are not enough for the stream fetch engine to completely overcome
the need for an overriding mechanism [17].

Looking for novel ways of enlarging streams, we present a detailed analysis
of dynamic instruction streams. Our results show that most of them finalize in
conditional branches, function calls, and return instructions. As a consequence,
it would seem that these types of branches are the best candidates to apply tech-
niques for enlarging instruction streams. However, according to Amdahl’s law,
focusing on particular branch types is not a good approach to enlarge instruc-
tion streams. If we focus on a particular type of stream, the remainder streams,
which do not benefit from the stream enlargement, will limit the achievable per-
formance improvement. This leads to a clear conclusion: the correct approach
is not focusing on particular branch types, but trying to enlarge all dynamic
streams. In order to achieve this, we present the multiple stream predictor, a
novel predictor that concatenates those streams that are frequently executed as
a sequence. This predictor does not depend on the type of the branch terminating
the stream, making it possible to generate very long virtual streams.

The remainder of this paper is organized as follows. Section 2 describes pre-
vious related work. Section 3 presents our experimental methodology. Section 4
provides an analysis of dynamic instruction streams. Section 5 describes the
multiple stream predictor. Section 6 evaluates the proposed predictor. Finally,
Section 7 presents our concluding remarks.

2 Related Work

The prediction table access latency is an important limiting factor for current
fetch architectures. The processor front-end must generate the fetch address in
a single cycle because this address is needed for fetching instructions in the

4 O.J. Santana, A. Ramirez, and M. Valero

next cycle. However, the increase in processor clock frequency, as well as the
slower wires in modern technologies, cause branch prediction tables to require
multi-cycle accesses [1,7].

The trace predictor [5] is a latency tolerant mechanism, since each trace pre-
diction is potentially a multiple branch prediction. The processor front-end can
use a single trace prediction to feed the processor back-end with instructions
during multiple cycles, while the trace predictor is being accessed again to ob-
tain a new prediction. Overlapping the prediction table access with the fetch of
instructions from a previous prediction allows to hide the branch predictor access
delay. Our next stream predictor has the same ability [17], since a stream pre-
diction is also a multiple branch prediction able to provide enough instructions
to hide the prediction table access latency.

Using a fetch target queue (FTQ) [12] is also helpful for taking advantage of
this fact. The FTQ decouples the branch prediction mechanism and the instruc-
tion cache access. Each cycle, the branch predictor generates the fetch address
for the next cycle, and a fetch request that is stored in the FTQ. Since the in-
struction cache is driven by the requests stored in the FTQ, the fetch engine is
less likely to stay idle while the predictor is being accessed again.

Another promising idea to tolerate the prediction table access latency is
pipelining the branch predictor [6,20]. Using a pipelined predictor, a new pre-
diction can be started each cycle. Nevertheless, this is not trivial, since the
outcome of a branch prediction is needed to start the next prediction. There-
fore, each branch prediction can only use the information available in the cycle it
starts, which has a negative impact on prediction accuracy. In-flight information
could be taken into account when a prediction is generated, as described in [20],
but this also involves an increase in the fetch engine complexity. It is possible
to reduce this complexity in the fetch engine of a simultaneous multithreaded
processor by pipelining the branch predictor and interleaving prediction requests
from different threads each cycle [2]. Nevertheless, analyzing the accuracy and
performance of pipelined branch predictors is out of the scope of this work.

A different approach is the overriding mechanism described by Jimenez et
al. [7]. This mechanism provides two predictions, a first prediction coming from
a fast branch predictor, and a second prediction coming from a slower, but more
accurate predictor. When a branch instruction is predicted, the first prediction
is used while the second one is still being calculated. Once the second prediction
is obtained, it overrides the first one if they differ, since the second predictor is
considered to be the most accurate. A similar mechanism is used in the Alpha
EV6 [3] and EV8 [19] processors.

The problem of prediction overriding is that it requires a significant increase
in the fetch engine complexity. An overriding mechanism requires a fast branch
predictor to obtain a prediction each cycle. This prediction should be stored for
being compared with the main prediction. Some cycles later, when the main
prediction is generated, the fetch engine should determine whether the first pre-
diction is correct or not. If the first prediction is wrong, all the speculative work
done based on it should be discarded. Therefore, the processor should track

Multiple Stream Prediction 5

which instructions depend on each prediction done in order to allow the recov-
ery process. This is the main source of complexity of the overriding technique.

Moreover, a wrong first prediction does not involve that all the instructions
fetched based on it are wrong. Since both the first and the main predictions
start in the same fetch address, they will partially coincide. Thus, the correct
instructions based on the first prediction should not be squashed. This selective
squash will increase the complexity of the recovery mechanism. To avoid this
complexity, a full squash could be done when the first and the main predictions
differ, that is, all instructions depending on the first prediction are squashed, even
if they should be executed again according to the main prediction. However, a
full squash will degrade the processor performance and does not remove all the
complexity of the overriding mechanism. Therefore, the challenge is to develop a
technique able to achieve the same performance than an overriding mechanism,
but avoiding its additional complexity, which is the objective of this work.

3 Experimental Methodology

The results in this paper have been obtained using trace driven simulation of
a superscalar processor. Our simulator uses a static basic block dictionary to
allow simulating the effect of wrong path execution. This model includes the
simulation of wrong speculative predictor history updates, as well as the pos-
sible interference and prefetching effects on the instruction cache. We feed our
simulator with traces of 300 million instructions collected from the SPEC 2000
integer benchmarks1 using the reference input set. To find the most represen-
tative execution segment we have analyzed the distribution of basic blocks as
described in [21].

Since previous work [16] has shown that code layout optimizations are able
to enlarge instruction streams, we present data for both a baseline and an op-
timized code layout. The baseline code layout was generated using the Compaq
C V5.8-015 compiler on Compaq UNIX V4.0. The optimized code layout was
generated with the Spike tool shipped with Compaq Tru64 Unix 5.1. Optimized
code generation is based on profile information collected by the Pixie V5.2 tool
using the train input set.

3.1 Simulator Setup

Our simulation setup corresponds to an aggressive 8-wide superscalar processor.
The main values of this setup are shown in Table 1. We compare our stream
fetch architecture with three other state-of-the-art fetch architectures: a fetch
architecture using an interleaved BTB and a 2bcgskew predictor [19], the fetch
target buffer (FTB) architecture [12] using a perceptron predictor [8], and the
trace cache fetch architecture using a trace predictor [5]. All these architectures
use an 8-entry fetch target queue (FTQ) [12] to decouple branch prediction from
1 We excluded 181.mcf because its performance is very limited by data cache misses,

being insensitive to changes in the fetch architecture.

6 O.J. Santana, A. Ramirez, and M. Valero

Table 1. Configuration of the simulated processor

fetch, rename, and commit width 8 instructions
integer and floating point issue width 8 instructions
load/store issue width 4 instructions

fetch target queue 8 entries
instruction fetch queue 32 entries
integer, floating point, and load/store issue queues 64 entries
reorder buffer 256 entries

integer and floating point registers 160

L1 instruction cache 64/32 KB, 2-way, 128 byte block, 3 cycle latency
L1 data cache 64 KB, 2-way, 64 byte block, 3 cycle latency
L2 unified cache 1 MB, 4-way, 128 byte block, 16 cycle latency
main memory latency 350 cycles

maximum trace size 32 instructions (10 branches)
filter and main trace caches 128 traces, 4-way associative

the instruction cache access. We have found that larger FTQs do not provide
additional performance improvements.

Our instruction cache setup uses wide cache lines, that is, 4 times the processor
fetch width [11], and 64KB total hardware budget. The trace fetch architecture
is actually evaluated using a 32KB instruction cache, while the remainder 32KB
are devoted to the trace cache. This hardware budget is equally divided into
a filter trace cache [13] and a main trace cache. In addition, we use selective
trace storage [10] to avoid trace redundancy between the trace cache and the
instruction cache.

3.2 Fetch Models

The stream fetch engine [11,16] model is shown in Figure 2.a. The stream pre-
dictor access is decoupled from the instruction cache access using an FTQ. The
stream predictor generates requests, composed by a full stream of instructions,
which are stored in the FTQ. These requests are used to drive the instruction
cache, obtain a line from it, and select which instructions from the line should
be executed. In the same way, the remainder three fetch models use an FTQ to
decouple the branch prediction stage from the fetch stage.

Our interleaved BTB fetch model (iBTB) is inspired by the EV8 fetch en-
gine design described in [19]. This iBTB model decouples the branch prediction
mechanism from the instruction cache with an FTQ. An interleaved BTB is used
to allow the prediction of multiple branches until a taken branch is predicted, or
until an aligned 8-instruction block is completed. The branch prediction history
is updated using a single bit for prediction block, which combines the outcome
of the last branch in the block with path information [19]. Our FTB model is
similar to the one described in [12] but using a perceptron branch predictor [8]
to predict the direction of conditional branches. Figure 2.b shows a diagram
representing these two fetch architectures.

Multiple Stream Prediction 7

Fetch
Address Next

Stream
Predictor

FTQ

RAS

Instruction
Cache

STREAM

(a) The stream fetch engine

Instruction
Cache

Fetch
Address

interleaved BTB / FTB

FTQ

Next Address Logic

2bcgskew / perceptron

RAS

Fetch

Block

(b) Fetch engine using an iBTB/FTB and a decoupled conditional branch predictor

Trace Cache

Trace
Identifier

Next Trace
Predictor

Interleaved BTB

Instruction Cache
Trace

Buffers

FTQ

RHS

RAS

TRACE

(c) Trace cache fetch architecture using a next trace predictor

Fig. 2. Fetch models evaluated

Our trace cache fetch model is similar to the one described in [14] but enhanced
using an FTQ [12] to decouple the trace predictor from the trace cache, as shown
in Figure 2.c. Trace predictions are stored in the FTQ, which feeds the trace
cache with trace identifiers. An interleaved BTB is used to build traces in the
case of a trace cache miss. This BTB uses 2-bit saturating counters to predict
the direction of conditional branches when a trace prediction is not available.
In addition, an aggressive 2-way interleaved instruction cache is used to allow
traces to be built as fast as possible. This mechanism is able to obtain up to a
full cache line in a cycle, independent of PC alignment.

The four fetch architectures evaluated in this paper use specialized structures
to predict return instructions. The iBTB, the FTB, and the stream fetch archi-
tecture use a return address stack (RAS) [9] to predict the target address of re-
turn instructions. There are actually two RAS, one updated speculatively in pre-
diction stage, and another one updated non-speculatively in commit stage, which
is used to restore the correct state in case of a branch misprediction. The iBTB
and FTB fetch architectures also use a cascaded structure [15] to improve the
prediction accuracy of the rest of indirect branches. Both the stream predictor

8 O.J. Santana, A. Ramirez, and M. Valero

and the trace predictor are accessed using correlation, and thus they are already
able to correctly predict indirect jumps and function calls.

The trace fetch architecture uses a return history stack (RHS) [5] instead of
a RAS. This mechanism is more efficient than a RAS in the context of trace
prediction because the trace predictor is indexed using a history of previous
trace identifiers instead of trace starting addresses. There are also two RHS,
one updated speculatively in prediction stage, and another one updated non-
speculatively in commit stage. However, the RHS in the trace fetch architecture is
less accurate predicting return instructions than the RAS in the rest of evaluated
architectures. Trying to alleviate this problem, we also use a RAS to predict the
target address of return instructions during the trace building process.

3.3 Branch Prediction Setup

We have evaluated the four simulated fetch engines varying the size of the branch
predictor from small and fast tables to big and slow tables. We use realistic
prediction table access latencies calculated using the CACTI 3.0 tool [22]. We
modified CACTI to model tagless branch predictors, and to work with setups
expressed in bits instead of bytes. Data we have obtained corresponds to 0.10μm
technology. For translating the access time from nanoseconds to cycles, we as-
sumed an aggressive 8 fan-out-of-four delays clock period, that is, a 3.47 GHz
clock frequency as reported in [1]. It has been claimed in [4] that 8 fan-out-of-four
delays is the optimal clock period for integer benchmarks in a high performance
processor implemented in 0.10μm technology.

We have found that the best performance is achieved using three-cycle latency
tables [17]. Although bigger predictors are slightly more accurate, their increased
access delay harms processor performance. On the other hand, predictors with
a lower latency are too small and achieve poor performance. Therefore, we have
chosen to simulate all branch predictors using the bigger tables that can be
accessed in three cycles. Table 2 shows the configuration of the simulated pre-
dictors. We have explored a wide range of history lengths, as well as DOLC
index [5] configurations, and selected the best one found for each setup. Table 2
also shows the approximate hardware budget for each predictor. Since we sim-
ulate the larger three cycle latency tables2, the total hardware budget devoted
to each predictor is different. The stream fetch engine requires less hardware re-
sources because it uses a single prediction mechanism, while the other evaluated
fetch architectures use some separate structures.

Our fetch models also use an overriding mechanism [7,19] to complete a branch
prediction each cycle. A small branch predictor, supposed to be implemented
using very fast hardware, generates the next fetch address in a single cycle. Al-
though being fast, this predictor has low accuracy, so the main predictor is used
to provide an accurate back-up prediction. This prediction is obtained three

2 The first level of the trace and stream predictors, as well as the first level of the
cascaded iBTB and FTB, is actually smaller than the second one because larger
first level tables do not provide a significant improvement in prediction accuracy.

Multiple Stream Prediction 9

Table 2. Configuration of the simulated branch predictors

iBTB fetch architecture (approx. 95KB)
2bcgskew predictor interleaved BTB 1-cycle predictor

four 64K entry tables 1024 entry, 4-way, first level 64 entry gshare
16 bit history 4096 entry, 4-way, second level 6-bit history

(bimodal 0 bits) DOLC 14-2-4-10 32 entry, 1-way, BTB

FTB fetch architecture (approx. 50KB)
perceptron predictor FTB 1-cycle predictor

256 perceptrons 1024 entry, 4-way, first level 64 entry gshare
4096x14 bit local and 4096 entry, 4-way, second level 6-bit history
40 bit global history DOLC 14-2-4-10 32 entry, 1-way, BTB

Stream fetch architecture (approx. 32KB)
next stream predictor 1-cycle predictor

1024 entry, 4-way, first level 32 entry, 1-way, spred
4096 entry, 4-way, second level DOLC 0-0-0-5

DOLC 16-2-4-10

Trace fetch architecture (approx. 80KB)
next trace predictor interleaved BTB 1-cycle predictor

2048 entry, 4-way, first level 1024 entry, 4-way, first level 32 entry, 1-way, tpred
4096 entry, 4-way, second level 4096 entry, 4-way, second level DOLC 0-0-0-5

DOLC 10-4-7-9 DOLC 14-2-4-10 perfect BTB override

cycles later and compared with the prediction provided by the single-cycle pre-
dictor. If both predictions differ, the new prediction overrides the previous one,
discarding the speculative work done based on it. The configuration of the single-
cycle predictors used is shown in Table 2.

4 Analysis of Dynamic Instruction Streams

Fetching a single basic block per cycle is not enough to keep busy the execu-
tion engine of wide-issue superscalar processors during multiple cycles. In this
context, the main advantage of instruction streams is their long size. A stream
can contain multiple basic blocks, whenever only the last one ends in a taken
branch. This makes it possible for the stream fetch engine to provide high fetch
bandwidth while requiring low implementation cost [11,16].

However, having high average length does not involve that most streams are
long. Some streams could be long, providing high fetch bandwidth, while other
streams could be short, limiting the potential performance. Therefore, in the
search for new ways of improving the stream fetch engine performance, the dis-
tribution of dynamic stream lengths should be analyzed.

Figure 3 shows an histogram of dynamic streams classified according to their
length. It shows the percentage of dynamic streams that have a length ranging
from 1 to 30 instructions. The last bar shows the percentage of streams that are
longer than 30 instructions. Data is shown for both the baseline and the optimized

10 O.J. Santana, A. Ramirez, and M. Valero

0%

2%

4%

6%

8%

10%

12%

14%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0 +

stream length

return
function call
unconditional
conditional

(a) baseline code

0%

2%

4%

6%

8%

10%

12%

14%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0 +

stream length

return
function call
unconditional
conditional

(b) optimized code

Fig. 3. Histograms of dynamic streams classified according to their length and the
terminating branch type. The results presented in these histograms are the average of
the eleven benchmarks used.

code layout. In addition, streams are divided according to the terminating branch
type: conditional branches, unconditional branches, function calls, and returns.

Using the baseline code layout, most streams are shorter than the average
length: 70% of the dynamic streams have 12 or less instructions. Using the
optimized code layout, the average length is higher. However, most streams are
still shorter than the average length: 70% of the dynamic streams have 15 or less
instructions. Therefore, in order to increase the average stream length, research
should be focused in those streams that are shorter than the average length.
For example, if we consider an 8-wide execution core, research effort should be
devoted to enlarge streams shorter than 8 instructions. Using optimized codes,
the percentage of those streams is reduced from 40% to 30%. Nevertheless, there
is still room for improvement.

Most dynamic streams finish in taken conditional branches. They are 60%
when using the baseline code and 52% when using the optimized code. The
percentage is lower in the optimized codes due to the higher number of not
taken conditional branches, which never finish instruction streams. There also
is a big percentage of streams terminating in function calls and returns. They
are 30% of all dynamic streams in the baseline code. The percentage is larger in
the optimized code: 36%. This happens because code layout optimizations are
mainly focused on conditional branches. Since the number of taken conditional

Multiple Stream Prediction 11

branches is lower, there is a higher percentage of streams terminating in other
types of branches, although the total number is similar.

5 Multiple Stream Prediction

According to the analysis presented in the previous section, one could think that,
in order to enlarge instruction streams, the most promising field for research are
conditional branches, function calls, and return instructions. However, we have
found that techniques for enlarging the streams finalizing in particular branch
types achieve poor results [18]. This is due to Amdahl’s law: although these
techniques enlarge a set of instructions streams, there are other streams that are
not enlarged, limiting the achievable benefit. Therefore, we must try to enlarge
not particular stream types, but all instruction streams. Our approach to achieve
this is the multiple stream predictor.

5.1 The Multiple Stream Predictor

The next stream predictor [11,16], which is shown in Figure 4.a, is a specialized
branch predictor that provides stream level sequencing. Given a fetch address,
i.e., the current stream starting address, the stream predictor provides the cur-
rent stream length, which indicates where is the taken branch that finalizes the
stream. The predictor also provides the next stream starting address, which is
used as the fetch address for the next cycle. The current stream starting address
and the current stream length form a fetch request that is stored in the FTQ.
The fetch requests stored in the FTQ are then used to drive the instruction
cache.

Actually, the stream predictor is composed by two cascaded tables: a first
level table indexed only by the fetch address, and a second level table indexed
using path correlation. A stream is only introduced in the second level if it is not
accurately predicted by the first level. Therefore, those streams that do not need
correlation are kept in the first level, avoiding unnecessary aliasing. In order to
generate a prediction, both levels are looked up in parallel. If there is a second
level table hit, its prediction is used. Otherwise, the prediction of the first level
table is used. The second level prediction is prioritized because it is supposed to
be more accurate than the first level due to the use of path correlation.

The objective of our multiple stream predictor is predicting together those
streams that are frequently executed as a sequence. Unlike the trace cache, the
instructions corresponding to a sequence of streams are not stored together in a
special purpose buffer. The instruction streams belonging to a predicted sequence
are still separate streams stored in the instruction cache. Therefore, the multiple
stream predictor does not enable the ability of fetching instructions beyond a
taken branch in a single cycle. The benefit of our technique comes from grouping
predictions, allowing to tolerate the prediction table access latency.

Figure 4.b shows the fields required by a 2-stream multiple predictor. Like the
original single stream predictor, a 2-stream predictor requires a single tag field,

12 O.J. Santana, A. Ramirez, and M. Valero

Previous Stream

Previous Stream

Previous Stream

Tag Length Next Stream

Address Indexed Table

Path Indexed Table

Hysteresis

Tag Length Next Stream Hysteresis

Current Address

hash

(a) cascaded predictor design

Tag

Length

Next Stream

Hysteresis

Single Stream
Predictor

Tag

Length

Next Stream

Hysteresis

2-Stream
Predictor

Length 2

Next Stream 2

Hysteresis 2

(b) new fields required

Fig. 4. The next stream predictor

which corresponds to the starting address of the stream sequence. However, the
rest of the fields should be duplicated. The tag and length fields determine the
first stream that should be executed. The target of this stream, determined by
the next stream field, is the starting address of the second stream, whose length
is given by the second length field. The second next stream field is the target of
the second stream, and thus the next fetch address.

In this way, a single prediction table lookup provides two separate stream pre-
dictions, which are supposed to be executed sequentially. After a multiple stream
prediction, every stream belonging to a predicted sequence is stored separately
in the FTQ, which involves that using the multiple-stream predictor does not
require additional changes in the processor front-end. Extending this mechanism
for predicting three or more streams per sequence would be straightforward, but
we have found that sequences having more than two streams do not provide
additional benefit.

5.2 Multiple Stream Predictor Design

Providing two streams per prediction needs duplicating the prediction table size.
In order to avoid a negative impact on the prediction table access latency and
energy consumption, we only store multiple streams in the first-level table of the
cascaded stream predictor, which is smaller than the second-level table. Since the
streams belonging to a sequence are supposed to be frequently executed together,
it is likely that, given a fetch address, the executed sequence is always the same.
Consequently, stream sequences do not need correlation to be correctly predicted,
and thus keeping them in the first level table does not limit the achievable benefit.

In order to take maximum advantage of the available space in the first level
table, we use hysteresis counters to detect frequently executed stream sequences.
Every stream in a sequence has a hysteresis counter associated to it. All hysteresis
counters behave like the counter used by the original stream predictor to decide
whether a stream should be replaced from the prediction table [16]. When the
predictor is updated with a new stream, the corresponding counter is increased
if the new stream matches with the stream already stored in the selected entry.
Otherwise, the counter is decreased and, if it reaches zero, the whole predictor
entry is replaced with the new data, setting the counter to one. If the decreased

Multiple Stream Prediction 13

counter does not reach zero, the new data is discarded. We have found that 3-
bit hysteresis counters, increased by one and decreased by two, provide the best
results for the multiple stream predictor.

When the prediction table is looked up, the first stream is always provided.
However, the second stream is only predicted if the corresponding hysteresis
counter is saturated, that is, if the counter has reached its maximum value.
Therefore, if the second hysteresis counter is not saturated, the multiple stream
predictor provides a single stream prediction as it would be done by the original
stream predictor. On the contrary, if the two hysteresis counters are saturated,
then a frequently executed sequence has been detected, and the two streams
belonging to this sequence are introduced in the FTQ.

6 Evaluation of the Multiple Stream Predictor

Our multiple stream predictor is able to provide a high amount of instructions
per prediction. Figure 5 shows an histogram of instructions provided per pre-
diction. It shows the percentage of predictions that provide an amount of in-
structions ranging from 1 to 30 instructions. The last bar shows the percentage
of predictions that provide more than 30 instructions. Data are shown for both
the baseline and the optimized code layout. In addition, data are shown for the
original single-stream predictor, described in [11,16], and a 2-stream multiple
predictor.

The main difference between both code layouts is that, as can be expected,
there is a lower percentage of short streams in the optimized code. Besides, it is
clear that our multiple stream predictor efficiently deals with the most harmful
problem, that is, the shorter streams. Using our multiple stream predictor, there
is an important reduction in the percentage of predictions that provide a small
number of instructions. Furthermore, there is an increase in the percentage of
predictions that provide more than 30 instructions, especially when using opti-
mized codes. The lower number of short streams points out that the multiple
stream predictor is an effective technique for hiding the prediction table access
latency by overlapping table accesses with the execution of useful instructions.

Figure 6 shows the average processor performance achieved by the four evalu-
ated fetch architectures, for both the baseline and the optimized code layout. We
have evaluated a wide range of predictor setups and selected the best one found
for each evaluated predictor. Besides the performance of the four fetch engines
using overriding, the performance achieved by the trace cache fetch architecture
and the stream fetch engine not using overriding is also shown. In the latter
case, the stream fetch engine uses a 2-stream multiple predictor instead of the
original single-stream predictor.

The main observation from Figure 6 is that the multiple stream predictor with-
out overriding provides a performance very close to the original single-stream
predictor using overriding. The performance achieved by the multiple stream
predictor without overriding is enough to outperform both the iBTB and the

14 O.J. Santana, A. Ramirez, and M. Valero

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0 +

instructions per prediction

single-stream predictor

2-stream multiple predictor

(a) baseline code

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0 +

instructions per prediction

single-stream predictor

2-stream multiple predictor

(b) optimized code

Fig. 5. Histograms of dynamic predictions, classified according to the amount of in-
structions provided, when using a single-stream predictor and a 2-stream multiple
predictor. The results presented in these histograms are the average of the eleven
benchmarks used.

Fig. 6. Processor performance when using (full bar) and not using (shadowed bar)
overriding

FTB fetch architectures, even when they do use overriding. The performance of
the multiple stream predictor without overriding is also close to a trace cache
using overriding, while requiring lower complexity.

Multiple Stream Prediction 15

It should be taken into account that this improvement is achieved by increas-
ing the size of the first level table. Fortunately, the tag array is unmodified and
no additional access port is required. We have checked using CACTI [22] that
the increase in the predictor area is less than 12%, as well as that the prediction
table access latency is not increased. Moreover, our proposal not only avoids the
need for a complex overriding mechanism, but also reduces the predictor energy
consumption. Although the bigger first level table consumes more energy per
access, it is compensated with the reduction in the number of prediction table
accesses. The ability of providing two streams per prediction causes 35% reduc-
tion in the total number of prediction table lookups an updates, which leads to
12% reduction in the overall stream predictor energy consumption.

7 Conclusions

Current technology trends create new challenges for the fetch architecture design.
Higher clock frequencies and larger wire delays cause branch prediction tables to
require multiple cycles to be accessed [1,7], limiting the fetch engine performance.
This fact has led to the development of complex hardware mechanisms, like
prediction overriding [7,19], to hide the prediction table access delay.

To avoid this increase in the fetch engine complexity, we propose to use long
instruction streams [11,16] as basic prediction unit, which makes it possible to
hide the prediction table access delay. If instruction streams are long enough, the
execution engine can be kept busy executing instructions from a stream during
multiple cycles, while a new stream prediction is being generated. Therefore,
the prediction table access delay can be hidden without requiring any additional
hardware mechanism.

In order to take maximum advantage of this fact, it is important to have
streams as long as possible. We achieve this using the multiple stream predictor,
a novel predictor design that combines frequently executed instruction streams
into long virtual streams. Our predictor provides instruction streams long enough
for allowing a processor not using overriding to achieve a performance close
to a processor using prediction overriding, that is, we achieve a very similar
performance at a much lower complexity, also requiring less energy consumption.

Acknowledgements

This work has been supported by the Ministry of Education of Spain under con-
tract TIN–2004–07739–C02–01, the HiPEAC European Network of Excellence,
the Barcelona Supercomputing Center, and an Intel fellowship.

References

1. Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D.: Clock rate versus IPC:
The end of the road for conventional microarchitectures. In: 27th Intl. Symp. on
Computer Architecture (2000)

16 O.J. Santana, A. Ramirez, and M. Valero

2. Falcón, A., Santana, O.J., Ramirez, A., Valero, M.: Tolerating branch predictor
latency on SMT. In: 5th Intl. Symp. on High Performance Computing (2003)

3. Gwennap, L.: Digital 21264 sets new standard. Microprocessor Report 10(14)
(1996)

4. Hrishikesh, M.S., Jouppi, N.P., Farkas, K.I., Burger, D., Keckler, S.W., Shivaku-
mar, P.: The optimal useful logic depth per pipeline stage is 6-8 fo4. In: 29th Intl.
Symp. on Computer Architecture (2002)

5. Jacobson, Q., Rotenberg, E., Smith, J.E.: Path-based next trace prediction. In:
30th Intl. Symp. on Microarchitecture (1997)

6. Jimenez, D.A.: Reconsidering complex branch predictors. In: 9th Intl. Conf. on
High Performance Computer Architecture (2003)

7. Jimenez, D.A., Keckler, S.W., Lin, C.: The impact of delay on the design of branch
predictors. In: 33rd Intl. Symp. on Microarchitecture (2000)

8. Jimenez, D.A., Lin, C.: Dynamic branch prediction with perceptrons. In: 7th Intl.
Conf. on High Performance Computer Architecture (2001)

9. Kaeli, D., Emma, P.: Branch history table prediction of moving target branches
due to subroutine returns. In: 18th Intl. Symp. on Computer Architecture (1991)

10. Ramirez, A., Larriba-Pey, J.L., Valero, M.: Trace cache redundancy: red & blue
traces. In: 6th Intl. Conf. on High Performance Computer Architecture (2000)

11. Ramirez, A., Santana, O.J., Larriba-Pey, J.L., Valero, M.: Fetching instruction
streams. In: 35th Intl. Symp. on Microarchitecture (2002)

12. Reinman, G., Austin, T., Calder, B.: A scalable front-end architecture for fast
instruction delivery. In: 26th Intl. Symp. on Computer Architecture (1999)

13. Rosner, R., Mendelson, A., Ronen, R.: Filtering techniques to improve trace cache
efficiency. In: 10th Intl. Conf. on Parallel Architectures and Compilation Tech-
niques (2001)

14. Rotenberg, E., Bennett, S., Smith, J.E.: A trace cache microarchitecture and eval-
uation. IEEE Transactions on Computers 48(2) (1999)

15. Santana, O.J., Falcón, A., Fernández, E., Medina, P., Ramirez, A., Valero, M.: A
comprehensive analysis of indirect branch prediction. In: 4th Intl. Symp. on High
Performance Computing (2002)

16. Santana, O.J., Ramirez, A., Larriba-Pey, J.L., Valero, M.: A low-complexity fetch
architecture for high-performance superscalar processors. ACM Transactions on
Architecture and Code Optimization 1(2) (2004)

17. Santana, O.J., Ramirez, A., Valero, M.: Latency tolerant branch predictors. In: Intl.
Workshop on Innovative Architecture for Future Generation High-Performance
Processors and Systems (2003)

18. Santana, O.J., Ramirez, A., Valero, M.: Techniques for enlarging instruction
streams. Technical Report UPC-DAC-RR-2005-11, Departament d’Arquitectura
de Computadors, Universitat Politècnica de Catalunya (2005)

19. Seznec, A., Felix, S., Krishnan, V., Sazeides, Y.: Design tradeoffs for the Alpha
EV8 conditional branch predictor. In: 29th Intl. Symp. on Computer Architecture
(2002)

20. Seznec, A., Fraboulet, A.: Effective ahead pipelining of instruction block address
generation. In: 30th Intl. Symp. on Computer Architecture (2003)

21. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: 10th Intl. Conf. on
Parallel Architectures and Compilation Techniques (2001)

22. Shivakumar, P., Jouppi, N.P.: CACTI 3.0: an integrated cache timing, power and
area model. Technical Report 2001/2, Western Research Laboratory (2001)

Enhanced Loop Coalescing:

A Compiler Technique for Transforming
Non-uniform Iteration Spaces

Arun Kejariwal1, Alexandru Nicolau1, and Constantine D. Polychronopoulos2

1 Center for Embedded Computer Systems
University of California at Irvine

Irvine, CA 92697, USA
arun kejariwal@computer.org, nicolau@cecs.uci.edu

http://www.cecs.uci.edu/
2 Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
cdp@csrd.uiuc.edu

http://www.csrd.uiuc.edu/

Abstract. Parallel nested loops are the largest potential source of paral-
lelism in numerical and scientific applications. Therefore, executing par-
allel loops with low run-time overhead is very important for achieving
high performance on parallel computers. Guided self-scheduling (GSS)
has long been used for dynamic scheduling of parallel loops on shared
memory parallel machines and for efficient utilization of dynamically al-
located processors. In order to minimize the synchronization (or schedul-
ing) overhead in GSS, loop coalescing has been proposed as a restructur-
ing technique to transform nested loops into a single loop. In other words,
coalescing “flattens” the iteration space in lexicographic order of the in-
dices of the original loop. Although coalescing helps reduce the run-time
scheduling overhead, it does not necessarily minimize the makespan, i.e.,
the maximum finishing time, especially in situations where the execution
time (workload) of iterations is not uniform as is often the case in prac-
tice, e.g., in control intensive applications. This can be attributed to the
fact that the makespan is directly dependent on the workload distribu-
tion across the flattened iteration space. The latter in itself depends on
the order of coalescing of the loop indices. We show that coalescing (as
proposed) can potentially result in large makespans. In this paper, we
present a loop permutation-based approach to loop coalescing, referred to
as enhanced loop coalescing, to achieve near-optimal schedules. Several
examples are presented and the general technique is discussed in detail.

1 Introduction

Advances in silicon technology has enabled the development of petascale com-
puting systems [1,2,3,4,5,6,7]. Applications that require petaflop speed include
(but are not limited to) simulation of physical and artificial phenomenon [8],

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 17–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

mailto:arun_kejariwal@computer.org
mailto:nicolau@cecs.uci.edu
http://www.cecs.uci.edu/
mailto:cdp@csrd.uiuc.edu
http://www.csrd.uiuc.edu/

18 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

medicine (reconstruction of 3-d images from 2-d images), business (modeling of
transportation and economic systems), computational biology applications such
as protein folding, modeling of integrated Earth systems, remote sensing data
assimilation, simulation of aerodynamics, hydrodynamics [9], transient dynamics
[10], molecular dynamics [11,12] gas turbine engines et cetera. In order to meet
the high performance requirements of such applications and efficiently exploit
the parallel processing power of such petaflop architectures [13,14,15], advanced
algorithms and compilers need to be developed for program parallelization and
optimization and scheduling.

It has been shown that parallel nested loops account for the greatest percent-
age of parallelism in high performance computing applications [16]. Thus, it is
very important to optimize the execution of such loops on parallel processor sys-
tems [17,18]. Guided self-scheduling has long been used for dynamic scheduling
(as in DOALL Cray scheduling) of nested loops on shared memory parallel systems
[19]. In this context GSS is widely used as it allows for efficient utilization of
dynamically allocated processors1 and minimizes run-time scheduling overhead.
In order to make nested loops amenable for GSS, loop coalescing has been pro-
posed as a compiler restructuring technique for shared memory supercomputers
[20]. Loop coalescing transforms multiply nested DOALL loops into singly nested
loops. The transformation maps a multidimensional iteration space into a single
dimensional iteration space through a set of mappings that express the indices or
“co-ordinates” of the multidimensional iteration space as a function of a single
index (the transformation is further discussed in Section 3). The “flattening”
of the iteration space simplifies the loop structure, thereby facilitating efficient
dynamic scheduling by reducing the associated scheduling overhead. However,
loop coalescing does not account for the workload distribution across the itera-
tion space – iterations typically have variable workloads (execution times) due
to both algorithmic and systemic variations (operating system, interference with
other programs).

In this paper we present a novel technique for transforming, specifically coa-
lescing (or flattening), iteration spaces with non-uniform workloads to minimize
scheduling overhead and the makespan. For the same, we compute the workload
gradient (to characterize the workload distribution) across the iteration space.
The gradient can either be computed at the loop boundaries (in a nested loop)
or at the iteration-level. Subsequently, the iteration space is coalesced along an
axis corresponding to the maximum gradient. Finally, the transformed loop is
dynamically scheduled on a parallel multicomputer using guided self-scheduling.

The rest of the paper is organized as follows: Next, we present the terminology
used in the rest of the paper. In Section 3 we present a brief overview of loop
coalescing and guided self-scheduling (GSS). A formal description of the problem
we address in this paper is presented in Section 4. Section 5 presents a motivating
example. Next, in Section 6 we discuss our approach for transforming iteration
spaces with non-uniform workload distribution. A case study is presented in

1 High performance systems are often time shared across jobs (of a single user) or
users owing to their high cost. This calls for dynamic allocation of processors.

Enhanced Loop Coalescing 19

Section 7. In Section 8 we discuss previous work. Finally, we conclude with
directions for future research in Section 9.

2 Terminology

Our loop model consists of a non-perfectly nested DOALL loop with fixed loop
bounds, as shown in Figure 1. Further, our model also supports nested condi-
tionals at each level of the nested loop. The index variables of the individual
loops are i1, i2, . . . , in and they constitute an index vector i = 〈i1, i2, . . . , in〉.
An iteration is an instance of the index vector i. The set of iterations of a
loop nest L is an iteration space Γ = {i}. Let N denote the total number of
iterations in Γ . Assuming normalized indices, N is given by:

N =
n

Π
k=1

Nk

where, Nk is the upper bound of index variable ik. An iteration space is said to
have uniform workload distribution if all the iterations in Γ have equal execution
times (or workloads). However, in the presence of conditionals the iterations
tend to have different workloads. Such an iteration space is said to have non-
uniform workload distribution. Let W(i) denote the average workload (obtained
by profiling the application with multiple training sets) of an iteration i and W
denote the total workload.

doall i2 = 1, N

doall im = 1, N

doall i1 = 1, N1

m

2

end doall

end doall

end doall

A (i1 , i2 , ...) = ...m , i

Fig. 1. Our loop model

3 Background

In this section we present a brief overview of loop coalescing and guided self-
scheduling.

3.1 Loop Coalescing

In [20], Polychronopoulos proposed loop coalescing as a restructuring technique
for transforming nested parallel loops. Loop coalescing manipulates the loop sub-
scripts such that there exists a one-to-one mapping between the array subscripts

20 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

of the original and the transformed loop. In other words, the transformation
determines a mapping between the subscripts of the original loop and the single
subscript of the restructured loop. An example of loop coalescing is illustrated
in Figure 2.

doall i1 = 1, N

1 , i2 j/N , j − N(A) = ...(j − 1)/N

doall j = 1, N*N

end doallend doall

end doall

doall i2 = 1, N

A (i) = ...

Original Loop

(a)

Coalesced Loop

(b)

Fig. 2. Example of Loop Coalescing

Table 1 shows the index values for the original and the coalesced loop. Note
that in case of non-unit strides, the lower and upper loop bounds are normalized
w.r.t. the stride before coalescing.

Table 1. Index Mapping for the example shown in Figure 2

i1 i2 j

1 1 1

1 2 2

. . .

1 N N

2 1 N+1

2 2 N+2

. . .

2 N 2N

. . .

. . .

N 1 (N-1) N+1

N 2 (N-1) N+2

. . .

N N N*N

Observe that the first subscript i1 of the original loop is transformed into an
expression involving j, i.e.,

i1 → f(j)

Enhanced Loop Coalescing 21

where f is an integer-valued function such that the value of f(j) is incremented
by 1 each time j assumes a value of the form wN + 1, for w ∈ Z

+. Similarly, i2
is transformed such that

i2 → g(j)

g(j) assumes the successive values 1, 2, . . . , N but its values wrap around each
time f(j) becomes wN + 1. The mapping functions for the example shown in
Figure 2(b) is given by:

f(j) =
⌈

j

N

⌉
and g(j) = j − N

⌊
j − 1
N

⌋

It is easy to verify that the mappings satisfy the properties mentioned above.
Observe that the mapping functions f and g follow a regular pattern. In [20],
Polychronopoulos showed that loop coalescing can also applied to nested loops
with unequal loop bounds. The general array subscript transformation for a loop
of the form shown in Figure 1 is given by the following theorem.2

Theorem 1. [20] Let L, L′ represent the original and the coalesced loop re-
spectively. An array reference of the form A(i1, i2, . . . , im) in L can be uniquely
expressed by an equivalent array reference A(f1(j), f2(j), . . . , fm(j)) in L′ where

fk(j) =

⌈
j

Πm
p=k+1Np

⌉
− Nk

⌊
j − 1

Πm
p=kNp

⌋
for k = 1, 2, . . . , m (1)

From Equation 1, we observe that the transformation for the outermost loop
i1 is

⌈
j

Πm
p=2Np

⌉
. In case of equal loop bounds, the mapping can be simplified as

follows:

fk(j) =
⌈

j

Nm−k

⌉
− Nk

⌊
j − 1

Nm−k+1

⌋
for k = 1, 2, . . . , m

Loop coalescing reduces the amount of synchronization (in other words, run-time
overhead) associated with the execution of parallel loops. The transformation can
be viewed as flattening of the iteration space along an axis corresponding to the
outermost loop.

3.2 Guided Self-Scheduling

Polychronopoulos and Kuck proposed the guided self-scheduling (GSS) tech-
nique for dynamic scheduling of parallel loops [21]. Given a nested loop, GSS
coalesces the loop to obtain a single index j = 1, . . . ,N. At each scheduling
step p, GSS allocates Λ number of iterations (also referred to as a chunk) to an
idle processor, where

Λp =
⌈

Ri

P

⌉
; Rp+1 ← Rp − Λp

2 The transformation is also applicable for non-perfectly nested parallel loops.

22 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

Table 2. Example of Guided Self-Scheduling

Chunk Sizes # of Sync. Points

10 5 3 1 1 5

R1 = N and P is the number of processors. For example, given N = 20 and
P = 2, the chunk sizes and the number of synchronization points corresponding
to the schedule obtained by GSS is given by:

From Table 2 we observe that towards the end of a GSS(1) schedule, chunks
are comprised of single iterations. Scheduling single iterations can potentially
incur large scheduling overhead. Therefore, the chunk size is restricted to Λmin
(and is pre-specified). The modified expression for Λ is given by

Λp = max
(

Λmin,

⌈
Ri

P

⌉)
(2)

The range of iterations assigned to the p-th processor is given by [N − Rp +
1, . . . ,N − Rp + Λp]. GSS models loops with conditionals as pseudo-tree. The
execution time of the loop body is assumed to be equal to the execution time of
the shortest path in the tree. GSS minimizes the scheduling overhead as proces-
sors perform scheduling by themselves at run-time, in contrast to (traditional)
dynamic scheduling wherein processors are scheduled by the operating system
or by a global control unit.

4 Problem Statement

In this section we present a formal description of scheduling iteration spaces (of
parallel nested loops) with non-uniform workloads. We are given an iteration
space Γ = {i} (comprised of N independent iterations), each iteration having
W(i) workload and a set of P identical processors. A schedule in this case can
be thought as a partition S = 〈S1, S2, . . . , SP〉 of Γ into P disjoint sets. The
q-th processor, for 1 ≤ q ≤ P, executes the iterations in Sq. The makespan (or
maximum finishing time) of the schedule is given by

f(S) = max
1≤q≤P

�(Sq)

where for any X ⊆ Γ , �(X) is defined to
∑

i∈X W(i).3

The above formalization is analogous to the classical bin-packing problem or
the job-shop scheduling problem. Note that unlike the job-scheduling problem
where the jobs can be arbitrarily reordered, in our case reordering of iterations of
a parallel (nested) loop is restricted to loop boundaries (in other words, iterations
are reordered at loop-level (via loop interchange). The restriction is introduced
so as to minimize the run-time scheduling overhead and the increase in code
3 The notation used in this section is the one used by Coffman et al. [22].

Enhanced Loop Coalescing 23

size. It is well known that these problems are NP-complete [23]. Therefore, we
seek efficient algorithms to achieve “near-optimal” schedules.

In the next section we present a motivating example to present an intuitive
idea of approach. Subsequently, we discuss our approach in detail.

5 A Motivating Example

Consider the iteration space shown in Figure 3(a). The iteration space shows non-
uniform workload distribution of a doubly-nested DOALL loop with N1 = N2 = 5.
Assuming 2 processors and Λmin = 3, the chunk sizes corresponding to a GSS
schedule is given by:

Since iterations of a DOALL loop are independent (by definition), the iteration
space can be flattened along any axis of the iteration space. Let us flatten the
iteration space shown in Figure 3 along the i1 and i2 axis, shown in Figures 3(b)
and 3(c) respectively. Observe that the flattened iteration spaces have different
workload profiles. Assuming processor 1 is available at t = 0 and processor 2 is
available at t = 5, the GSS schedules corresponding to the iteration spaces of
Figures 3(b) and 3(c) is shown in Figures 4(a) and 4(b) respectively. The numbers

1

2

3

4

5

1

2

3

4

5

0

5

10

15

20

i
2

i
1

w
or

kl
oa

d

(a)

1 2 3 4 5

0

2

4

6

8

10

12

14

16

i
1

w
or

kl
oa

d

(b)

1 2 3 4 5

0

2

4

6

8

10

12

14

16

i
2

w
or

kl
oa

d

(c)

Fig. 3. a) Iteration space with non-uniform workload distribution; b) Flattened itera-
tion space along i1; and c) Flattened iteration space along i2

24 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

Table 3. Chunk sizes corresponding to the self-schedule of the iteration space shown
in Figure 3

Chunk Sizes # of Sync. Points

13 6 3 3 4

P1 P2

t=0

57

109

21

24

end

t=5

t=62

t=83

t=109

(a)

P1 P2

103

t=5

t=0

t=65

t=99

t=113 end

60

34

14

(b)

Fig. 4. a) GSS schedule for the iteration space of Figure 3(b); b) GSS schedule for the
iteration space of Figure 3(c)

next to the dashed lines in Figure 4 represent the workload corresponding to the
chunk of iterations mapped onto a processor.

From Figure 4 we observe that flattening the iteration space along i2 results
in a larger makespan. In general, it is imperative to account for the workload
distribution across the iteration space during loop coalescing as it directly affects
the makespan of the GSS schedule. In the next section we discuss our approach
for handling the above to achieve near-optimal schedules.

6 The Approach

In [24], Graham proposed the LPT (Largest Processing Time first) algorithm to
schedule a set of tasks with variable execution times. At each scheduling step, the
algorithm schedules a task with the largest execution time on an idle processor.
Graham showed that the above tends to minimize the makespan. We employ
the same philosophy to determine an axis for flattening the iteration space so
that the GSS schedule of the coalesced loop corresponds to minimum makespan.
First, we determine an average workload for each iteration by profiling the loop
with multiple training sets. Next, we determine the workload gradient of the
iteration space, as discussed in the next subsection.

6.1 Determining Workload Gradient

We define a workload gradient, denoted by ∇(Γ), to characterize the varia-
tion in workload across the iteration space. To determine the workload gradient

Enhanced Loop Coalescing 25

along an axis corresponding to a given loop index ik, first the iteration space is
flattened (symbolically) in lexicographical order of the loop indices excluding ik.
Subsequently, the gradient is computed either at a coarse-grain or at a fine-grain
granularity as discussed below:

❐ Coarse-grain: The coarse-grain workload is computed as follows: Com-
pute the average workload of the set of iterations corresponding to ik =
1, 2, . . . , Nk. Next, the workload gradient along ik, denoted by ∇(Γ, ik), is
computed by summing the difference in successive average values. For ex-
ample, the coarse-grain workload gradient of the iteration space shown in
Figure 3(b) is ∇(Γ, i1) = −3.2 and for the iteration space shown in Fig-
ure 3(c) is ∇(Γ, i2) = 1.8.

❐ Fine-grain: In this case, ∇(Γ) is computed as a cumulative sum of the differ-
ence in workloads of successive iterations of the coalesced (along ik) loop. For
example, the fine-grain workload gradient of the iteration spaces shown in
Figures 3(b) and 3(c) is ∇(Γ, i1) = −1.0 and ∇(Γ, i2) = −11.0 respectively.

In context of GSS, fine-grain workload gradient is not a good measure to
determine the variation in workload across the iteration space; in contrast, the
coarse-grain approach better captures the workload gradient as GSS allocates
a chunk of iterations (to an idle processor) at each scheduling step. However,
the chunks in GSS do not necessarily correspond to ik = 1, 2, . . . , Nk. Therefore,
we propose to compute the workload gradient between the chunks of a GSS
schedule. Recall that both the chunk sizes and the iterations constituting the
chunks can be determined at compile-time. For example, given Λmin = 3 and
P = 2, the chunk sizes for the iteration space shown in Figure 3(a) are given in
Table 3. The workload of the chunks are 109, 57, 21, 24 respectively for coalescing
done along i1 and 103, 60, 34, 14 respectively for coalescing done along i2. The
workload gradient for the two cases is ∇(Γ, i1) = 85 and ∇(Γ, i2) = 83. Since,
∇(Γ, i1) > ∇(Γ, i2) we coalesce the loop along i1. In the next subsection, we
formally outline the algorithm for enhanced loop coalescing.

6.2 The Transformation

A formal description of our approach is presented in Algorithm 1. As discussed
earlier, the prime objective of the algorithm is to reorder the iterations in non-
increasing order of their workloads, i.e., W(i) ≥ W(j) for i < j (based on the LPT
philosophy). In this context, reordering corresponds to flattening of the itera-
tion space and is restricted along an axis corresponding to maximum workload
gradient.

First, the workload distribution across the iteration space is determined. For
the same, the loop is profiled with multiple training sets. The workload of each
iteration is an average of the workloads corresponding to the different training
sets. Then, given a fixed number of processors P, Algorithm 1 determines the
chunk sizes for GSS. Next, the algorithm determine an axis i∗ corresponding to

26 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

Algorithm 1. Enhanced Loop Coalescing

Input : An N-dimensional non-uniform iteration space, Γ and P processors.

Output : A flattened iteration space.

Determine the workload distribution across Γ via profiling

Compute the chunk sizes using the GSS algorithm (refer to Section 3.2)

/* Determine the axis for flattening the iteration space */

for each iterator ik, where 1 ≤ k ≤ n do
Determine ∇(Γ, ik)

end for
i∗ ← max

1≤k≤n
∇(Γ, ik)

Interchange the loop corresponding to the index i∗ with the outermost loop

Coalesce the loop along the (new) outermost loop

maximum workload gradient (refer to Section 6.1). Subsequently, the outermost
loop and the loop corresponding to index i∗ are interchanged. Note that for
the loop model shown in Figure 1 loop interchange is always valid as there
do not exist any loop carried dependences [25]. Finally, the transformed loop
is coalesced along the (new) outermost loop. Note that Algorithm 1 does not
guarantee chunks (of a GSS schedule corresponding to the coalesced loop) with
monotonically decreasing workloads.

The maximum workload gradient obtained in Algorithm 1 may not correspond
to a global maximum. In order to achieve the same, we propose an iterative ap-
proach wherein Algorithm 1 is applied for each permutation of the loop indices.
The permutation corresponding to the highest workload gradient is chosen for
coalescing the loop. Arguably, the exhaustive approach is expensive w.r.t. com-
pilation time. However, it improves program performance.

6.3 Analysis

The problem of obtaining a minimum makespan GSS schedule of a parallel nested
loop is identical to that scheduling a set of tasks T = {T1, T2, . . . , Tr} with an
empty partial order [26] and a function μ : T → (0, ∞).4 Once a processor begins
to execute a task Tj, it works without interruption until the completion of that
task, requiring μ(Tj) units of time. In [24] Graham proposed the LPT algorithm
wherein an idle processor always executes the longest remaining unexecuted
task. In our case, a task (obtained from Algorithm 1) corresponds to a chunk of
iterations; the number of iterations per task is governed by Equation 2. Note that
the workload gradient between the tasks need not be monotonically decreasing.
In addition, the tasks, though independent, cannot be reordered. However, in the

4 The notation in this subsection is the same as in [24].

Enhanced Loop Coalescing 27

best case, i.e., when the workload gradient between the tasks is monotonically
decreasing, the bound on the performance of GSS is given by5

1 ≤ t(GSS)
t(OPT)

≤ (4P − 1)
3P

for P ≥ 1

6.4 Hybrid Loops

Enhanced loop coalescing can also applied to hybrid loops. A loop is hybrid if
it contains combination of DOALLs, DOACROSSs and serial loops. In such cases
enhanced loop coalescing can be applied to transform only the DOALLs of the hy-
brid loop. Only the subscripts of array references that correspond to the DOALLs
are transformed in this case. The indices (subscripts) of any serial or DOACROSS
loop are left unchanged.

In a similar fashion, enhanced loop coalescing can be applied to non-perfectly
nested loops. The subscript transformations remain the same, but care must
be taken to assure correct execution of loop bodies at different nesting levels.
In such cases, loop bodies are executed conditionally. Likewise, enhanced loop
coalescing can be applied to multiway loops subject to direction vector of the
flow dependence between the loops at the same level.

7 Case Study

In this section, we illustrate the behavior of our approach with the help of an
example. Consider the iteration space shown in Figure 5(a). Note that the work-
load is non-uniformly distributed across the iteration space. The workload of
each iteration is obtained by profiling the doubly-nested DOALL loop of image
reconstruction (another execution profile of the same loop is available in [28]).
Assuming P = 2, the chunk sizes corresponding to a GSS schedule are given in
Table 3. Next, we determine the workload for each chunk and workload gradient
(summarized in Table 4) assuming coalescing along each (i1 and i2) axis (the
flattened iteration spaces are shown in Figures 5(b) and 5(c) respectively). Note
that the successive chunks of the loop coalesced along i1 do not have monotoni-
cally decreasing workloads.

Table 4. Workload of each chunk and the workload gradient corresponding to the
iteration spaces shown in Figures 5(b) and 5(c)

Axis Workload of each chunk ∇(Γ)

i1 97 64 10 45 52

i2 88 78 33 17 71

5 Bounds on LPT schedules for uniform processors are further discussed in [27].

28 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

1

2

3

4

5

1

2

3

4

5

0

5

10

15

20

i
2

i
1

w
or

kl
oa

d

(a)

1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

20

i
1

w
or

kl
oa

d

(b)

1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

20

i
2

w
or

kl
oa

d

(c)

Fig. 5. a) An example non-uniform iteration space b) Flattened iteration space along
i1; and c) Flattened iteration space along i2

Assuming that the processors P1, P2 are available at t = 0 and t = 5 respec-
tively, the GSS schedules corresponding to the loops coalesced along i1 and i2
are shown in Figures 6(a) and 6(b) respectively. From Figure 6(a) we observe
that processor P1 is assigned a large (97 units) amount of work at t = 0. As
a consequence, the remaining chunks are mapped onto processor P2. The last
chunk (with 45 units of work) is scheduled on P2 at t = 79, thus resulting in a
makespan of 124. Observe that P1 remains idle for the period 97 ≤ t ≤ 124.6

The large idle time of P1 can be attributed to large workload of the last chunk.
Recall that chunks with small workloads towards the end of the schedule help
balance load amongst different processors. On the other hand, from Figure 6(b)
we note that P1 is allocated 88 units of work at time t = 0, thus avoiding al-
location of large chunks of work at the beginning of the schedule. It facilitates
scheduling of the last chunk (with 17 units of work) on P1, thereby balancing the
workload between the two processors. The latter is evident from the fact that
in this case the makespan is 116. Furthermore, the idle time of P1 is limited to
105 ≤ t ≤ 116.

Observe that unlike the example shown in Section 5 where the loop was coa-
lesced along i1, in this case the loop is coalesced along i2.

6 Recall that GSS generates a non-preemptive schedule.

Enhanced Loop Coalescing 29

P1 P2

64

97

10

45

t=5

t=0

t=69

t=79

t=124 end

(a)

P1 P2

88

t=5

t=0

t=83

t=88

t=116

78

33

17

end

(b)

Fig. 6. a) GSS schedule for the iteration space of Figure 5(b); b) GSS schedule for the
iteration space of Figure 5(c)

8 Related Work

Static scheduling of parallel nested loops can be solved optimally in polynomial
time. In [29], Polychronopoulos et al. proposed an algorithm, called OPTAL, for
the same. In case of singly nested loops with uniform iteration spaces, the obvious
one-step processor assignment is also the optimal one, the optimal distribution
is clearly the one that assigns N/P� iterations to each processor. It would be
therefore desirable to have, if possible, if possible, parallel programs with singly
nested loops. Thus, for those loops that can be restructured the optimal processor
assignment problem becomes simple. Moreover, the processor assignment of the
transformed (coalesced) loops is generally better than the optimal assignments
of the original loops.

Loop coalescing resembles loop collapsing [30]. However, the latter is different
from the former in both its purpose and mechanism. Loop collapsing is a memory
related transformation that collapses doubly nested loops only, to single loops by
transforming two dimensional arrays into vectors. An example of loop collapsing
is illustrated in Figure 7.

1 , i2A (i) + 2) = B (i1 , i2

doall i1 = 1, N

doall i1 = 1, N*M

end doall

end doall

doall i2 = 1, M

end doall

A (i1) = B (i1) + 2

Fig. 7. Example of Loop Collapsing

Loop collapsing is used to create long vectors for efficient execution on
memory-to-memory SIMD systems. No subscript manipulation is attempted in
loop collapsing, which by the applicable only to double perfectly nested DOALLs.
The use of loop coalescing for MIMD architectures is discussed in [31]. Tabirca et

30 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

al. employ loop coalescing in their theoretical approach for dynamic scheduling
of loops [32].

Self-scheduling of parallel processors, where successive iterations are allocated
and executed on to different processors one by one, was first used on Denelcor
HEP multiprocessors [33]. Kruskal and Weiss proposed static chunking of itera-
tions during the scheduling process [34]. They model the execution times of the
iterations as independent identically distributed (i.i.d.) random variables and
possessing a moment generating function. However, their model is restrictive to
IFR distributions [35] such as uniform, normal and exponential. For the class of
distributions mentioned above, they showed that the expected completion time
is given by Nμ/P + σ

√
2N lnP/P, for N � P logP. Although static chunking

reduces the synchronization overhead, it has a greater potential for load imbal-
ance than self-scheduling as processors finish within K iterations of each other
in the worst case, where K is the chunk size. Arguably, one can randomly assign
chunks of iterations to the processors; however, Lucco showed that the random
assignment is more efficient than dynamic methods only when σ � μ, i.e., for
a uniform workload distribution or if the scheduling overhead is much greater
than μ. In [36], Tang and Yew proposed a scheme for self-scheduling of multi-
ple nested parallel loops. Fang et al. proposed an approach for self-scheduling
general parallel nested loops in [37].

9 Conclusions

Since parallel loops account for the greatest percentage of parallelism in nu-
merical programs, the efficient scheduling of such loops is vital to program and
system performance. Minimizing scheduling overhead in conjunction with maxi-
mal exploitation of the available parallelism is critical for achieving high speedup
on supercomputers. In this paper, we presented a loop restructuring technique,
called enhanced loop coalescing, to transform nested loops with non-uniform it-
erations spaces into a single loop. The iteration space is flattened along an axis
corresponding maximum workload gradient. The transformation achieves dual
benefits:

✦ Reduction of synchronization operations during parallel execution
✦ Minimization of the makespan of a GSS schedule

The “complicated” index expressions introduced by coalescing do not pose a
performance bottleneck as they are evaluated only once per processor. If the
iteration blocks assigned to each processor are large enough (which is indeed
the case in context of GSS), the time spent for subscript calculation should be
negligible.

References

1. Petaflops Computing. http://www.aeiveos.com/∼bradbury/petaflops
2. IBM Blue Gene. http://www.research.ibm.com/bluegene/

http://www.aeiveos.com/~bradbury/petaflops
http://www.research.ibm.com/bluegene/

Enhanced Loop Coalescing 31

3. Brockman, J., Kogge, P., Thoziyoor, S., Kang, E.: PIM Lite: On the road towards
relentless multithreading in massively parallel systems. Technical Report 03-01,
Department of Computer Science, University of Notre Dame (2003)

4. Dongarra, J.J., Walker, D.W.: The quest for petascale computing. Computing in
Science and Engineering 3(3), 32–39 (2001)

5. Bailey, D.H.: Onward to petaflops computing. Communications of the ACM 40(6),
90–92 (1997)

6. Kogge, P.M., Bass, S.C., Brockman, J.B., Chen, D.Z., Sha, E.: Pursuing a Petaflop:
Point designs for 100 TF computers using PIM technologies. In: Proceedings of
the 6th Symposium on the Frontiers of Massively Parallel Computation, pp. 88–97
(October 1996)

7. Sterling, T., Messina, P., Smith, P.H.: Enabling Technologies for Petaflops Com-
puting. MIT Press, Cambridge (1995)

8. Lou, J., Farrara, J.: Performance analysis and optimization on the UCLA par-
allel atmospheric general circulation model code. In: Proceedings of the 1996
ACM/IEEE conference on Supercomputing, Pittsburgh, PA, p. 14 (1996)

9. Plimpton, S., Hendrickson, B., Attaway, S., Swegle, J., Vaughan, C., Gardner,
D.: Transient dynamics simulations: parallel algorithms for contact detection and
smoothed particle hydrodynamics. In: Proceedings of the 1996 ACM/IEEE con-
ference on Supercomputing, Pittsburgh, PA (1996)

10. Plimpton, S., Attaway, S., Hendrickson, B., Swegle, J., Vanghan, C.: Parallel tran-
sient dynamics simulations. J. Parallel Distrib. Comput. 50(1-2), 104–122 (1998)

11. Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N., Suenaga, A., Takada, N., Konagaya,
A.: Protein Explorer: A petaflops special-purpose computer system for molecular
dynamics simulations. In: Proceedings of the 2003 ACM/IEEE conference on Su-
percomputing (2003)

12. Almasi, G.S., Caşcaval, C., Casta nos, J.G., Denneau, M., Donath, W., Elefthe-
riou, M., Giampapa, M., Ho, H., Lieber, D., Moreira, J.E., Newns, D., Snir, M.,
Warren Jr., H.S.: Demonstrating the scalability of a molecular dynamics applica-
tion on a petaflop computer. In: Proceedings of the 15th International conference
on Supercomputing, Sorrento, Italy, pp. 393–406 (2001)

13. Wallach, S.: Petaflop architectures. In: Proceedings of the Second Conference on
Enabling Technologies for Petaflops Computing (February 1999)

14. Gao, G.R., Likharev, K.K., Messina, P.C., Sterling, T.L.: Hybrid technology mul-
tithreaded architecture. In: Proceedings of the 6th Symposium on the Frontiers of
Massively Parallel Computation, Annapolis, MD (1996)

15. Sterling, T.L., Zima, H.P.: Gilgamesh: A multithreaded processor-in-memory archi-
tecture for petaflops computing. In: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, Baltimore, MD, pp. 1–23 (2002)

16. Kuck, D., Sameh, A.H., Cytron, R., Veidenbaum, A., Polychronopoulos, C.D.,
Lee, G., McDaniel, T., Leasure, B.R., Beckman, C., Davies, J.R.B, Kruskal, C.P.:
The effects of program restructuring, algorithm change and architecture choice
on program performance. In: Proceedings of the 1984 International Conference on
Parallel Processing, pp. 129–138 (August 1984)

17. Polychronopoulos, C.D., Kuck, D.J., Padua, D.A.: Utilizing multidimensional loop
parallelism on large scale parallel processor systems. IEEE Transactions on Com-
puters 38(9), 1285–1296 (1989)

18. Petersen, P., Padua, D.: Machine-independent evaluation of parallelizing compilers.
Technical Report 1173, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign (1992)

32 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

19. Rudolph, D.C., Polychronopoulos, C.D.: An efficient message-passing scheduler
based on guided self scheduling. In: Proceedings of the 3rd international conference
on Supercomputing, Crete, Greece, pp. 50–61 (1989)

20. Polychronopoulos, C.: Loop coalescing: A compiler transformation for parallel ma-
chines. In: Proceedings of the 1987 International Conference on Parallel Processing,
pp. 235–242 (August 1987)

21. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical schedul-
ing scheme for parallel supercomputers. IEEE Transactions on Computers 36(12),
1425–1439 (1987)

22. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to
multiprocessor scheduling. SIAM Journal of Computing 7(1), 1–17 (1978)

23. Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., New York (1979)

24. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Ap-
plied Mathematics 17(2), 416–428 (1969)

25. Banerjee, U.: A theory of loop permutations. In: Gelernter, D., Nicolau, A., Padua,
D. (eds.) Languages and Compilers for Parallel Computing, MIT Press, Cambridge
(1990)

26. Kelley, J.L.: General Topology. D. van Nostrand Company Inc., Princeton (1955)
27. Gonzalez, T.F., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform

processors. SIAM Journal of Computing 6(1), 155–166 (1977)
28. Lucco, S.: A dynamic scheduling method for irregular parallel programs. In: Pro-

ceedings of the SIGPLAN 1992 Conference on Programming Language Design and
Implementation, San Francisco, CA, pp. 200–211 (1992)

29. Polychronopoulos, C., Kuck, D.J., Padua, D.A.: Execution of parallel loops on
parallel processor systems. In: Proceedings of the 1986 International Conference
on Parallel Processing, pp. 519–527 (August 1986)

30. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for supercomputers.
Communications of the ACM 29(12), 1184–1201 (1986)

31. O’Keefe, M.T., Dietz, H.G.: Loop coalescing and scheduling for barrier mimd archi-
tectures. IEEE Transactions on Parallel and Distributed Systems 4(9), 1060–1064
(1993)

32. Tabirca, T., Freeman, L., Tabirca, S., Yang, L.T.: Feedback guided dynamic
loop scheduling; a theoretical approach. In: International Conference on Parallel
Processing Workshops, Valencia, Spain, pp. 115–121 (2001)

33. Lusk, E.L., Overbeek, R.A.: Implementation of monitors with macros: A program-
ming aid for the HEP and other parallel processors. TR ANL-83-97, Argonne
National Laboratory (December 1983)

34. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors.
IEEE Transactions on Software Engineering 11(10), 1001–1016 (1985)

35. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing. Holt
Rinehart & Winston Inc. (1975)

36. Tang, P., Yew, P.C.: Processor self-scheduling for multiple nested parallel loops.
In: Proceedings of the 1986 International Conference on Parallel Processing, pp.
528–535 (August 1986)

37. Fang, Z., Tang, P., Yew, P.-C., Zhu, C.-Q.: Dynamic processor self-scheduling for
general parallel nested loops. IEEE Transactions on Computers 39(7), 919–929
(1990)

Folding Active List for High Performance and

Low Power

Yuichiro Imaizumi and Toshinori Sato�

Kyushu Institute of Technology
680-4, Kawazu, Iizuka, 820-8502 Japan

toshinori.sato@computer.org
http://www.slrc.kyushu-u.ac.jp/∼tsato

Abstract. Out-of-order processors schedule instructions dynamically in
order to exploit instruction level parallelism. It is necessary to increase
instruction window size for improving instruction scheduling capability.
In addition, current trend of exploiting thread-level parallelism requires
further large instruction window. However, it is difficult to increase the
size, because the instruction window is one of the dominant deciding pro-
cessor cycle time and power consumption. This paper proposes a large
instruction window, focusing on power-aware active list with large ca-
pacity. Restricting allocation and commitment policies, we achieve both
high performance and low power. Simulation results show that our pro-
posed active list significantly boosts processor performance with slight
degradation from the traditional unrealistic active list.

Keywords: Out-of-order processors, instruction window, instruction-
level parallelism, thread-level parallelism, active list.

1 Introduction

High performance superscalar processors require large instruction window, es-
pecially to tolerate long latency memory operations. In addition, recent emer-
gence of simultaneous multithreading[8,11] increases requirements of large in-
struction window, because an increasing number of instructions from multiple
threads share the instruction window. Hence, large instruction window is of-
ten necessary to exploit thread level parallelism as well as to exploit instruc-
tion level parallelism, while small hardware structures are required to achieve
high clock frequency and low power. To achieve the goal, researchers have pro-
posed novel techniques for performance enhancement[1,2,5,10,16] and for power
reduction[1,9,13]. Particularly important structures are a recovery mechanism
for deep speculation, a large instruction issue queue, a large register file, and a
large active list. This paper focuses on the last one: the active list.

Large monolithic active lists will diminish clock frequency and consume much
power. To improve processor performance with maintaining its power consump-
tion, we propose to construct a large active list with a number of small active
� Currently with Kyushu University, Japan.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 33–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.slrc.kyushu-u.ac.jp/~tsato

34 Y. Imaizumi and T. Sato

lists. We divide a large active list into small pieces of active lists and fold them.
By keeping only active portions in high speed mode, power consumption is kept
equivalent with that of the conventional small active list.

The rest of this paper is structured as follows: Section 2 summarizes the back-
ground of this study. Section 3 proposes schemes to realize a large instruction
window. Section 4 introduces our evaluation environment. Section 5 presents
simulation results. Section 6 summarizes related works. And last, Section 7 con-
cludes this paper.

2 Terminology

Several definitions are given here to simplify future references in this paper, using
MIPS R10000’s instruction window shown in Fig. 1[17]. Superscalar processors
fetch multiple instructions per cycle. Following instruction fetch, the instruc-
tions are decoded and dispatched into the instruction window. We use the term
dispatch to indicate the process of placing the instructions into the instruction
window. In order to eliminate anti- and output-dependences, out-of-order pro-
cessors perform register renaming. There are two common ways to implement the
register renaming. One is using a separated renaming registers which are usually
constructed by a reorder buffer. The other combines the renaming registers with
architected registers in a single register file. We focus on the latter case, based on
R10000[17]. Hence, the instruction window consists of instruction issue queue, a
buffer maintaining program order such as the reorder buffer, and register files.
Following R10000, we use an active list for maintaining program order.

busy
bit

operation rs rt rd

map table free list

active list

instruction

tagRtagL dest

instruction queue

operation
rdold D

ready

Fig. 1. Instruction window

The instructions remain in the instruction issue queue until their operands
have been ready. Once their dependences have been resolved, instruction issue
logic schedules the instructions and then issues them into functional units. The

Folding Active List for High Performance and Low Power 35

instruction issue queue entries containing the issued instructions are deallocated
so that new instructions may be dispatched. We use the term issue to move
the instructions from the instruction issue queue to the functional units, where
they are executed. After completion of execution, the instructions still wait in
the instruction window until their preceding instructions have been retired from
the instruction window. When the instructions reach the head of the instruction
window, they are retired from it. The instructions may be completed out-of-order
but are retired in-order.

The register mapping hardware mainly consists of three structures – a map
table, the active list, and a free list. By means of the map table, each logical
register is mapped into a physical register. The destination register is mapped
to a free physical register which is supplied by the free list, while operand regis-
ters are translated into the last mapping assigned to them. The old destination
register is kept in the active list. When an instruction is retired, the old destina-
tion register which is allocated by the previous instruction with the same logical
destination register is freed and is placed in the free list. The translated operand
registers are held in the instruction queue as tags which are used for Tomasulo’s
algorithm. Busy bit table contains a bit indicating whether each physical register
contains a valid value. It is used for initializing ready bits in the instruction issue
queue for ready operands.

3 Large Instruction Window

While there are a lot of proposals for realizing large instruction windows, we
propose an alternative technique. In order to realize large instruction window,
the followings are required:

– Deep speculation
– Large instruction issue queue
– Large register file
– Large active list

For each requirement, we propose to utilize the following techniques respec-
tively.

– Selective checkpointing[2,5]
– Waiting instruction buffer[10]
– Speculative register release
– Folded active list

While the following sections explain them shortly, this paper focuses on the
folded active list.

3.1 Selective Checkpointing

We can achieve deep speculation by providing a lot of checkpoints. However,
every checkpoint requires a plenty of hardware storage. Hence, in order to re-
duce the number of checkpoints, we utilize to selectively make checkpoints for

36 Y. Imaizumi and T. Sato

predicted branches[2]. Only for branches predicted with low confidence[7], we
make checkpoints. This enables deep speculation with relatively small number
of checkpoints.

3.2 Waiting Instruction Buffer

When long latency operations, such as memory operations at cache misses, stall
in the pipeline, processor performance is seriously degraded since even ready
instructions can not be dispatched into the instruction issue queue. In order for
the long latency operations to release the instruction issue queue, we utilize the
waiting instruction buffer[10]. Such instructions move to the waiting instruction
buffer from the instruction issue queue, and then succeeding ready instructions
can be dispatched into the instruction issue queue. This effectively increases
instruction issue queue capacity. A drawback in the waiting instruction buffer is
that it requires a large active list. To satisfy the requirement, we will propose a
large active list in the following section.

3.3 Speculative Register Release

As explained in the previous section, out-of-order processors utilize register re-
naming to remove write-after-read and write-after-write hazards. Register re-
naming requires a large number of physical registers. A physical register is allo-
cated when every instruction is decoded and renamed. Even when the instruction
is committed, its associated physical register is not released. It is only released
when another instruction who has the same logical register for its destination
is committed. This is required for mispredicted branch recovery, while this in-
creases the life time of the register, resulting in the increase in physical register
requirement. In order to reduce the number of physical registers, we propose
to speculatively release renamed registers with the help of the degree-of-use
prediction[4]. The degree-of-use predictor tells us how many consumers will ap-
pear for each producer. When the number of consumers matches the predicted
value, we speculatively release the producer’s renamed register. When mispre-
dicted, processor rolls back to the nearest checkpoint.

3.4 Folded Active List

Large monolithic active lists will diminish clock frequency and consume much
power. In order to realize a large active list with keeping its speed and power,
we propose to construct it with a number of small active lists. We divide a large
active list into small pieces of active lists and fold them. The tail of each small
active list is logically connected with the head of the next active list.

Figure 2 shows this folded active list. We call the small active list sublist.
While this structure resembles banking, its operations are different. It also looks
like the distributed reorder buffer[9,13], however, the folded active list is logically
a single active list. The key characteristic of the folded active list is that only
one sublist is active each for allocation and commitment respectively. That is

Folding Active List for High Performance and Low Power 37

・
・
・

・
・
・

・
・
・

sub list

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

sub list

Fig. 2. Folded active list

at most two sublists are active at the time. Please note that there are not any
read operations of operand values nor write operations of execution results in
the case of the active lists. This is the different characteristic from the reorder
buffers. Figure 3 shows how the next new entry is allocated. If the tail of the
current sublist is allocated, the current sublist becomes inactive for write. The
next sublist becomes active and its head is allocated for the coming instruction.
Figure 4 shows an example of the commit operation. In this example, we assume
the processor has 4-instruction-wide commit width. Even so, in the folded active
list, only two instructions in the current sublist can be committed at the time,
and the remaining two instructions are committed at the succeeding cycle after
the next sublist is active.

Fig. 3. Restricted allocation

The characteristic that at most two sublists are active at the time keeps high
clock frequency and low power. As shown in Fig. 5, it is possible to reduce power
supply voltage to inactive sublists. It is also possible to raise threshold voltage
to inactive sublist by modulating body bias. This does not diminish processor
performance due to the restriction in allocation and commitment. Thus, while

38 Y. Imaizumi and T. Sato

Fig. 4. Restricted commitment

Fig. 5. Selective activation

the folded active list has a large capacity, its power consumption is comparable
to the traditional small active lists.

4 Evaluation Environment

In this section, we describe our evaluation environment by explaining a processor
model and benchmark programs.

4.1 Processor Model

We implemented a timing simulator using SimpleScalar/PISA tool set (version
3.0)[3]. The configuration of the baseline model is summarized in Table 1.

4.2 Benchmark Programs

The SPEC2000 benchmark suite is used in this study. Table 2 lists the bench-
marks and the input sets. We focus on floating-point applications, because we
are interested in long latency tolerance. We use the object files distributed at the
SimpleScalar LLC web page. For each program, 1 billion instructions are skipped
before actual simulation begins. Each program is executed to completion or for
1 billion instructions. We count only committed instructions.

Folding Active List for High Performance and Low Power 39

Table 1. Processor configuration

32-entry instruction issue queue, 32-entry active list,
OoO Core 32-entry load/store queue, 4-wide decode, issue, and

retirement

Branch 16K-entry gshare, 2K 4-way BTB, 64-entry RS, 8-cycle
Predictor branch misprediction penalty

FUs 4 iALUs, 2 iMUL/iDIVs, 4 fALUs, 2 fMUL/fDIVs

Memory 32K 4-way L1 I/D caches, 32-byte line size, 3-cycle hit,
System unified 256K 4-way L2 cache, 32-byte line size, 15-cycle

hit, 1,000-cycle memory access, 2 cache ports

Table 2. Benchmark programs

Program Input set

171.swim swim.in
177.mesa mesa.in mesa.ppm
179.art c756hel.in a10.img
183.equake inp.in
188.ammp ammp.in
301.aspi –

5 Results

This section presents simulation results. We focus on processor performance.
Power efficiency will be improved as explained in Section 3.4. Detailed evaluation
on power is remained for the future study.

First, we evaluate how processor performance is improved when we can in-
crease the capacity of the active list with the folded active list. Figure 6 shows
the percent increase in processor performance when a 32-entry active list is re-
placed by a 2K-entry folded active list. The instruction issue queue still has 32
entries. Each sublist is a 32-entry active list, and hence the folded active list
evaluated here has 64 sublists. We use instructions per cycle (IPC) as a metric
for this evaluation. We can see significant performance improvement, except for
188.ammp. This is because 188.ammp does not have the potential of performance
improvement. Even when we use the ideal monolithic 2K-entry active list, we
do not find any improvement. Even when we remove 179.art as an exceptional
result (over 200% improvement!), an average improvement of 24% is achieved.
Since the folded active list maintains clock frequency, this IPC improvement
turns out to be net performance improvement.

Next, we evaluate how the folding affects processor performance. Figure 7
shows the percent performance loss when we compare the 64x32-entry folded
active list with the monolithic but unrealistic 2K-entry active list. We find little
performance loss of between 1.3% and 7.5%, except for 188.ammp, where we find
the completely same results for both the folded and monolithic active lists. This

40 Y. Imaizumi and T. Sato

Fig. 6. %Performance improvement over 32-entry monolithic active list

Fig. 7. %Performance loss under 2K-entry monolithic active list

performance loss is not serious, because the monolithic active list diminishes
clock frequency and thus net performance for both models will be equivalent. In
addition, the monolithic active list consumes much higher power than the folded
active list, which exploits selective activation.

6 Related Work

Checkpointing for large instruction window is proposed by Cristal et al.[5] and
Akkary et al.[2]. This enables to realize a large virtual reorder buffer using a
small one and to reduce instruction issue queue entry. Checkpoints are created

Folding Active List for High Performance and Low Power 41

at long latency loads or at low-confidence branches. We follow their studies and
determine to take checkpoints at branches because it is shown that branches are a
good place for taking checkpoints[5]. Cherry proposed by Martinez et al.[12] also
uses checkpointing. However, its purpose is not increasing instruction window
but early register release.

Early register release was originally proposed by Moudgill et al.[15]. This uses
counters to hold the number of reads. It unfortunately does not support precise
exceptions, and this is very severe for modern speculative processors. Monreal
et al.[14] and Ergin et al.[6] propose schemes to implement precise exception for
early register release. Monreal et al.[14] extends the active list. Ergin et al.[6]
uses the Checkpointed Register File bit cell, which is a special register file bit
cell and essentially builds a shadow register file.

In order to effectively increase instruction issue queue capacity, a slow lane
instruction queue[5], the waiting instruction buffer[10], and a slice processing
unit[16] are proposed. The aim is shared by all schemes and is to tolerate long
latency memory operations with keeping the instruction issue queue small. Every
blocking instruction is moved from the instruction issue queue to a secondary
buffer, releasing its instruction issue queue entry for other short latency oper-
ations. A good survey on schemes to implement a physically large instruction
issue queue is found in [1].

Kucuk et al.[9] and Monferrer et al.[13] propose the distributed reorder buffer
for power and temperature reduction. In contrast, the folded active list is pro-
posed to improve processor performance under the constraint of keeping its
power consumption.

7 Concluding Remarks

Modern superscalar processors rely on dynamic instruction scheduling for ag-
gregating high performance. Instruction window size is an important factor for
exploiting instruction level parallelism. Especially to tolerate long latency op-
erations, large instruction windows are required. In this paper, we proposed a
large instruction window, which consists of the selective checkpointing scheme,
the waiting instruction buffer, the speculative register release scheme, and the
folded active list. The large and fast active list is enabled by folding a conven-
tional large active list, which will diminish clock frequency and consume much
power. Based on detailed simulations, we found that the folded active list boosts
processor performance by up to more than 200% with the expectation of speed
and power, which are equivalent with those of the conventional small active list.

Acknowledgments

This work was partially supported by PRESTO program from Japan Science and
Technology Agency, and by a Grants-in-Aid for Scientific Research #16300019
from Japan Society for the Promotion of Science.

42 Y. Imaizumi and T. Sato

References

1. Abella, J., Canal, R., Gonzalez, A.: Power- and Complexity-Aware Issue Queue
Designs. IEEE Micro 23(5) (September 2003)

2. Akkary, H., Rajwar, R., Srinivasan, S.T.: Checkpoint Processing and Recovery: To-
wards Scalable Large Instruction Window Processors. In: 36th International Sym-
posium on Microarchitecture (December 2003)

3. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. ACM SIGARCH
Computer Architecture News 25(3) (1997)

4. Butts, J.A., Sohi, G.: Characterizing and Predicting Value Degree of Use. In: 35th
International Symposium on Microarchitecture (November 2002)

5. Cristal, A., Ortega, D., Llosa, J., Valero, M.: Kilo-instruction Processors. In: 5th
International Symposium on High Performance Computing (October 2003)

6. Ergin, O., Balkan, D., Ponomarev, D., Ghose, K.: Increasing Processor Performance
Through Early Register Release. In: 22nd International Conference on Computer
Design (October 2004)

7. Jacobsen, E., Rotenberg, E., Smith, J.E.: Assigning Confidence to Conditional
Branch Predictions. In: 29th International Symposium on Microarchitecture (De-
cember 1996)

8. Kalla, R., Sinharoy, B., Tendler, J.: Simultaneous Multi-threading Implementation
in POWER5 – IBM’s Next Generation POWER Microprocessor. Hot Chips 15
(August 2003)

9. Kucuk, G., Ergin, O., Ponomarev, D., Ghose, K.: Distributed Reorder Buffer
Schemes for Low Power. In: 21st International Conference on Computer Design
(October 2003)

10. Lebeck, A.R., Li, T., Rotenberg, E., Koppanalil, J., Patwardhan, J.: Large, Fast
Instruction Window for Tolerating Cache Misses. In: 29th International Symposium
on Computer Architecture (May 2002)

11. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Up-
ton, M.: Hyper-Threading Technology Architecture and Microarchitecture. Intel
Technology Journal 6(1) (February 2002)

12. Martinez, J.F., Renau, J., Huang, M., Prvulovic, M., Torrellas, J.: Cherry: Check-
pointed Early Resource Recycling in Out-of-order Microprocessors. In: 35th Inter-
national Symposium on Microarchitecture (November 2002)

13. Monferrer, P.C., Magklis, G., Gonzalez, J., Gonzalez, A.: Distributing the Fron-
tend for Temperature Reduction. In: 11th International Symposium on High-
Performance Computer Architecture (February 2005)

14. Monreal, T., Vinals, V., Gonzalez, A., Valero, M.: Hardware Schemes for Early
Register Release. In: 31st International Conference on Parallel Processing (August
2002)

15. Moudgill, M., Pingali, K., Vassiliadis, S.: Register Renaming and Dynamic Spec-
ulation: an Alternative Approach. In: 26th International Symposium on Microar-
chitecture (December 1993)

16. Srinivasan, S.T., Rajwar, R., Akkary, H., Gandhi, A., Upton, M.: Continual Flow
Pipelines. In: 11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (October 2004)

17. Yeager, K.C.: The MIPS R10000 Superscalar Microprocessor. IEEE Micro 6(2)
(April 1996)

Reducing Misspeculation Penalty in Trace-Level

Speculative Multithreaded Architectures

Carlos Molina1, Jordi Tubella2, and Antonio González2,3

1 Dept. Eng. Informàtica i Matemàtiques, Universitat Rovira i Virgili,
Tarragona - Spain

2 Dept. d’Arquitectura de Computadors, Universitat Politècnica de Catalunya,
Barcelona - Spain

3 Intel Barcelona Research Center, Intel Labs-UPC, Barcelona - Spain
carlos.molina@urv.net,antonio@ac.upc.edu,jordit@ac.upc.edu

Abstract. Trace-Level Speculative Multithreaded Processors exploit
trace-level speculation by means of two threads working cooperatively.
One thread, called the speculative thread, executes instructions ahead of
the other by speculating on the result of several traces. The other thread
executes speculated traces and verifies the speculation made by the first
thread. Speculated traces are validated by verifying their live-output
values. Every time a trace misspeculation is detected, a thread synchro-
nization is fired. This recovery action involves flushing the pipeline and
reverting to a safe point in a program, which results in some performance
penalties. This paper proposes a new thread synchronization scheme
based on the observation that a significant number of instructions whose
control and data are independent of the mispredicted instruction. This
scheme significantly increases the performance potential of the architec-
ture at less cost. Our experimental results show that the mechanism
cuts the number of executed instructions by 8% and achieves on average
speed-up of almost 9% for a collection of SPEC2000 benchmarks.

1 Introduction

Data dependences are one of the most important hurdles that limit the perfor-
mance of current microprocessors. Two techniques have so far been proposed
to avoid the serialization caused by data dependences: data value speculation
[12] and data value reuse [23]. Both techniques exploit the high percentage of
repetition in the computations of conventional programs. Speculation predicts a
given value as a function of past history. Value reuse is possible when a given
computation has already been made exactly. Both techniques can be considered
at two levels: the instruction level and the trace level. The difference is the unit
of speculation or reuse: an instruction or a dynamic sequence of instructions.

Reusing instructions at trace level means that the execution of a large number
of instructions can be skipped in a row. More importantly, as these instructions
do not need to be fetched, they do not consume fetch bandwidth. Unfortunately,
trace reuse introduces a live-input test that it is not easy to handle. Especially

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 43–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 C. Molina, J. Tubella, and A. González

complex is the validation of memory values. Speculation may overcome this
limitation but it introduces a new problem: penalties due to a misspeculation.
Trace-level speculation avoids the execution of a dynamic sequence of instruc-
tions by predicting the set of live-output values based, for instance, on recent
history. There are two important issues with regard to trace-level speculation.
The first of these involves the microarchitecture support for trace speculation
and how the microarchitecture manages trace speculation. The second involves
trace selection and data value speculation techniques.

Recently, several thread-level speculation techniques [3], [7], [16], [20] have
been explored to exploit parallelism in general-purpose programs. We lay on
the same trend and focus on Trace-Level Speculative Multithreaded Architec-
ture (TSMA) [14], which is tolerant to misspeculations in the sense that it does
not introduce significant trace misprediction penalties and does not impose any
constraint on the approach to building or predicting traces. This paper extends
the previous TSMA microarchitecture with a novel verification engine that sig-
nificantly improves performance. This new engine reduces the number of thread
synchronizations and the penalties due to misspeculations. The main idea is that
it does not throw away execution results of instructions that are independent of
the mispredicted speculation, which reduces the number of instructions fetched
and executed again.

The rest of this paper is organized as follows. Section 2 describes in detail the
microarchitecture assumed to exploit trace-level speculation. Section 3 analyses
the percentage of useful computation that is lost in recovery actions. Section 4
presents the novel verification engine. Section 5 analyses the performance of the
processor with the proposed engine. Section 6 reviews related work and Section
7 summarizes our main conclusions and outlines future work.

2 Trace-Level Speculative Multithreaded Architecture
(TSMA)

2.1 Trace-Level Speculation with Live-Output Test

Trace-level speculation is a dynamic technique (although the compiler may help)
that requires a live-input or live-output test. The microarchitecture presented
in this section focuses on the following approach: trace-level speculation with
live-output test. This approach was introduced by Rotenberg et al [16], [17],
[18] as the underlying concept behind Slipstream Processors. This approach is
supported by means of a couple of threads (a speculative thread and a non-
speculative one) working cooperatively to execute a sequential code.

Let us consider the program of Figure 1.a that is composed by three pieces of
sequential code or traces. Figure 1.b shows the execution of the program from the
point of view of code and Figure 1.c shows the execution of the program from the
point of view of time. The speculative thread executes instructions and speculates
on the result of whole traces. The non-speculative thread verifies instructions
that are executed by the speculative thread and executes speculated traces. Each

Reducing Misspeculation Penalty 45

thread maintains its own state but only the state of the non-speculative thread is
guaranteed to be correct. Communication between threads is done by means of
a buffer that contains the executed instructions by the speculative thread. Once
the non-speculative thread executes the speculated trace, instruction validation
begins. This is done by verifying that source operands match the non-speculative
state and updating the state with the new result. If validation does not succeed,
recovery actions are required.

Note that speculated traces are validated by verifying their live-output values.
Live- output values are those that are produced and not overwritten within the
trace. The advantage with this approach is that only live-output values that are
used are verified. Moreover, verification is fast because instructions consumed
from the buffer have their operands ready (see trace3 execution and validation in
Figure 1.c). Finally, speed-up is obtained when both threads execute instructions
at the same time and validation does not produce a misspeculation, which implies
to set some recovery actions (see trace2 and trace3 execution in Figure 1.c).

Fig. 1. Trace-lebel speculation with live-output test (a)program (b)point of view of
code (c)point of view of time

2.2 Microarchitecture

A TSMA processor can simultaneously execute a couple of threads (a speculative
one and a non-speculative one) that cooperate to execute a sequential code.
The speculative thread is in charge of trace speculation. The non-speculative
thread is in charge of validating the speculation. This validation is performed
in two stages: (1) executing the speculated trace and (2) validating instructions

46 C. Molina, J. Tubella, and A. González

executed by the speculative thread. Speculated traces are validated by verifying
their live-output values. Live-output values are those that are produced and not
overwritten within the trace. In the rest of the paper we will use the terms ST
and NST to refer to the speculative thread and the non- speculative thread,
respectively. Note that ST runs ahead of NST.

Both threads maintain their own architectural state by means of their asso-
ciated architectural register file and a memory hierarchy with some special fea-
tures. NST provides the correct and non-speculative architectural state, while
ST works on a speculative architectural state. Note that each thread maintains
its own state but that only the state of NST is guaranteed to be correct.

Additional hardware is required for each thread. ST stores its committed
instructions to a special FIFO queue called Look-Ahead Buffer. NST executes the
skipped instructions and verifies instructions in the look-ahead buffer executed
by ST. Note that verifying instructions is faster than executing them because
instructions always have their operands ready. In this way, NST catches ST up
quickly.

ST speculates on traces with the support of a Trace Speculation Engine (TSE).
This engine is responsible for building traces and predicting their live-output val-
ues. NST, on the other hand, uses special hardware called a Verification Engine.
The NSTexecutes the skipped instructions and verifies instructions in the look-
ahead buffer executed by ST. This is done by verifying that source operands
match the non-speculative state and by updating the state with the new re-
sult in case they match. If there is a mismatch between the speculative source
operands and the non-speculative ones, a trace misspeculation is detected and a
thread synchronization is fired. Basically, this recovery action involves flushing
the ST pipeline and reverting to a safe point in the program. An advantage with
this approach is that any live-output values used are the only ones that are ver-
ified. Note also that the verification of instructions is faster than their execution
because instructions always have their operands ready. A critical feature of this
microarchitecture is that this recovery is implemented with minor performance
penalties.

2.3 Verification Engine

The verification engine (VE) is responsible for validating speculated instructions
and, together with NST, maintains the speculative architectural state. Instruc-
tions to be validated are stored in the look-ahead buffer. Verification involves
testing source values of the instruction with the non-speculative architectural
state. If they match, the destination value of the instruction can be updated in
the non-speculative architectural state (register file or memory).

Memory operations require special considerations. First, the effective address
is verified and, after this validation, store instructions update memory with the
destination value. On the other hand, loads check whether the value of the
destination register matches the non-speculative memory state. If it does, the
destination value is committed to the register file.

Reducing Misspeculation Penalty 47

This engine is independent of both threads but works cooperatively with NST
to maintain the correct architectural state.

3 Thread Synchronization Analysis

Traces are identified by an initial and a final point in the dynamic instruction
stream. They can be built according to different heuristics: basic blocks, loop
bodies, etc [8], [9], [11]. Live-output values of a trace can be predicted in several
ways, including with conventional value predictors such as last value, stride,
context-based and hybrid schemes [13], [22].

Unfortunately, speculation accuracy decreases when the traces are large be-
cause they have a huge number of live-output values that have to be predicted.
As outlined above, if source values of the instructions in the look ahead buffer
do not match the non- speculative architectural state, a thread synchronization
is required in the original TSMA architecture. This involves emptying all the
ST structures and reverting to a safe point in the program. Note that, a mis-
speculation in one instruction causes younger instructions to be discarded from
the look ahead buffer, though some may be correctly executed. Consider, for
instance, a speculative trace in which just a single live-output value of the whole
set is incorrectly predicted. Only the instructions dependent on the mispredicted
one will be incorrectly executed by ST. In this section we analyse the number of
correctly executed instructions that are squashed when a thread synchronization
is fired. See Section 5.1 for details of the experimental framework.

Fig. 2. Number of squashed instructions in each thread synchronization

Figure 2 shows the number of instructions that are squashed from the look
ahead buffer every time a thread synchronization was fired. Note that the num-
ber of discarded instructions is significant for all benchmarks. On average, up
to 80 instructions were squashed from the look ahead buffer in each thread syn-
chronization irrespective of weather they were correctly or incorrectly executed.

Figure 3 shows on average the percentage of squashed instructions from the
look ahead buffer that were correctly executed by ST was over 20Combined

48 C. Molina, J. Tubella, and A. González

with the previous results, this means that on average 16 instructions that were
correctly executed were discarded every time a thread synchronization was per-
formed. This led us to reconsider thread synchronizations in order to try to avoid
this waste of activity and reduce the number of fetched and executed instructions.

Fig. 3. Percentage of the squashed instructions that were correctly executed

4 Novel Verification Engine

The conventional verification engine is in charge of validating speculated in-
structions. Together with NST, it maintains the speculative architectural state.
Instructions to be validated are stored in the look ahead buffer by ST. The
verification consists of comparing source values of the instruction with the non-
speculative architectural state. If they match, the destination value of the in-
struction can be updated in the non- speculative architectural state (register
file or memory). If they do not match, a thread synchronization is performed.
Memory operations require special considerations. First, the effective address is
verified. Then, store instructions update memory with the destination value. On
the other hand, load instructions check whether the value of the destination reg-
ister matches the non-speculative memory state. If it does, the destination value
is committed to the register file. Note that this validation is fast and simple.
Memory instructions stall verification if there is a data cache miss.

In this paper, we propose a novel verification engine that can significantly
improve the performance potential of the architecture. The underlying concept
is based on the idea that a misspeculation in one instruction does not necessarily
causes valid work from sequential younger computations to be aborted. Thread
synchronization can therefore be delayed or even avoided. Below we describe
how this new verification engine behaves depending on the type of instruction
that is validated:

Branch instructions: These operations do not have an explicit destination
value. Implicitly, they modify the program counter according to the branch
direction that is taken or not taken. The idea is to validate the branch target

Reducing Misspeculation Penalty 49

instead of the source values. So, if source values are incorrectly predicted but
the direction of the branch is correct, a thread synchronization is not fired.

Load instructions: First, the effective address is verified. If validation fails,
the correct effective address is computed. Therefore, load instructions do
not check whether the value of the destination register matches the non-
speculative memory state. Simply, the destination value obtained from mem-
ory is committed to the register file. Note that an additional functional unit
is required in order to compute the effective address.

Store instructions: As with load instructions, the effective address is first ver-
ified. If validation fails, store instructions update memory with the destina-
tion value obtained from the non-speculative architectural state, instead of
the value obtained from the instruction. Note that only one functional unit
is required to compute the effective address.

Arithmetic instructions: As with the conventional engine, the verification of
arithmetic operations involves comparing the source operands of the instruc-
tion with the non-speculative architectural state. If they match, the desti-
nation value of the instruction can be committed to the register file. If they
do not, the verification engine re-executes the instruction with values from
the non-speculative state. In this case, verification is stalled and instructions
after the re-executed one cannot be validated until the next cycle. Moreover,
to maintain a high validation rate, this re- execution is only considered for
single-cycle latency instructions. An additional functional unit is required in
order to re-execute the instruction.

Fig. 4. Type of incorrect speculated instructions

Note that only branch instructions with a wrong target and non-single-latency
instructions with wrong source operands fire a synchronization.

Figure 4 shows the breakdown of instructions in the look-ahead buffer that
fail validation for the original validation engine. From bottom to top the cate-
gories are: branch instructions, load instructions, store instructions, instructions
with single-cycle execution latency and, finally, the rest of the instructions. Note
that branches, memory operations and instructions with a single-cycle latency
account for 90% of the total incorrectly executed instructions. This means that

50 C. Molina, J. Tubella, and A. González

there is a huge potential benefit for the new verification engine. Also, simula-
tion results show that on average just 1% of the instructions inserted in the
look-ahead buffer are incorrectly predicted. This suggests that the new verifi-
cation engine may not need to re-execute many instructions, so the validation
rate will not be greatly affected. Therefore, for the novel TSMA we assume that
the number of functional units is the same as for the conventional one. Finally,
we assume that the maximum number of instructions validated per cycle is the
same and that no more than one instruction is re-executed per cycle.

5 Performance Evaluation

In this section we describe the experimental framework assumed in this paper,
analyse the performance of the novel engine and compare it with the conventional
one.

5.1 Experimental Framework

The TSMA simulator is built on top of the Simplescalar Alpha toolkit [4]. Table 1
shows the parameters of the baseline conventional microarchitecture. The TSMA
assumes the same resources as the baseline configuration except for the issue
queue, reorder buffer and logical register mapping table, which are replicated
for each thread. It also has some new structures, which are shown in Table 2.
The following Spec2000 benchmarks were randomly chosen: crafty, eon, gcc, mcf,
vortex, and vpr from the integer suite; and ammp, apsi, equake, mesa, mgrid, and
sixtrack from the FP suite.The programs were compiled with the DEC C and F77
compilers with -non shared -O5 optimization flags (i.e. maximum optimization
level). For the simulation, each program was run with the test input set and
statistics were collected for 250 million instructions after skipping initializations.

TSMA assumes a trace selection method based on a static analysis that uses
profiling data to determine traces to be speculated. These selected traces are
communicated to the hardware at program loading time through a special hard-
ware structure called trace table. Live-output values are predicted by means of
a hybrid scheme comprising a stride value predictor and a context-based value
predictor. See [15] for further details of the trace recognition approach based on
profile guided heuristics.

5.2 Analysis of Results

The main objective of this section is to show that the number of thread synchro-
nizations is lower when the new verification engine is used.

Figure 5 plots the percentage of thread synchronizations against the number
of trace speculations.

Figure 6 shows the speed-up of TSMA over the baseline architecture. The first
bar in each figure represents TSMA with the conventional engine and the second
bar represents TSMA with the new verification engine. Our results show that

Reducing Misspeculation Penalty 51

Table 1. Parameters of the baseline microarchitecture

Table 2. Parameters of TSMA additional structures

the average speed-up for TSMA was 27 with the conventional verification engine.
As expected, these speed-ups were significant for all the benchmarks despite a
thread synchronization rate close to 30%.

On the other hand, the number of thread synchronizations was about 10%
lower (from 30% to 20%) with the new verification engine than with the conven-
tional scheme. Note that this engine did not always fires a thread synchronization
to handle a miss trace speculation. It also provided a higher speed up (close to
38%), which implies that the average performance improvement was 9%. Note
that the performance of most benchmarks improved significantly. Only bench-
marks such as ammp, apsi or mgrid, whose misspeculation with the traditional
verification engine was negligible, hardly improved since thread synchronizations
were already low with the original verification engine.

These results demonstrates the tolerance to misspeculations of the proposed
microarchitecture and encourage further work to develop more aggressive trace
prediction mechanisms. Note that the novel verification engine opens up a new
area of investigation i.e. aggressive trace predictor mechanisms that do not need
to accurately predict all live output values.

Figure 7 shows the reduction in executed instructions with the new verifica-
tion engine. On average, this reduction is almost 8%. Note that this also reduces
memory pressure since these instructions do not need to be fetched all together.

52 C. Molina, J. Tubella, and A. González

Fig. 5. Percentage of thread synchronization

Fig. 6. Speed-up

Fig. 7. Reduction in executed instructions

Again, benchmarks whose percentage of synchronization was negligible experi-
enced a very small reduction in executed instructions. For the other benchmarks,
on the other hand, the number of executed instructions and the number of thread
synchronizations decreased, which led to significant speed-ups.

Reducing Misspeculation Penalty 53

6 Related Work

Several techniques for reducing recovery penalties caused by speculative execu-
tion have been proposed. Instruction reissue, or selective squashing, was first
proposed in . The idea is to retain instructions dependent on a predicted in-
struction in the issue queue until the prediction is validated. If the prediction
is wrong, all dependent instructions are issued again. This technique trades the
cost of squashing and re-fetching instructions for the cost of keeping instructions
longer in the issue queue. A similar scheme that focused on load instructions was
presented in [10]. The performance of the instruction reissue was investigated
thoroughly in [25]. A practical and simple implementation of instruction reissue
based on a slight modification of the register update unit was proposed in [21].

Squash reuse has also been proposed as a way to reduce branch
miss-speculation penalty. This concept was first introduced in [23]. These authors
proposed a table-based technique for avoiding the execution of an instruction
that has previously been executed with the same inputs. As well as squash reuse,
they also cover general reuse. A different implementation based on a centralized
window environment was proposed in [6]. These authors also introduced the idea
of dynamic control independence and showed how it can be detected and used in
an out-of-order superscalar processor to reduce the branch misprediction penalty.
Finally, register integration [19] has also been proposed as a simple and efficient
implementation of squash reuse. This mechanism allows speculative results to
remain in the physical register file after the producer instruction is squashed.
They can later be reused through a modified renaming scheme.

The concept of dynamic verification was introduced in [17]. The proposed
AR SMT processor employs a time redundant technique that allows some tran-
sient errors to be tolerated. Slipstream processors [16] dynamically avoid the
execution of a program’s non essential computations. These authors suggested
creating a shorter version of the original program by removing ineffectual compu-
tation. Using dynamic verification to reduce the burden of verification in complex
microprocessor designs is covered in [5].

Several thread-level speculation techniques have been examined to exploit
parallelism in general-purpose programs [1], [2], [13], [24]. Other recent studies
have also focused on speculative threads. The pre-execution of critical instruc-
tions by means of speculative threads is proposed in several studies [3], [7], [20].
Critical instructions, such as mispredicted branches or loads that miss in cache
are used to construct traces called slices that contain the subset of the program
that relates to that instruction.

7 Conclusions and Future Work

In this paper, we have proposed a novel hardware technique to enhance the Trace
Level Speculative Multithreaded Architecture (TSMA). This hardware improve-
ment focuses on the verification engine of the TSMA. The idea is to avoid the
re-execution of instructions even when source values are incorrectly predicted.

54 C. Molina, J. Tubella, and A. González

Instead of firing a thread synchronization that wastes useful computations, the
correct value is re-computed and used to update the architectural state. The
new engine reduces the number of thread synchronizations and the penalty due
to misspeculations. This avoids discarding instructions that are independent of a
mispredicted one, thus reducing the number of fetched and executed instructions
and cutting energy consumption and contention for execution resources.

Simulation results of the novel verification engine of the Trace-Level Spec-
ulative Multithreaded Architecture show that it can significantly improve per-
formance without increasing complexity. These results encourage further work
to develop more aggressive speculation schemes based on the idea that not all
live-output values need to be highly predictable. This is also motivated by the
relatively low penalty of misspeculations achieved by the Trace-Level Speculative
Multithreaded Architecture.

Finally, TSMA processor can simultaneously execute a couple of threads that
cooperate to execute a sequential code. To ensure the correctness of the archi-
tectural state, ST may only speculate a new trace when the look-ahead buffer
is empty. This means that TSMA has only a single unverified trace speculation
at any given time. Future work includes to modify the architecture in order to
allow multiple unverified traces while maintaining the relatively low penalty of
misspeculations. Future areas for investigation also include generalising the ar-
chitecture to multiple threads in order to perform sub-trace speculation during
the validation of a trace that has been speculated.

Acknowledgments

This work has been partially supported by the Ministry of Education and Science
under grants TIN2004-07739-C02-01 and TIN2004-03072, the CICYT project
TIC2001-0995-C02-01, Feder funds, and Intel Corporation. The research de-
scribed in this paper has been developed using the resources of the European
Center for Parallelism of Barcelona and the resources of the Robotics and Vision
Group of Tarragona.

References

1. Ahuja, P.S., Skadron, K., Martonosi, M., Clark, D.W.: Multipath Execution: Op-
portunities and Limits. In: Proceedings of the International Symposium on Super-
computing (1998)

2. Akkary, H., Driscoll, M.: A Dynamic Multithreaded Processor. In: Proceedings of
the 31st Annual International Symposium on Microarchitecture (1998)

3. Balasubramonian, R., Dwarkadas, S., Albonesi, D.: Dynamically Allocating Pro-
cessor Resources between Nearby and Distant ILP. In: Proceedings of the 28th
International Symposium on Computer Architecture (2001)

4. Burger, D., Austin, T.M., Bennet, S.: Evaluating Future Microprocessors: The Sim-
pleScalar Tool Set. Technical Report CS-TR-96-1308. Univ. of Wisconsin (1996)

5. Chaterjee, S., Weaver, C., Austin, T.: Efficient Checker Processor Design. In: Pro-
ceedings of the 33rd Annual International Symposium on Microarchitecture (2000)

Reducing Misspeculation Penalty 55

6. Chou, Y., Fung, J., Shen, J.: Reducing Branch Missprediction Penalties Via Dy-
namic Control Independence Detection. In: Proceedings of International Confer-
ence on Supercomputing (1999)

7. Collins, J., Wang, H., Tullsen, D., Hughes, C., Lee, Y., Lavery, D., Shen, J.: Specu-
lative Precomputation: Long-range Prefetching of Delinquent Loads. In: Proceed-
ings of the 28th International Symposium on Computer Architecture (2001)

8. Connors, D.A., Hwu, W.W.: Compiler-Directed Dynamic Computation Reuse: Ra-
tionale and Initial Results. In: Proceedings of the 32nd Annual International Sym-
posium on Microarchitecture (1999)

9. Gonzalez, A., Tubella, J., Molina, C.: Trace Level Reuse. In: Proceedings of the
International Conference on Parallel Processing (1999)

10. Gonzalez, J., Gonzalez, A.: Speculative Execution via Address Prediction and Data
Prefetching. In: Proceedings of the 11th International Conf. on Supercomputing
(1997)

11. Huang, J., Lilja, D.: Exploiting Basic Block Value Locality with Block Reuse. In:
Proceedings of the 5th International Symposium on High-Performance Computer
Architecture (1999)

12. Lipasti,M.H.:ValueLocality andSpeculativeExecution,Ph.D.Dissertation, depart-
ment of Electrical and Computer Engineering, Carnegie Mellon Univ. (April 1997)

13. Marcuello, P., Tubella, J., Gonzalez, A.: Value Prediction for Speculative Multi-
threaded Architectures. In: Proceedings of the 32th Annual International Sympo-
sium on Microarchitecture (1999)

14. Molina, C., Tubella, J., Gonzalez, A.: Trace-Level Speculative Multithreaded Ar-
chitecture. In: Procs of the International Conference on Computer Design (2002)

15. Molina, C., Tubella, J., Gonzalez, A.: Compiler Analysis to Support Trace-Level
Speculative Multithreaded Architectures. In: Proceedings of the 9th Annual Work-
shop on Interaction between Compilers and Computer Architectures (2005)

16. Purser, Z., Sundaramoorthy, K., Rotenberg, E.: A Study of Slipstream Processors.
In: Proceedings of the 33rd International Symposium on Microarchitecture (2000)

17. Rotenberg, E.: AR-SMT: A Microarchitectural Approach to Fault Tolerance in Mi-
croprocessors. In: Procs of the 29th Fault-Tolerant Computing Symposium (1999)

18. Rotenberg, E.: Exploiting Large Ineffectual Instruction Sequences. Technical Re-
port, North Carolina State University (November 1999)

19. Roth, A., Sohi, G.S.: Register Integration: A Simple and Efficient Implementa-
tion of Squash Reuse. In: Proceedings of the 33rd International Symposium on
Microarchitecture (2000)

20. Roth, A., Sohi, G.: Speculative Data-Driven Multithreading. In: Proceedings of the
7th International Symposium on High-Performance Computer Architecture (2001)

21. Sato, T., Arita, I.: Comprehensive Evaluation of an Instruction Reissue Mechanism.
In: Proceedings of the 5th International Symposium on Parallel Architectures,
Algorithms and Networks (2000)

22. Sazeides, Y., Smith, J.E.: The Predictability of Data Values. In: Proceedings of
the 30th International Symposium on Microarchitecture (1997)

23. Sodani, A., Sohi, G.S.: Dynamic Instruction Reuse. In: Proceedings of the 24th
International Symposium on Computer Architecture (1997)

24. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous Multithreading: Maximizing
on- chip Parallelism. In: Proceedings of the 22th Annual International Symposium
on Computer Architecture (1995)

25. Tyson, G.S., Austin, T.M.: Improving the Accuracy and Performance of Memory
Communication Through Renaming. In: Proceedings of the 30th Annual Sympo-
sium on Microarchitecture (1997)

Exploiting Execution Locality with a

Decoupled Kilo-Instruction Processor

Miquel Pericàs1,2, Adrian Cristal2, Ruben González1, Daniel A. Jiménez3,
and Mateo Valero1,2

1 Computer Architecture Department, Technical University of Catalonia (UPC)
Jordi Girona, 1-3, Mòdul D6 Campus Nord, 08034 Barcelona (SPAIN)

{mpericas,adrian,gonzalez,mateo}@ac.upc.edu
2 Barcelona Supercomputing Center (BSC)

Jordi Girona, 29, Edifici Nexus-II Campus Nord, 08034 Barcelona (SPAIN)
3 Department of Computer Science, The University of Texas at San Antonio (UTSA)

Science Building, One UTSA Circle, San Antonio, TX 78249-1644 (USA)
djimenez@acm.org

Abstract. Overcoming increasing memory latency is one of the main
problems that microprocessor designers have faced over the years. The
two basic techniques introduced to mitigate latencies are caches and
out-of-order execution. However, neither of these solutions is adequate-
for hiding off-chip memory accesses in the order of 200 cycles or more.
Theoretically, increasing the size of the instruction window would allow
much longer latencies to be hidden. But scaling the structures to support
thousands of in-flight instructions would be prohibitively expensive.

However, the distribution of instruction issue times under the presence
of L2 cache misses is highly correlated. This paper describes this phe-
nomenon of Execution Locality and shows how it can be exploited with
an inexpensive microarchitecture consisting of two linked cores. This De-
coupled Kilo-Instruction Processor (D-KIP) is very effective in recovering
lost potential performance. Extensive simulations show that speed-ups
of up to 379% are possible for numerical benchmarks thanks to the ex-
ploitation of impressive degrees of Memory-Level Parallelism (MLP) and
the execution of independent instructions in the shadow of L2 misses.

1 Introduction

The memory wall problem [1] is one of the main causes for the low instructions-
per-cycle (IPC) rates that current architectures are able to achieve. In general,
to overcome memory latencies, two very successful techniques were introduced
in high performance microarchitectures: Memory Caches and Out-of-Order Pro-
cessing.

Caches [2,3] exploit the locality in data access patterns exhibited by programs,
giving the cost advantage of a large and cheap main memory with the low latency
of a small and expensive memory. This technique has proven very successful and
is used in all current microprocessors.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 56–67, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 57

Out-of-Order execution allows instructions in the instruction window to exe-
cute in dataflow order. The required hardware is expensive and must be designed
to be small enough so as to not impair the cycle time. Out-of-order execution
allows the processor to continue executing while an earlier instruction is blocked.
However, the technique is limited by the size of the instruction queues and, for
the case of memory access latencies, this technique is not sufficient.

Recently, much research has proposed replacing the most critical microar-
chitectural structures with distributed structures that can scale much farther.
Kilo-Instruction processors are such an approach. They provide an effective so-
lution for overcoming the memory wall problem. A Kilo-Instruction processor
does not need to stall under the presence of a cache miss. This has two benefits:

– Distant Load Misses can be pre-executed. This results in higher exploitation
of MLP.

– Independent instructions can be executed in the shadow of a L2 Cache miss.
This allows the architecture to take profit of distant parallelism.

However, in its current incarnation, the Kilo-Instruction Processor still has
shortcomings in terms of its complexity. For example, the management of regis-
ters still lacks a low-complexity solution. It would be desirable to obtain simpler
schemes that do not involve large amounts of complexity.

This paper proposes a new complexity-effective implementation of the KILO
based on the novel concept of Execution Locality. Execution locality is a con-
cept derived from data access locality and memory hierarchies. The idea is
that instructions can be grouped at runtime into clusters depending on their
decode→issue distance. Instructions that issue soon are said to have high exe-
cution locality. This allows building a kilo-instruction processor using a processor
hierarchy in which different processors handle instructions belonging to differ-
ent locality groups. The architecture presented in this paper proposes using two
superscalar processors linked by instruction/register buffers (see Figure 1). The
first processor (Cache Processor, CP) is small and fast, and it executes instruc-
tions that have high execution locality. The second processor (Memory Proces-
sor, MP) can be simple and wide, and it executes the remaining low-locality
instructions. The proposal reuses some concepts recently introduced to scale
the processor structures but reorganizes the processor architecture in a novel
fashion resulting in a decoupled processor that combines scalability, sustained
complexity, and high performance.

The main contribution of this paper is twofold:

1. The introduction of the concept of Execution Locality and its evaluation.
2. The proposal of a Decoupled Kilo-Instruction Processor, a low-complexity

architecture designed to exploit Execution Locality.

This paper is organized as follows. In Sect. 2 a motivation study is presented
that will provide background to the possible improvements in execution. Section
3 will provide a discussion of execution locality along with an initial evaluation of
execution behavior. Using these concepts it will be possible to begin a description

58 M. Pericàs et al.

INSTRUCTION
STREAM

SUBSYSTEM
MEMORYSUBSYSTEM

MEMORY

REGISTER BUFFER

small & fast

LOW LOCALITY

simple & wide

CP MP

INSTRUCTIONS

Fig. 1. 2-Level Decoupled Processor

of the decoupled Kilo-Instruction Processor in Sect. 4. The paper continues with
a description of the simulation framework and the evaluation results in Sect. 5.
Sections 6 and 7 complete the proposal with a summary of related works and
the conclusions, respectively.

2 Motivation

To evaluate the impact of the memory wall, a workload consisting of all bench-
marks of the SPECFP2000 benchmark suite is run on a simulator that models
a typical 4-way out-of-order processor. The processor configurations are such
that they are constrained only by the size of the ROB. As branch predictor
the perceptron predictor [4] is used. Several processor configurations with ROB
sizes from 32 to 4096 entries are evaluated. For each configuration, six different
memory subsystems are tested. Three of these subsystems contain ideal caches.
The IPC results are shown in Fig. 2. The sizes of the caches are 32KB for the
first-level cache and 512KB for the second-level cache. Associativity is 4 in both
cases and the access latencies are 1 and 10 cycles, respectively.

The figure shows how for numerical codes the possible gains of using a large-
window processor are very large. Instructions are almost never discarded due
to misspeculation and many independent instructions can be executed in the
shadow of a cache miss, as predicted by [5]. This allows a large instruction
window to much better hide the memory latencies. It can be seen that, at 4096
in-flight instructions, the processor configuration is almost insensitive to the
memory latency. Only for the large 1000-cycle latency can a substantial IPC drop
be observed. The reason is that the ROB is too small to hide latencies derived
from two-level load chains, which is not the case for the 400-cycle configuration,
where the cumulative latency of 800 cycles can still be hidden. The idea here is
that performance close to perfect memory is feasible if an instruction window
that supports thousands of in-flight instructions can be built.

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

64 128 256 512 1024 2048 40964832

IP
C

Size of Instruction Window

Perfect L1 - 1 cycles
Perfect L2 - 10 cycles
Perfect L2 - 20 cycles

Real Memory - 100 cycles
Real Memory - 400 cycles

Real Memory - 1000 cycles

Fig. 2. Impact of ROB size and Memory Subsystem on SPECFP

3 Execution Locality

In a modern microprocessor, execution is data-driven. Once an instruction has
all its operands computed, this instruction will execute within a small amount of
cycles. Therefore, it should be expected that a large correlation exists between
the number of cycles an instruction waits until issue and the presence of long-
latency events in its dependency tree.

Figure 3 depicts the distribution of cycles that instructions remain in the
instruction queues in a 4-way processor with 400 cycles of main memory ac-
cess latency. These values have been obtained for all committed instructions in
SPECFP. The distribution shows that most instructions (about 70%) do not de-
pend on outstanding L2 cache misses while the remaining do depend directly on
one or multiple L2 cache misses. A large part of these (11%) depend on a single
cache miss and remain around 400 cycles in the queues. A smaller quantity (4%)
depend on two caches misses. The remaining 15% of instructions belong either
to issue clusters that depend on more than two L2 cache misses or are irregular
instructions whose issue times do not belong clearly to one cluster or another.

This figure illustrates the major concept that this paper introduces: the Exe-
cution Locality. Similarly to data accesses, it is possible to classify all instructions
using locality concepts. The phenomenon of execution locality classifies instruc-
tions based on their issue latency. Those instructions that will issue soon have
a high degree of execution locality, while those that depend on long-latency
memory accesses are classified as having low execution locality.

As will now be seen, execution locality can be used to reorganize the internal
microarchitecture in a very efficient way such that a different core processes
instructions belonging to different execution locality groups.

60 M. Pericàs et al.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

(%
)

of
 In

st
ru

ct
io

ns

Decode -> Issue Distance (in Cycles)

11%12%

58%

4%

Fig. 3. Average distance between decode and issue for SPECFP

4 A Decoupled Kilo-Instruction Processor

The concepts of execution locality and the analysis presented in the previous
section enable the efficient implementation of a Kilo-Instruction Processor using
a heterogeneous decoupled dual core approach, a simplified version of which has
been already shown in Fig. 1.

Some techniques used in the Kilo-Instruction processor are used in the pro-
posal. They will be briefly summarized in Section 6. The next section will focus
on the new concepts introduced by the Decoupled Kilo-Instruction Processor
(D-KIP).

4.1 Heterogeneous Dual Core for Kilo-Instruction Processing

This section describes the basic microarchitecture of a D-KIP. The D-KIP is the
first proposal designed from the ground up to provide an efficient solution that
exploits execution locality. Here we will be giving a conceptual description of the
D-KIP. A more detailed description is outside the scope of this paper.

Using the concepts of decoupling and execution locality this paper proposes a
new and interesting approach to kilo-instruction processing: a two-level processor
hierarchy. This proposal is, to the best of our knowledge, the first heterogeneous
dual-core architecture aimed at single-thread performance, and the first to ex-
ploit execution locality concepts.

The D-KIP consists of two simple superscalar cores linked by a long-latency
instruction buffer (LLIB). The LLIB is a FIFO structure that temporarily holds
instructions that have low execution locality (ie, depend on a miss) while they
are waiting for the L2 cache miss to complete. In combination both processors
act as a Kilo-Instruction Processor. The first core will be referred to as the cache
processor (CP) and the second core is the memory processor (MP). The reason to

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 61

call the first processor cache processor is that its structures are sized to deal only
with latencies resulting from cache hits, no further. A more detailed microarchi-
tecture is shown in Fig. 4. There are actually many possible implementations.
We will present only the most straight-forward implementation here.

Future
FileROB

RF

RFIQ

FPQ

decode

L1Cache L2 CACHE

LSQ

IRS

IRS

FPRS

FPRS

LONG LATENCY

INSTRUCTION BUFFER

CACHE PROCESSOR (CP) MEMORY PROCESSOR (MP)

MPRF

Fig. 4. Microarchitecture of a decoupled Kilo-Instruction Processor

The CP uses a conventional microarchitecture with a merged register file and
separate instruction queues, similar to the MIPS R10000 [6]. This first-level
processor is intended to process operations with short issue latency. All long
issue-latency instructions are to be executed in the memory processor (MP).
Therefore, the CP can be designed with a perfect L2 cache in mind. This means
that all structures in the processor can be quite small. The resulting processor
is simpler than current generation processors and can be very fast. The CP also
contains a ROB structure to perform simple rollback of mis–predicted branches.

If an instruction depends on a L2 cache miss then it is classified as long-latency
and sent to the memory processor.

Instructions that have executed in the CP are removed from the ROB without
later consideration after they reach the head of the ROB. This means that all the
information related to this instruction is discarded. This is not incorrect because
once an instruction leaves the CP ROB it is associated with a checkpoint. In case
recovery has to start, the architecture will rollback to this previous checkpoint
and re-execute the instructions. As a consequence, there is no necessity for a
ROB structure in the MP, which instead relies on checkpoints [7].

The memory processor (MP) requires a somewhat more innovative design,
but the microarchitecture is basically a reservation station based back–end with
the addition of some special structures to implement a Future File and the long-
latency instruction buffer (LLIB).

Instructions at the head of the CP ROB are inserted into the LLIB when they
have long issue-latency. The LLIB is a buffer that stores sequences of dependent
instructions in program order. The load that starts a sequence is itself not stored
in the LLIB, but in the Load/Store processor. Once a missing load returns to

62 M. Pericàs et al.

the MP, if this load is the oldest off-chip access in-flight, then the following
instructions until the next unfinished load in the LLIB are awakened and sent
to the reservation stations to be executed. To simplify the LLIB and the register
management, the LLIB structure is strictly in-order. It is thus implemented as a
buffer that stores the instruction opcode and the necessary data to compute and
honor the dependences. The in-order nature reduces IPC by only 5% in the worst
case. This agrees with our observations that the MP can tolerate large latencies
and that most loads complete in-order anyway. In addition, it is necessary that
the scanning is in-order so that the future file can be implemented in the memory
processor.

Register Management. Register management in the cache processor works
as with the R10000 [6] as long as instructions have short latency issue. Once
an instruction is determined to have long-latency issue it is inserted into the
LLIB. At this point, its source registers can be in two states: READY (ie, with
value) or NOT READY (ie, long-latency register without value). In any case,
only a single source can be READY as otherwise the instruction could never
have long issue-latency. As instructions are extracted from the cache processor ’s
ROB, READY registers are retrieved and inserted into a dedicated register file,
the MPRF. It is important to understand that no register sharing exists within
the MPRF. Thus, two instructions in the LLIB that source the same READY
register will see different entries once they are in the LLIB. This dramatically
simplifies the register management, because all registers in the MPRF now have
a single consumer and can be freed right after they are read.

NOT READY registers are inserted together with the instructions into the
LLIB using only the logical register descriptor. Their purpose is to maintain the
dependencies between the instructions in the LLIB.

5 Evaluation

5.1 Simulation Infrastructure

The decoupled kilo-instruction processor is evaluated using an execution-driven
simulator consisting of the simplescalar-3.0 [8] front–end (executing Alpha ISA)
and a new back-end that has been rewritten from scratch to simulate kilo-
instruction processors. The focus of this work is on numerical and memory
intensive applications. The workload is composed of all 14 benchmarks of the
SPECFP2000 benchmark suite. The benchmarks have been compiled with cc
version DEC C V5.9-008 on Digital UNIX V4.0 and using the -O2 optimization
level. Of each benchmark we simulate 200 million of representative instructions
chosen using SimPoint [9].

Several architectures are simulated:

1. BASE-256: This baseline is a speculative out-of-order superscalar proces-
sor. It features structures (ROB, IQ, RF) that are somewhat larger than
todays most aggressive implementations. The parameters are summarized in
Table 1. The sizes are so that it is only constrained by the size of the ROB.

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 63

2. BASE-92: A smaller and cheaper baseline is also used. It is also limited
only by the ROB which in this case has only 92 entries. This configuration
has the same parameters as the CP in the decoupled kilo-instruction model.
The remaining parameters are also shown in Table 1

3. KILO: A first-generation Kilo-Instruction Processor as described in [7] is
simulated. The pseudo-ROB of this processor has 92 entries and the Slow
Lane Instruction Queue has 1024 entries. These parameters make it more
similar to the D-KIP model.

4. D-KIP: An implementation of the Decoupled Kilo-Instruction Processor is
included. The parameters of the simulated D-KIP are shown in Table 2.

Table 1. Parameters of the two baseline configurations: BASE-256 and BASE-92

Fetch/Issue/Commit Width 4 instructions/cycle

Branch Predictor Perceptron

I-L1 size 32 KB, 1 cycle latency

D-L1 size 32 KB, 4-way, 2 rd/wr ports, 1 cycle latency

D-L2 size 512 KB, 4-way, 2 rd/wr ports, 10 cycle latency

Memory Width / Latency 32 bytes / 400 cycles

Reorder Buffer Size 256 (BASE-256) / 92 (BASE-92)

[Integer/FP] Physical Registers 288 (BASE-256)/ 124 (BASE-92)

Load/Store Queue 256 / 92 entries

[Integer/FP] Queue Size 256 entries (BASE-256) / 92 entries (BASE-92)

Integer & FP Functional Units 4 Adders / 1 Multiplier

The Cache Processor of the D-KIP configuration has a 92-entry ROB. This
size is a result of the design guidelines presented in section 4. A 92-entry ROB
is enough to recover most of the lost performance due to memory when using a
configuration with a perfect L2 cache. This value is extrapolated from the IPC
analysis shown in Fig. 2.

The amount of registers in the MPRF is as large as the LLIB. Having 1024 reg-
isters may seem excessive, but due to the regular nature of insertion/extraction
in the LLIB it can be implemented as a banked memory structure where each
bank has a single read/write port. The cost of this is very small.

On the other hand, the size of the instruction queues may seem a bit large.
These sizes have been chosen so that the ROB size limits the number of in-flight
instructions. The real utilization of these instruction queues is likely to be quite
small, almost never exceeding 32-40 instructions.

5.2 Instruction Level Parallelism

Using the same set of simulation and configuration parameters that has just
been presented, the IPC achieved by all configurations has been measured for
all benchmarks of SPECFP2000. The result is shown in Fig. 5. The last column
represents the average IPC for the whole benchmark set.

64 M. Pericàs et al.

Table 2. Parameters of the decoupled KILO processor

Common parameters
ICache (L1) size 32 KB, 1 cycle latency

DCache (L1) size 32 KB, 4-way, 2 rd/wr ports, 1 cycle latency

Unified Cache (L2) size 512 KB, 4-way, 2 rd/wr ports, 10 cycle latency

Memory Width / Latency 32 bytes / 400 cycles

Load/Store Queue unlimited

First Level Processor
Fetch/Issue/Commit Width 4 instructions/cycle

Branch Predictor Perceptron

Ports to the Register File 8 Read & 4 Write

Reorder Buffer Size 92

Integer/FP Physical Registers 128 / 128

Integer/FP Queue 92 entries / 92 entries

Integer & FP Functional Units 4 Adders / 1 Multiplier

Second Level Processor
LLIB Size 1024 entries

LLIB extraction rate 4 instructions/cycle

Number of Checkpoints 16 stack entries

Registers in L2RF 1024 entries

Integer & FP Functional Units 4 Adders / 1 Multiplier

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G

IP
C

BASE-92
BASE-256

KILO
D-KIP

Fig. 5. IPC values for SPECFP2000

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 65

The speed-ups are very impressive for this set of numerical benchmarks. As a
result of the accurate branch prediction in numerical codes most of the instruc-
tions in the large instruction window are useful for the execution and are not
discarded. This results in an average speed-up of 236% compared to BASE-256
and an impressive 379% when compared to BASE-92. The memory-bound bench-
marks are the ones that obtain the largest speed-ups. This should be no surprise
as memory-bound applications are those that would spend a higher number of cy-
cles stalled due to unavailability of ROB slots. The D-KIP with its non-blocking
ROB mechanism provides tremendous speed-ups for these applications.

The decoupled model achieves a small speed-up of 1.02 versus the traditional
KILO model [7]. This is thanks to the separate issue queues and additional
functional units. However, the goal of decoupling is not to beat the KILO model,
but to perform comparable with the benefit of sustainable design complexity.

Overall the FP performance is similar to that achieved by BASE-92 with an
ideal L2 cache with a latency between 10 and 20 cycles (see Fig. 2).

6 Related Work

Processor behavior in the event of L2 Cache misses has been studied in detail
by Karkhanis et al.. [5]. They showed that many independent instructions can
be fetched and executed in the shadow of a cache miss. This observation has
fueled the development of microarchitectures able to overcome the memory-wall
problem [1].

Many suggestions have been proposed for overcoming the ROB size and man-
agement problem. Cristal et al. propose virtualizing the ROB by using a small
sequential ROB combined with multicheckpointing [10,7,11]. Akkary et al. have
also introduced a checkpointing approach [12] which consists in taking check-
points on low-confidence branches.

The instruction queues have also received much attention recently. The Wait-
ing Instruction Buffer (WIB) [13] is a structure that holds all the instructions
dependent on a cache miss until its data returns from memory. The Slow Lane
Instruction Queue (SLIQ) [7] is similar in concept to the WIB but is designed
as an integral component of an overall kilo-instruction microarchitecture. In
addition, it contains a pseudo-ROB structure to detect which instructions are
long-latency and which are not. Recently, Akkary et al. have proposed the Con-
tinual Flow Pipelines (CFP) [14] architecture in which they propose en efficient
implementation of a two-level instruction queue.

Several proposals try to improve the efficiency of physical register allocation.
Virtual Registers [15] is a technique to delay the allocation of physical register
until the issue stage. On the other hand, Early Release [16] tries to release
registers earlier. An aggressive technique consists in combining both approaches.
This technique is known as Ephemeral Registers [17].

Finally, several techniques have been proposed to attack the scalability prob-
lem of the load/store queues. There are several recent proposals for dealing with

66 M. Pericàs et al.

the scalability problems of store queues, including two-level queue proposals
[12,18] or partitioned queues [19].

The main difference between these proposals and the technique presented so
far is that the D-KIP proposes a complete solution from the point of view of
Execution Locality.

Decoupling is an important technique that allows simplification of the design
of loosely coupled microarchitectures while increasing its performance. Smith
first proposed decoupling the memory system from the processor in the Decou-
pled Access-Execute computer architecture [20].

7 Conclusions

This paper has presented a new concept in program execution termed execu-
tion locality. This concept describes the execution behavior of instructions in-
side the instruction window. It has been shown how, based on the instruction
issue times, instructions can be grouped into clusters. Based on this observa-
tion a new implementation of kilo-instruction processors called the Decoupled
Kilo-Instruction Processor has been proposed. This processor consists of three
subprocessors linked by queues: the Cache Processor, the Memory Processor and
a Load/Store processor. The decoupling offers a complexity-effective approach to
the design of kilo-instruction processors.

Extensive simulations conducted using the SPECFP2000 benchmarks have
shown that this decoupled architecture fully exploits the possibilities of kilo-
instruction processing. It even wins 2% of IPC when executing numerical codes.
Overall, this represents a speedup of 379% compared to a single-windowed pro-
cessor with the same structures as the Cache Processor when running numerical
codes. But the important observation here is that this speed-up is obtained with
only a small increase in the complexity of the design.

Acknowledgments

This work has been supported by the Ministry of Science and Technology of
Spain under contract TIN–2004–07739–C02–01 and the HiPEAC European Net-
work of Excellence under contract IST-004408. Daniel A. Jiménez is supported
by NSF Grant CCF–0545898.

References

1. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
Computer Architecture News (1995)

2. Wilkes, M.V.: Slave memories and dynamic storage allocation. IEEE Transactions
on Electronic Computers, 270–271 (1965)

3. Smith, A.J.: Cache memories. ACM Computing Surveys 14(3), 473–530 (1982)

Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor 67

4. Jimenez, D.A., Lin, C.: Dynamic branch prediction with perceptrons. In: Proc.
of the 7th Intl. Symp. on High Performance Computer Architecture, pp. 197–206
(2001)

5. Karkhanis, T., Smith, J.E.: A day in the life of a data cache miss. In: Proc. of the
Workshop on Memory Performance Issues (2002)

6. Yeager, K.C.: The MIPS R10000 superscalar microprocessor. IEEE Micro 16, 28–41
(1996)

7. Cristal, A., Ortega, D., Llosa, J., Valero, M.: Out-of-order commit processors. In:
Proc. of the 10th Intl. Symp. on High-Performance Computer Architecture (2004)

8. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer
system modeling. IEEE Computer (2002)

9. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using
SimPoint for accurate and efficient simulation. In: Proc. of the Intl. Conf. on Mea-
surement and Modeling of Computer Systems (2003)

10. Cristal, A., Valero, M., Gonzalez, A., LLosa, J.: Large virtual ROBs by processor
checkpointing. Technical report (2002), Technical Report number UPC-DAC-2002-
39 (2002)

11. Cristal, A., Santana, O.J., Martinez, J.F., Valero, M.: Toward kilo-instruction pro-
cessors. ACM Transactions on Architecture and Code Optimization (TACO), 389–
417 (2004)

12. Akkary, H., Rajwar, R., Srinivasan, S.T.: Checkpoint processing and recovery: To-
wards scalable large instruction window processors (2003)

13. Lebeck, A.R., Koppanalil, J., Li, T., Patwardhan, J., Rotenberg, E.: A large, fast
instruction window for tolerating cache misses. In: Proc. of the 29th Intl. Symp.
on Computer Architecture (2002)

14. Srinivasan, S.T., Rajwar, R., Akkary, H., Gandhi, A., Upton, M.: Continual flow
pipelines. In: Proc. of the 11th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (2004)

15. Gonzalez, A., Valero, M., Gonzalez, J., Monreal, T.: Virtual registers. In: Proc. of
the 4th Intl. Conf. on High-Performance Computing (1997)

16. Moudgill, M., Pingali, K., Vassiliadis, S.: Register renaming and dynamic specula-
tion: an alternative approach. In: Proc. of the 26th. Intl. Symp. on Microarchitec-
ture, pp. 202–213 (1993)

17. Cristal, A., Martinez, J., LLosa, J., Valero, M.: Ephemeral registers with mul-
ticheckpointing. Technical report(2003), Technical Report number UPC-DAC-
2003-51, Departament d’Arquitectura de Computadors, Universitat Politecnica de
Catalunya (2003)

18. Park, I., Ooi, C.L., Vijaykumar, T.N.: Reducing design complexity of the load/store
queue. In: Proc. of the 36th Intl. Symp. on Microarchitecture (2003)

19. Sethumadhavan, S., Desikan, R., Burger, D., Moore, C.R., Keckler, S.W.: Scalable
hardware memory disambiguation for high ILP processors. In: Proc. of the 36th
Intl. Symp. on Microarchitecture (2003)

20. Smith, J.E.: Decoupled access/execute computer architectures. In: Proc. of the 9th
annual Intl. Symp. on Computer Architecture (1982)

Decoupled State-Execute Architecture

Miquel Pericàs1,2, Adrián Cristal2, Ruben González1, Alex Veidenbaum3,
and Mateo Valero1,2

1 Computer Architecture Department, Technical University of Catalonia (UPC)
Jordi Girona, 1-3, Mòdul D6 Campus Nord, 08034 Barcelona (SPAIN)

{mpericas,adrian,gonzalez,mateo}@ac.upc.edu
2 Computer Sciences, Barcelona Supercomputing Center (BSC)

Jordi Girona, 29, Edifici Nexus-II Compus Nord, 08034 Barcelona (SPAIN)
3 Department of Computer Science, University of California (UCI)

3019 Donald Bren Hall, Irvine, CA 92697-3435 (USA)
alexv@ics.uci.edu

Abstract. The majority of register file designs follow one of two well–
knownapproaches.Manymodernhigh-performanceprocessors (POWER4
[1], Pentium4 [2]) use a merged register file that holds both architectural
and rename registers. Other processors use a Future File (eg, Opteron [3])
with rename registers kept separately in reservation stations. Both
approaches have issues that may limit their application in future micropro-
cessors. The merged register file scales poorly in terms of power-
performance while the Future File has to pay a large penalty due on branch
mis–prediction recovery. In addition, the Future File requires the use of the
less scalable mechanism of reservation stations.

This paper proposes to combine the best aspects of the traditional
Future File architecture with those of the merged physical register file.
The key point is that the new architecture separates the processor state,
in particular the registers, and the execution units in the pipeline back–
end. Therefore it is called Decoupled State-Execute Architecture. The re-
sulting register file can be accessed in the pipeline front–end and has
several desirable properties that allow efficient application of several op-
timizations, most notably the register file banking and a novel writeback
filtering mechanism. As a result, only a 1.0% IPC degradation was ob-
served with aggressive banking and the energy consumption was lowered
by the new writeback filtering technique. Together, the two optimizations
remove approximately 80% of the energy consumed in register file data
array.

1 Introduction

Memory structures in microprocessors are one of the main sources of energy
consumption [4]. As a consequence, great care has to be taken when designing
structures that require large amounts of memory. One of such structures is a large
register file of modern, out-of-order processors which use register renaming [5].

There are several approaches to intermediate value storage in registers in such
dynamically scheduled architectures. One alternative is to implement a so-called

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 68–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Decoupled State-Execute Architecture 69

merged register file, an approach first followed by the ES/9000 [6] and further
developed by the R10000 [7]. The merged register file has to supply values for
both the computation and the mis–prediction recovery. It is typically accessed
after an instruction is scheduled to execute, even if source operand values were
available much earlier. As a result, this file needs to be both large and heavily
multiported, increasing its energy consumption.

The alternative is to use a Future File. In this approach the future file, of size
equal to the logical register file, is kept in the pipeline front–end while the rename
registers correspond to storage in reservation stations. The future file contains
the most recent values assigned to logical registers. The use of future registers
is thus quite energy efficient. However, in the case of a branch mis–prediction,
the architectural state must be recovered using the architectural register file at
commit. With today’s large memory latencies this approach can suffer a large
IPC loss.

The Future File approach can be improved by providing direct access to reg-
isters required for recovery. The architecture proposed here uses a single register
file containing all physical registers but located in the front end. Mis–prediction
recovery can thus be done using a rename map stack, which check–points the
rename map on each instruction that may require recovery.

The new register file is called the Front-end Physical Register File or FPRF.
As source operand registers of an instruction are renamed, it can be determined
if a source register has a computed value. The front–end physical register file is
only read in this case, significantly reducing its access frequency. The remaining
source operand values come directly from executing instructions via reservation
stations which are also required in this architecture.

With the register file in the front end, the new architecture is called Decou-
pled State-Execute Architecture or DSE. Due to lower access frequency to the
front–end register file it can be large but very more energy efficient. And because
mis–prediction recovery is now fast, the DSE has better power-performance char-
acteristics than the traditional approaches.

The new register file organization is more amenable to two important opti-
mizations. Register file banking can be easily implemented, both due to the fact
that registers are accessed in the front end and to the reduced access frequency.
Also, an optimization to filter unnecessary writebacks into the register file can
be performed efficiently in the DSE.

2 Related Work

The body of related work on register file design optimization is large.
Many papers have proposed to reorganize the register file architecture to re-

duce the number of ports and thus the energy [8, 9, 10]. Other techniques have
been used to re–organize the register file. For instance, it is possible to distribute
the register file based on the significance of register values [11]. Multilevel reg-
ister files have also been proposed to reduce latency and save energy [12,13,14].
Clustered register files [15, 16, 17] have been used for the same reasons.

70 M. Pericàs et al.

The Future File was proposed by Pleszkun and Smith in their 1985 work on
precise exceptions [18]. The original proposal only provided operands to instruc-
tions via a logical register file in the front-end, hence the name Future File.
More recent proposals for Future File design are capable of reading operands
from both the Future File and an additional architectural Register File, which
stores committed values [19]. This is specially useful after an exception/mis–
prediction, when a precise instruction state needs to be recovered, as it avoids
having to reconstruct the register state from the ROB.

3 The Decoupled State-Execute Architecture

This section describes the DSE in more detail. The DSE pipeline attempts to
provide an instruction with source operands as early as possible. Similar to the
Future File, it provides available source register values in the pipeline front–end.
However, in the DSE approach the registers are accessed after being remapped
to a large physical register space. This has two implications:

1. Access to computed values in the front–end needs to be delayed until the
rename stage has completed

2. The number of registers in the front–end can be much larger than in the
Future File

Figure 1 shows the DSE microarchitecture.

Rename
MAP

BANK 3

BANK 2

BANK 1

BANK 0

FUs

Rename
Stack

Load/Store Queue

Integer Queue

FP Queue

WRITEBACK

INSTRUCTION FLOW

A
R

B
IT

R
A

T
E

FPRF

Fig. 1. The Decoupled State-Execute Architecture

Figure 2 shows the DSE pipeline. The total pipeline length of the DSE Mi-
croarchitecture is one stage longer than it would have been without the Front–
End Physical Register File. The FPRF access in the front–end requires two
stages: arbitrate and operand read. The former stage is necessary to implement
register file banking.

Decoupled State-Execute Architecture 71

The source register designators are checked in the arbitration stage for bank
access conflicts in the same cycle. When a conflict is detected, all stages before
the FPRF stage stall.

The DSE architecture maintains a bit for each logical register to mark if
it contains a computed value. A FPRF register read operation is initiated if
a desired source operand value is computed (available). The arbitration stage
(ARB) logic checks if an N-instruction FPRF access has conflicts. The front-end
stalls all stages prior to ARB in case of conflicts. Arbitration priority is given to
older instructions to make sure that the front-end does not dispatch instructions
out-of-order.

FETCH DECODE ARBRENAME FPRF QUEUE ISSUE EXE WB COMMIT

ROB
FPRF

IQ

FU

MAP

ICACHE

Fig. 2. The Pipeline of the DSE Architecture

Next, an instruction and the available operand values it read from the FPRF
are inserted in an appropriate reservation station. A single, centralized reserva-
tion station can be used for all instructions, which can be implemented as an
instruction queue in which the available source operand values are stored in the
queue’s payload RAM. This is the Queue stage.

As mentioned above, The DSE architecture has a lower access rate to the
FPRF compared to a standard architecture accessing a back-end physical regis-
ter file since only some source operands are available at this point in instruction
execution. The number of integer operands obtained from the FPRF was ob-
served to be near 40% of all required integer operands, while for floating point
operands this number decreases to around 20% (for the SPEC2000 benchmarks
and the architecture described in Sec. 4). This has the potential to reduce the
number of banks as well as ports per bank in the FPRF. Note however, that
there need to be at least two read ports per bank so that an instruction can
obtain both operands from the same bank without stalling.

In the event of a branch mis–prediction the DSE architecture behaves ex-
actly like the MIPS R10000. The processor aborts all instructions along the
mis–predicted path, restores register mapping from the branch stack and starts
fetching instructions from the correct path.

3.1 Read Sharing

Accesses to the same logical register often appear several times in a short in-
struction sequence. For instance, code that manipulates objects on the stack
normally sources the stack pointer register many times. Such register accesses

72 M. Pericàs et al.

cannot be distributed among different banks. When they appear there is a high
probability that a register access will result in a bank conflict.

Such conflicts in the FPRF access can be reduced by using a technique known
as read sharing [13]. Read sharing allows multiple reads of a same register to
share a single local port among the concurrently issued instructions. The impact
of Read sharing will be evaluated for the FPRF architecture.

3.2 Writeback Filtering

Some of the values written to physical registers may never be used in the future.
Such values do not actually need to be written to the register file. There are two
types of register values that need to be written: 1) values updating the state of
an architectural register, and 2) register values that are needed in case of branch
mis–prediction recovery. For instance, consider a register that is renamed twice
in a short interval. A physical register allocated to the first instruction may not
appear in any of the current mappings and its value will not be needed by any
future instructions. If this can be detected, then the write to this register can be
eliminated. This is Writeback Filtering.

To implement Writeback Filtering the processor needs to check mapped reg-
isters in all rename checkpoints plus the current mapping and decide if a register
write–back is necessary. Checkpoints need to be taken at all instructions that
may cause a replay. There are many such instructions but the vast majority are
conditional branches and load operations. Registers that are not referenced any-
where are candidates to be filtered out during writeback. Writeback filtering can
be integrated in the renaming logic to detect short-lived registers. A short-lived
register is a register that is not referenced by any checkpoint in the rename stack
(including the current rename map). This can be detected by computing an OR
of all the rename maps.

In practice, the number of loads that need to be replayed (due to ordering
violations) is very small while the total number of loads is very large. Check-
pointing all loads is thus expensive and very inefficient. The DSE architecture
reduces the number of checkpoints by associating loads to older checkpoints. In
case of a replay the restart is from an older point in execution but this is very
infrequent and has almost no impact on performance.

These older checkpoints will usually correspond to branches, although it is
possible that a load is the oldest operation in the processor and a previous
branch in the instruction slice have committed already. To avoid check-pointing
any loads, the architecture keeps an additional checkpoint associated to the last
branch that has committed. This increases the size of the rename stack by one
entry instead of a large increase that storing all mappings due to loads would
have lead to.

4 Experimental Setup

The FPRF architecture was evaluated using a modified execution driven simula-
tor based on SimpleScalar [20]. The simulator executes binaries compiled for the

Decoupled State-Execute Architecture 73

Alpha ISA. The entire SPEC2000 suite was compiled using the Compaq/Digital
cc compiler with the ”-O2” optimization level. 100 million committed instruc-
tions are selected using SimPoint [21] and simulated.

Results for the DSE architecture are presented and compared to the baseline
out-of-order microarchitecture as well as to the banked, multi–ported register
file described in [22]. The common parameters of all architectures are shown in
Table 1.

Table 1. Common architecture parameters for all configurations

Fetch/Issue/Commit Width 4 instructions/cycle

Branch Predictor Combined bimodal + 2-level

I-L1 size 32 KB, 4-way, 1 cycle latency

D-L1 size 32 KB, 4-way, 2 rd/wr ports, 2 cy-
cle latency

D-L2 size 256 KB, 4-way, 2 rd/wr ports, 11
cycle latency

Memory Bus Width 32 bytes

Ports to the Register File 8 Read & 4 Write

Reorder Buffer Size 128

Memory latency 100

Integer Physical Registers 160

FP Physical Registers 160

Load/Store Queue 128 entries

Integer Queue 32 entries

FP Queue 32 entries

Integer Functional Units 4 (latency 1)

FP Functional Units 4 (latency 2)

To evaluate the DSE architecture the 5 configurations described below were
studied (they are summarized in Table 2).

1. NON-BANKED baseline configuration: a processor with a fully-ported
(8Rd/4Wr), centralized physical register file without banking. It has a four-
stage front-end and a five-stage back-end pipeline with operand access after
ISSUE.

2. NON-BANKED-WBF : NON-BANKED configuration with writeback filter-
ing.

3. NON-BANKED-LONG: NON-BANKED configuration but with an addi-
tional stage in the front-end. This model has the same branch mis–prediction
penalty as the DSE. Introducing this model allows us to evaluate how much
IPC our proposal loses just due to banking stalls in the front-end.

4. DSE-BANKED : the DSE architecture with the FPRF which has 8 banks
and uses read sharing. Each bank has 2 read and 2 write ports. The banked
register file is similar to the one in Tseng et al. [22].

5. DSE-BANKED-WBF : the DSE architecture with the DSE-BANKED con-
figuration and writeback filtering.

74 M. Pericàs et al.

Table 2. Configuration summary

Configuration #Banks Read Ports Write Ports Pipeline Length Writeback
per Bank per Bank Filtering

NON-BANKED 1 Unlimited Unlimited 9 NO

NON-BANKED-WBF 1 Unlimited Unlimited 9 YES

NON-BANKED-LONG 1 Unlimited Unlimited 10 NO

DSE-BANKED 8 2 2 10 NO

DSE-BANKED-WBF 8 2 2 10 YES

In addition to these five configurations the model described in [22] was also
implemented. Our implementation performed around 2% better than the original
one as reported in that paper.

5 Performance Evaluation

This section reports on two major metrics of interest: IPC and Energy consump-
tion. Writeback Filtering will be further analyzed in Sec. 5.3.

5.1 IPC

The amount of additional instruction level parallelism delivered by the DSE
architecture is the focus of this section. For simplicity, only SPECINT and
SPECFP average IPC for all configurations is shown in Fig. 3.

The figure shows that the slowdown due to banking or the use of the FPRF
is very small. Only a 1.12% average slowdown is observed for SPECINT. For
SPECFP the losses are even lower, less than 0.85%. The reason for small slow-
downs is that the penalty due to the addition of two new stages in the front-end

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

SPECINT SPECFP

IP
C

NON-BANKED
NON-BANKED-WBF

NON-BANKED-LONG
DSE-BANKED

DSE-BANKED-WBF

Fig. 3. Average IPC

Decoupled State-Execute Architecture 75

of the architecture is largely hidden by the latency tolerance of the out-of-order
execution back-end. The addition of an arbitration stage in the back end has a
higher impact on IPC. Our implementation of a ”standard” banked register file
(per [22]) resulted in an average IPC loss of over 2%.

The writeback filtering technique has little impact on performance. The dif-
ference is less than 0.1%. Writeback filtering prevents writes in the writeback
stage, which only reduces traffic on result buses and write ports. These are not
a bottleneck in the simulated architectures.

Finally, the figure shows that the banked architectures are very close to the
non-banked architectures with the same pipeline length. This implies that, even
with 2 read and 2 write ports per bank, the number of conflicts is very small.
The number of conflicts in FPRF access has been measured. For the reads to the
FPRF in SPECINT, 0.18% of all accesses to the FPRF resulted in a conflict. This
is approximately 1 conflict for every 600 accesses. For SPECFP this number is a
bit larger, 0.5%. The reason it is higher for SPECFP is that most FP instructions
read two sources while many integer operations read only a single source.

5.2 Energy Consumption

One of the main benefits of banking is that it reduces the energy consumption
in the register file. This section evaluates the energy requirements of data arrays
in the FPRF. The energy consumption in the register file is modeled per Rixner
et al [23]. The model shows that an access in the FPRF with 160 registers,
8Rd/4Wr ports, and no banking consumes 4.32 times more energy compared to
an access in the banked FPRF (8banks, 2Rd/2Wr ports per bank).

The total FPRF access energy is then computed using the total number of
FPRF accesses obtained in simulations. The results are shown in Fig. 4 averaged
over all SPEC2000 benchmarks. The impact of banking and writeback filtering on
the FPRF energy consumption is clearly visible: the two techniques combined
reduce the energy by 81.7%. Banking alone reduces the energy by 76%. The
writeback filtering alone reduces it by about 20%. The latter has a smaller impact
than banking because writeback filtering can only remove energy due to writes
while banking reduces the energy on both reads and writes.

In this discussion on Energy Consumption we have not analyzed components
other than the FPRF. But the FPRF is not the only source of registers in this
architecture. The simulated DSE architecture features a centralized reservation
station with 32 entries. This structure requires four write ports (driven by CAMs)
and a series of read ports used to issue the instructions. Energy-wise it can be
expensive. However, the instruction queue can also be implemented as a set of
distributed reservation stations, a scheme in which each reservation station is
attached to a single functional unit. This scheme adds a little complexity and
requires somewhat more busses to drive operands around, but its use of very
small structures (less number of entries, less read/write ports) allows it to be
very small and have little energy consumption. For example, if four reservation

76 M. Pericàs et al.

 0

 20

 40

 60

 80

 100

R
el

at
iv

e
am

ou
nt

 o
f E

ne
rg

y
in

 th
e

F
P

R
F

 c
om

pa
re

d
to

 N
O

N
-B

A
N

K
E

D

Configurations

NON-BANKED
NON-BANKED-WBF

NON-BANKED-LONG
DSE-BANKED

DSE-BANKED-WBF

Fig. 4. Relative Energy Consumption

stations are being used, giving each one 8 entries and 2 write ports / 1 read port
is still enough to support highly parallel execution.

5.3 Writeback Filtering

Fig. 5 shows percentage of writebacks that were actually filtered in the banked
FPRF averaged over all SPECINT and all SPECFP benchmarks. For SPECINT
writeback filtering reduces the number of writebacks by approximately 29%. In
SPECFP benchmarks, the number of integer writes is reduced by 26% and 48%
for floating–point writes. The results show that more FP registers are not part
of the state when they are written back and can be filtered out.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

SPECFP SPECINT

N
um

be
r

of
 W

rit
e

A
cc

es
se

s
to

 F
P

R
F

 r
el

at
iv

e
to

 B
A

N
K

E
D

-I
N

T
 (

S
P

E
C

F
P

) BANKED-INT
BANKED-FP

BANKED-WBF-INT
BANKED-WBF-FP

48%

26%

29%

Fig. 5. The impact of Writeback Filtering in the FPRF

Decoupled State-Execute Architecture 77

6 Conclusions

This paper proposes the Decoupled State-Execute Architecture (DSE) which
combines the best features of the Future File and the centralized physical reg-
ister file. The DSE places the physical register file in the processor front–end.
This architecture decouples the processor state in registers from the execution
back-end. It has been shown that this architecture allows significant power-
performance improvement: a very small IPC loss and a large energy reduction
in register file access are achieved. The main reasons are the move of register
access arbitration to the front–end and a large reduction in register file access
frequency (only values available early are read).

Two optimizations are applied to the DSE architecture: register file banking
with read sharing and writeback filtering. Banking results in a minimal IPC loss,
considerably less than in a previous proposal where the physical register file is
in the back-end. This is due to a) lower access frequence and fewer conflicts and
b) reduced impact of arbitration when performed in the front end.

Acknowledgments

This work has been supported by the Ministry of Science and Technology of
Spain under contract TIN–2004–07739–C02–01 and the HiPEAC European Net-
work of Excellence under contract IST-004408. This work was supported in part
by the National Science Foundation under grant CNS–0220069.

References

1. Tendler, J., Dodson, S., Fields, S., Le, B.S.H.: Power4 system microarchitecture.
IBM Journal of Research and Development 46(1) (2002)

2. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel, P.:
The microarchitecture of the Pentium 4 processor. Intel Technology Journal (2001)

3. Keltcher, C., McGrath, K., Ahmed, A., Conway, P.: The AMD Opteron processor
for multiprocessor servers. IEEE Micro 23, 66–76 (2003)

4. Gowan, M.K., Biro, L.L., Jackson, D.B.: Power considerations in the design lf the
Alpha 21264. In: Proc. of the 35th Design Automation Conference (1998)

5. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 25–33 (January 1967)

6. Liptay, J.: Design of the IBM Enterprise System/9000 high-end processor. IBM
Journal of Research and Development 36(4) (July 1992)

7. Yeager, K.C.: The MIPS R10000 superscalar microprocessor. IEEE Micro 16, 28–41
(1996)

8. Zyuban, V., Kogge, P.: The energy complexity of register files. In: Intl. Symp. on
Low Energy Electronics and Design, pp. 305–310 (1998)

9. Park, I., Powell, M.D., Vijaykumar, T.: Reducing register ports for higher speed
and lower energy. In: Proc. of the 35th Annual Intl. Symposium on Microarchitec-
ture (December 2002)

78 M. Pericàs et al.

10. Kim, N.S., Mudge, T.: Reducing register ports using delayed write-back queues
and operand pre-fetch. In: Proc. of the 17th ACM Intl. Conf. on Supercomputing
(June 2003)

11. Gonzalez, R., Cristal, A., Ortega, D., Veidenbaum, A., Valero, M.: A content aware
integer register file organisation. In: Proc. of the 31th Intl. Symp. on Computer
Architecture (2004)

12. Cruz, J., Gonzez, A., Valero, M., Topham, N.: Multiple-banked register file archi-
tecture. In: Proc. of the 27th Intl. Symp. on Computer Architecture, pp. 316–325
(2000)

13. Balasubramonian, R., Dwarkas, S., Albonesi, D.: Reducing the complexity of the
register file in dynamic superscalar processors. In: Proc of the 34th Intl. Symp. on
Microarchitecture (2001)

14. Zalamea, J., Llosa, J., Ayguad, E., Valero, M.: Two-level hierarchical register file
organization for VLIW processors. In: Proc of the 33th Intl. Symp. on Microarchi-
tecture (MICRO-33), pp. 137–146 (2000)

15. Palacharla, S., Jouppi, N., Smith, J.: Complexity-effective superscalar processors.
In: Proc. of the 24th Intl. Symp. on Computer Architecture (1997)

16. Kessler, R.: The Alpha 21264 microprocessor. IEEE MICRO 19 (March 1999)
17. Seznec, A., Toullec, E., Rochecouste, O.: Register write specialization register read

specialization: a path to complexity-effective wide-issue superscalar processors. In:
Proc. of the 35th Intl. Symp. on Microarchitecture, pp. 383–394 (2002)

18. Smith, J.E., Pleszkun, A.R.: Implementation of precise interrupts in pipelined proc-
cessors. In: Proc. of the 12th Intl. Symp. on Computer Architecture, pp. 34–44
(1985)

19. Johnson, M.: Superscalar Microprocessor Design. Prentice-Hall, Englewood Cliffs
(1990)

20. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer
system modeling. IEEE Computer (2002)

21. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using
SimPoint for accurate and efficient simulation. In: Proc. of the Intl. Conf. on Mea-
surement and Modeling of Computer Systems (2003)

22. Tseng, J., Asanovic, K.: Banked multiported register files for high-frequency su-
perscalar microprocessors. In: Proc. of the 30th Annual Intl. Symp. on Computer
Architecture (2003)

23. Rixner, S., Dally, W.J., Khailany, B., Mattson, P.R., Kapasi, U.J., Owens, J.D.:
Register organization for media processing. In: Proc. of the 6th Intl. Symp. on High
Performance Computer Architecture, pp. 375–386 (2000)

A Scalable Methodology for Computing Fault-Free
Paths in InfiniBand Torus Networks�

J.M. Montañana, J. Flich, A. Robles, and J. Duato

Dept. of Computer Engineering (DISCA,UPV)
Camino de Vera, 14, 46021–Valencia, Spain

jmontana@gap.upv.es

Abstract. Currently, clusters of PCs are considered as a cost-effective alternative
to large parallel computers. In these systems the interconnection network plays a
key role. As the number of elements increases in these systems, the probability
of faults increases dramatically. Moreover, in some cases, it is critical to keep
the system running even in the presence of faults. Therefore, an effective fault-
tolerant strategy is needed.

InfiniBand (IBA) is a new standard interconnect suitable for clusters. Unfor-
tunately, most of the fault-tolerant routing strategies proposed for massively par-
allel computers cannot be applied to IBA because routing and virtual channel
transitions are deterministic, which prevent packets from avoiding the faults. A
possible approach to provide fault-tolerance in IBA consists of using several dis-
joint paths between every source-destination pair of nodes and selecting the ap-
propriate path at the source host. However, to this end, a routing algorithm able
to provide enough disjoint paths, while still guaranteeing deadlock-freedom, is
required. In this paper we address this issue, proposing a scalable fault-tolerant
methodology for IBA Torus networks. Results show that the proposed methodo-
logy scales and supports up to (2n − 1)-faults for n-dimensional tori when using
2 VLs (virtual lanes) and 4 SLs (service levels) regardless of the network size.
Additionally the methodology is able to support up to 3 faults for 2D tori with 2
VLs and only 3 SLs.

1 Introduction

Over the recent years there is a trend in using clusters of PCs for building large systems.
Some examples are cluster-based Internet portal servers like AOL, Google, Amazon
or Yahoo. Also, clusters of PCs are currently being considered as a cost-effective al-
ternative for small and large-scale parallel computing. Each time, more cluster-based
systems are included in the top500 list of supercomputers [2]. As an example, the Abe
system [1] with 2,400 quad-core Intel Xeon 64 2.3 GHz processors (9,600 cores) is in
the eighth position.

In these systems, the interconnection network plays a key role in the performance
achieved. In fact, clusters are being built by using high-end interconnection networks

� This work has been jointly supported by the Spanish MEC and European Commission FEDER
funds under grants “Consolider Ingenio-2010 CSD2006-00046” and “TIN2006-15516-C04-
0X”; and by JCC de Castilla-La Mancha under grant PBC-05-007-2.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 79–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 J.M. Montañana et al.

like Quadrics [10], InfiniBand [6], and Myrinet [4]. Among them, InfiniBand (IBA)
is a standard interconnect technology for interconnecting processor nodes and I/O no-
des, thus building a system area network (SAN). The InfiniBand Architecture (IBA) is
designed around a switch-based interconnect technology with high-speed serial point-
to-point links connecting multiple independent and clustered hosts and I/O devices.
Therefore, this interconnect technology is suitable to build large clusters. As an exam-
ple, the Abe system uses InfiniBand.

Often, clusters are arranged on regular network topologies when the performance is
the primary concern. Low dimensional tori (2D and 3D) are one of the most widely
used topologies in commercial parallel computers. Furthermore, recent proposals, such
as Alpha 21364 [9] and BlueGene/L [3], use 2D and 3D tori, respectively.

In many cluster-based systems is critical to keep the system running even in the
presence of faults. These systems use a very large number of components (processors,
switches, and links). Each individual component can fail, and thus, the probability of
failure of the entire system increases. Although switches and links are robust, they are
working close to their technological limits, and therefore they are prone to faults. Incre-
asing clock frequency leads to a higher power dissipation, and a higher heating could
lead to premature faults. So, fault-tolerant mechanisms in cluster-based systems are
becoming a key issue.

Most of the fault-tolerant routing strategies proposed in the literature for massively
parallel computers are not suitable for clusters (see chapter 6 of [5] for a description
of some of the most interesting approaches). This is because they often require certain
hardware support that is not provided by current commercial interconnect technologies
[4,6]. Other strategies rely on the use of adaptive routing. However, they cannot be
applied to IBA because routing is deterministic, which prevents packets from circum-
venting the faulty components found along their paths. Also, some of these routing stra-
tegies need to perform dynamic virtual channel transitions when the packet is blocked
due to a fault. However, virtual channels in IBA cannot be selected at routing time.

In IBA, routing and virtual channel (in IBA they are referred to as Virtual Lanes,
VLs) selection is performed based on the destination local ID (DLID) and the service
level (SL) fields of the packet header. These two fields are computed at the source
node and do not change along the path. As a consequence, a possible way to provide
fault-tolerance in IBA would be to have several alternative paths between every source-
destination pair, selecting one of them at the source host. In particular, to tolerate n
faulty components it will be necessary to provide n + 1 disjoint paths. From a practi-
cal point of view, an appropriate methodology should be able to support a reasonable
number of failures according to the network size. Obviously, the switch with the lowest
degree will bound the number of possible disjoint paths in the last analysis, which will
limit, in turn, the maximum number of faults that can be tolerated at the same time.
For instance, in a 2D Torus network only four disjoint paths can be computed for every
source-destination pair.

IBA provides a mechanism supported by hardware, referred to as Automatic Path
Migration (APM)[6], which may be used for selecting among the available disjoint
paths. According to this mechanism, at connection setup time, the source node is given
two sets of path information for each destination, one for the primary path and one for

A Scalable Methodology for Computing Fault-Free Paths 81

the alternate path. APM provides a fast mechanism for migration from the primary to
the alternate path when a faulty component is detected. Once path migration is accom-
plished, the alternate path is converted into the new primary path. Therefore, the subnet
manager could reload the alternate path variables with new ones and re-enable the APM
mechanism.

2 Motivation

In [8] we presented a methodology referred to as TFTR (Transition-based Fault Tole-
rant Routing) to compute disjoint paths for an InfiniBand network. In particular, TFTR
computes four disjoint paths for every source-destination pair in a 2D Torus network.
To get the maximum flexibility in computing disjoint paths, the methodology relies on
virtual channel transitions for some paths. To do so, the methodology computes an un-
derlying up*/down* tree [11] and then, the paths that use illegal up*/down* transitions
are enforced to switch to a new (increasing) virtual channel.

The methodology requires the use of only two virtual channels to obtain four disjoint
paths for every pair of nodes in a 2D Torus. Unfortunately, the methodology requires an
unbounded number of SLs. This is because, according to IBA specs [6], the SL assigned
to a packet can not be changed by the switches, and this may cause mapping conflicts
(see Section 3 for details). Mapping conflicts are solved by using a different path (if
any) or using a new SL (not causing a mapping conflict). Taking into account that in
InfiniBand the maximum number of SLs is 16 and they are used for other purposes
(mainly QoS), the methodology does not scale. For instance, the methodology requires
using 2 VLs and 7 SLs for a 10 × 10 Torus network. Therefore, only two traffic classes
could be used at most in conjunction with this fault-tolerant routing methodology, which
would significantly limit the QoS capabilities of IBA technology. It has to be noted that,
as network size increases, the length of paths also increases. Therefore more mapping
conflicts arise, leading to an increase in the number of SLs required. This is a serious
problem for IBA and requires an effective solution.

When computing disjoint paths for fault-tolerance issues in a 2D Torus network with
InfiniBand, it would be desirable to obtain four disjoint paths for every pair of nodes in
such a way that the number of resources used (VLs and SLs) is the same and as low as
possible independently of the network size.

In this paper we take on such a challenge. To this end, we need to apply a methodo-
logy to compute disjoint paths completely different from that applied in [8], introducing
novel concepts, models and computation strategies. In particular, we propose a new me-
thodology referred as SPFTR (Scalable Pattern-based Fault Tolerant Routing). SPFTR
will compute four disjoint paths for a 2D Torus network by requiring only the use of 2
VLs and 4 SLs regardless of the network size. Thus, it will guarantee the existence of
up to four QoS channels and, at the same time, will tolerate up to 3 faults. Moreover, the
methodology will generate a knowledge database of route patterns, which will allow the
computation of the disjoint routing paths in a time-efficient manner for any network size.
In particular, the computation cost of the methodology will be O(N2), where N is the
number of nodes in the system. Also, the methodology will be easily extended to higher
dimensional Torus networks, without increasing the number of resources required.

82 J.M. Montañana et al.

Notice that the methodology does not depend on the hardware used for detecting
failures. Also, it does not depend on the way failures are notified.

The rest of the paper is organized as follows. In Section 3, mapping conflicts in In-
finiBand will be explained. In Section 4, SPFTR will be presented for a 6 × 6 Torus
network. In Section 5, the methodology will be extended to larger 2D and higher di-
mensional Torus networks. In Section 6, the methodology will be evaluated in terms of
fault-tolerance, performance and cost. Finally, in Section 7, some conclusions will be
drawn.

3 Mapping Conflicts in InfiniBand

In InfiniBand, every switch has a forwarding table where the output port for each de-
stination is provided. The destination ID is located at the packet header and does not
change along the path. Therefore, IBA routing is a kind of source routing with the rou-
ting info distributed.

Up to 15 data virtual lanes (VLs) can be used in IBA. Virtual lane selection is based
on the use of service levels (SLs). By means of SLtoVL mapping tables located on
every switch, SLs are used to select the proper VL at each switch. This table returns,
for a given input port and a given SL, the VL to be used at the corresponding output
port. For this, the SL is placed at the packet header and it cannot be changed by the
switches. Therefore, we should also assign the proper SL to be used for a given path.

However, the fact of fixing a path with a unique SL can lead to a mapping conflict.
It occurs when two packets labelled with the same SL enter a switch through the same
input port, and they need to be routed to the same output port but through different
VLs. The problem is that the SLtoVL mapping table does not use the input VL in order
to determine the output VL. Figure 1.(a) shows an example. At switch R a mapping
conflict arises as it is not possible to distinguish both paths because they are labelled
with the same SL. It has to be noted that this problem arises only when there are paths
with different VLs. For example, path A uses VL1 and path B uses VL0 until switch Q.

A mapping conflict can be solved only by using different service levels (SLs) for each
path causing the mapping conflict. However, this often leads to an excessive number
of SLs. Another solution is to use an alternative path that does not cause a mapping
conflict. However, obtaining such alternative path strongly depends on the flexibility
provided by the applied routing algorithm, on the available network resources (VLs),
and the strategy applied to obtain SLtoVL tables.

4 Description of SPFTR

In this section we will describe SPFTR. For the sake of simplicity and ease of under-
standing we will apply the methodology to a 6 × 6 Torus network. In the next section
we will extend the methodology to larger networks and n-dimensional Torus networks.
The aim of this methodology is to compute the forwarding and SLtoVL tables for IBA
Torus networks in such a way that they provide the maximum number of disjoint rou-
ting paths (2n) between every pair of nodes in a n-dimensional Torus in order to tolerate
up to 2n−1 failures. The methodology must deal at the same time with different issues:

A Scalable Methodology for Computing Fault-Free Paths 83

R

A (SL=1)

B (SL=1)

VL1VL1 VL1

VL1 VL1VL0

VL0

VL0

VL1 VL1
Q

(a)

YES
SLtoVL tables

NO
forwarding
Compute

tables
conflicts?
mapping
Are thereCompute

route patterns
tables

SLtoVL

set of

Initial

Modify

(b)

Fig. 1. (a) Mapping conflict example, (b) and steps followed by SPFTR

– It must ensure that any combination of the computed disjoint paths (2n for every
source-destination pair) does not lead to deadlock. Deadlock-freedom is ensured
by the routing algorithm used.

– It must use only 4 SLs and 2 VLs, regardless of network size. This is achieved by
computing in an appropriate manner the SLtoVL tables.

– It must be scalable. For this end, network regions whose switches require the same
content for their SLtoVL tables will be defined.

– It must be simple enough in order to be applied in a time-efficient manner to larger
networks. For this aim, we will obtain a set of route patterns to be used as templates
to define the set of final disjoint paths.

All these issues have direct dependencies between them, and this fact makes ob-
taining the methodology quite challenging. The choice of the routing algorithm will
influence the route patterns that can be used. At the same time, the route patterns used
will influence the definition of the SLtoVL tables. In the other way, the definition of
SLtoVL tables will influence the route patterns that can be applied.

4.1 Steps Followed by SPFTR

Figure 1.(b) shows the three steps followed by the methodology. Firstly, SLtoVL tables
are initialized according to some initial rules: two virtual lanes will be used and transiti-
ons among virtual lanes will be done in increasing order (first VL0, then VL1) in order
to avoid deadlocks.

In the second step, we look for a set of route patterns that accomplishes the restricti-
ons imposed by the SLtoVL tables. This step will try to get paths as short as possible.
The methodology performs as many iterations as required in order to get the final set
of paths without introducing mapping conflicts. For this, once route patterns are com-
puted, mapping conflicts are searched. If there is at least a mapping conflict, then the
set of SLtoVL tables are changed accordingly (and manually), and a new iteration is
performed.

Obviously, the computational cost of this procedure is not bounded and could be-
come very high. However, this methodology takes advantage of the fact that once all
the routes are successfully computed, it generates a unique definition of SLtoVL tables
and route patterns that can be used in any 2D Torus regardless of its size. Applying the
methodology to larger networks (once it was successfully applied to a small 2D To-
rus) will exhibit a low computational cost. In particular, the computational cost will be

84 J.M. Montañana et al.

O(n2), where n is the number of nodes. This is because the SLtoVL tables are already
computed for each source-destination pair. Therefore, we only have to apply the route
patterns to obtain the forwarding tables.

4.2 Routing Algorithm and SLtoVL Table Initialization

The methodology assumes a deterministic routing algorithm which guarantees
deadlock-freedom by building an acyclic channel dependency graph (CDG). This is
achieved by enforcing some routing restrictions at the switch level, which prevents
packets from traversing some consecutive links (forbidden transitions).

To do this, an underlying deadlock-free routing algorithm will be used. This routing
algorithm will indicate where the forbidden transitions are placed. In order to increase
the routing flexibility when looking for disjoint paths, the applied routing scheme will
traverse some forbidden transitions. The routing scheme will carry out a virtual lane
transition each time a forbidden transition is traversed. As commented, the proposed
methodology will use only 2 VLs. This means that every routing path can traverse at
most one forbidden transition (i.e. only one virtual lane transition can be carried out
by a packet at most). In addition, virtual lanes must be used in an ordered way (for
example, first VL0, then VL1), in order to avoid cycles.

Thus, the key factor on defining our routing scheme is the selection of the appropriate
underlying routing algorithm. This algorithm should be selected in such a way that it
guarantees obtaining four disjoint paths for every pair of nodes and also it allows the
scalability of the paths (the route patterns are valid regardless of the network size).

For this, we have started from up*/down* routing algorithm [11]. Up*/down* is
based on an assignment of directions (”up” and ”down”) to the links. In our case the la-
beling of links will be slightly different from that performed by the original up*/down*
routing. This assignment of directions is performed by building a certain spanning tree
from the network graph. To do this, the node in the corner is selected as the root. Unlike
original up*/down* routing, which builds a spanning tree from the complete network
graph, the proposed strategy proceeds to remove all the wraparound links of the Torus
before building the BFS spanning tree. Once the BFS spanning tree is built, the wra-
paround links are added, and then we impose a particular set of routing restrictions in
order to break cyclic channel dependencies in the CDG. In particular, we have identified
all the possible cycles that can be formed and proceeded to remove them by imposing
the corresponding routing restrictions. The distribution of the routing restrictions can
be seen in Figure 2.a. Deadlock-freedom is guaranteed by verifying that the resulting
CDG is acyclic.

The main advantage of this algorithm is that, in most places, the orientation of the
routing restrictions is the same, as can be seen in Figure 2.(a), which definitely will
contribute to ease the computation process of SLtoVL tables carried out by the metho-
dology 1.

Notice that this algorithm has not been designed with the aim of providing minimal
paths between every pair of nodes nor minimizing the number of routing restrictions.

1 We tried other routing algorithms, such as e-cube and up*/down*. However they were not able
to provide a scalable methodology using the minimum number of SLs.

A Scalable Methodology for Computing Fault-Free Paths 85

Number of
Links

14

LOCAL

0

13

2

(a)

In Port Out Port SL VLOut
0 1 X N/D
0 2 X N/D
0 3 X 1
1 X X N/D
2 X X N/D
3 0 X 1
3 1 X N/D
3 2 X N/D

local X X N/D
X local X N/D

(b)

Fig. 2. Underlying routing algorithm applied: (a) Imposed routing restrictions, (b) SLtoVL table
initialization for switch 14. N/D means Not Defined

Instead, it is only used as an underlying routing to guarantee deadlock-freedom of the
final routing scheme and provide the symmetry required to simplify the methodology.
Notice that this scheme will be able to provide minimal paths by traversing some for-
bidden transitions and carrying out the corresponding virtual channel transition.

As commented above, the first step of the methodology is to initialize the SLtoVL
tables. In particular, SLtoVL tables must initially contain those entries corresponding
to link transitions (In Port - Out Port) that require performing in turn a virtual lane
transition (i.e., transitions forbidden by the underlying routing algorithm). For instance,
Figure 2.(b) shows the initial SLtoVL table corresponding to a switch in the centre
of the network. The numbering of the links2 is shown in Figure 2.(a). Specifically, the
entries corresponding to link transitions 0 - 3 and 3 - 0 will be forced to use VL1 (shown
in bold face in Figure 2.(b)) because both link transitions are forbidden, as can be seen
in Figure 2.(a).

However, note that setting the SLtoVL table in such a way does not guarantee on
its own deadlock-freedom. In order to enforce deadlock-freedom packets using these
entries should enter the switch exclusively through VL0. This fact must be taken into
account when computing the routing paths. The rest of table entries are not enforced in
this step by the routing algorithm. The methodology will update those entries accordin-
gly in the next step.

4.3 Network Regions and Route Patterns

The second step of the methodology aims at computing a set of route patterns. Route
patterns constitute a kind of templates that can be used to obtain all the disjoint rou-
ting paths between every pair of nodes. A route pattern is defined by a sequence of
movements (e.g., ”go to next switch on the left” or ”go to the left until the column of
destination”) together with a SL. This sequence of movements must be compatible with
the routing scheme applied in order to guarantee deadlock-freedom. Moreover, the SL
must be selected in such a way that mapping conflicts are avoided.

2 This numbering will be used throughout the rest of the paper.

86 J.M. Montañana et al.

0 1

32
(a)

97

3

8

6

54

10 2

(b)

Fig. 3. (a) SPFTR regions (b) A-SPFTR regions in a 2D Torus Networks

Additionally, the methodology defines network regions. A network region will be
formed by neighbour switches with the same SLtoVL table definition. Network regions
are defined taking into account two conditions. The first one is that all the switches in
a region must have the same routing restrictions (this is obvious as they must have the
same SLtoVL table). And, second, in order to help the methodology to scale, the same
distribution of regions should be kept regardless of network size. Figure 3.(a) shows the
final regions defined for the 6 × 6 Torus network. As can be observed, 4 regions have
been defined so that fulfil the conditions referred above. Each of them has a different
SLtoVL table for every switch within the region.

The main advantage of using regions is that it minimizes the number of required
route patterns. Route patterns depend on the regions where source and destination are
located (the same or different) and their relative positions (i.e., they may be located eit-
her in the same row/column or in different rows and/or columns). To generate the route
patterns, we try to obtain four disjoint paths (as short as possible) between every pair
of nodes. To this end, it is necessary to establish the path followed by the pattern (se-
quence of movements) and the SL to be used. The former is accomplished by following
the restrictions imposed by the applied routing algorithm (required VL transitions were
already introduced in the initial SLtoVL tables), thus guaranteeing deadlock-freedom.
The latter is carried out according to the current SLtoVL table entries and the bounded
number of SLs used (4 SLs), checking that mapping conflicts are not introduced.

If it is not possible to obtain a set of valid route patterns, SLtoVL tables must be
slightly updated (manually) and a new try to obtain route patterns will be carried out.
Thus, an iterative process is performed with the two steps until a valid set of route
patterns is found.

Each route pattern must be assigned a SL, checking the corresponding entries in the
SLtoVL tables to verify that mapping conflicts are not introduced.

Table 1 shows the final SLtoVL table for every region. These tables have been com-
puted taking into account the route patterns applied for every source-destination pair.
The contents of the final SLtoVL tables are the same for all the switches belonging to
the same region. According to the defined regions and the possible relative positions of
every pair of nodes, 153 route patterns have been obtained.

A Scalable Methodology for Computing Fault-Free Paths 87

Table 1. SLtoVL tables for every region in 2D Torus network (values imposed by routing restric-
tions in each region are written in bold face, X means any value)

Region 0 Region 1 Region 2 Region 3 Region 0 Region 1 Region 2 Region 3
In Out SL0-1-2-3 SL0-1-2-3 SL0-1-2-3 SL0-1-2-3 In Out SL0-1-2-3 SL0-1-2-3 SL0-1-2-3 SL0-1-2-3
0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 2 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
0 2 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 2 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1
0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 3 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1
1 3 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 3 2 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1

loc. X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 loc. loc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X loc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

path 2 SL0: + 1X + Y − 1X

path 3 SL0: − 1X + Y +1X

path 1 SL0: + Y

path 4 SL2: − 1Y − 2X + (Y +2) + 2X − 1Y

S D

path 3

path 4

path 1

path 2

Y+

X+

DST

DST

DST

DST

Fig. 4. Example of route pattern

To illustrate the process of computing the routing paths from the route patterns, wi-
thout lose of generality, let us consider a pair of switches located in the same row in
region 0 (the relative position of the switches and the regions will determine the pattern
to use). Then, the patterns defined for computing the paths can be shown in Figure 4.
The computed routing paths in a 6 × 6 Torus network can be shown in Figure 5.(a).

As an additional result from the methodology, we have successfully obtained an
alternative set of route patterns and SLtoVL table definition that only requires 2 VLs
and 3 SLs. This has been achieved by sacrificing the scalability in terms of higher
dimensional Torus network, thus being only valid for 2D tori. However, scalability in
terms of number of nodes is guaranteed (see next section). The resulting algorithm will
be referred to as A-SPFTR (Asymmetric scalable patter-based fault tolerant routing).
The regions defined are shown in Figure 3.(b).

5 Extending the Methodology

In this Section we will show how the methodology can be applied to other networks.
In a first effort, the methodology will be extended to larger 2D Torus networks, thus
scaling the methodology. In a second effort, we will extend it to 3D Torus networks.

A larger 2D Torus network can be viewed as a 6 × 6 Torus network with additio-
nal rows and/or columns of switches. These new rows or columns can be placed in the
middle of the Torus network (taking as a reference Figure 3.(a)). Therefore, the new
components will belong to regions 0 and 2 in the case of a column or to regions 0 and
1 in the case of a row. By doing this, the distribution of regions will be the same. The-
refore, SLtoVL tables of new switches will be already defined. Also, the route patterns
to use for every new switch to all the destinations have been already computed as each
switch can use the route patterns of one of its neighbours. As an example, Figure 5.(b)

88 J.M. Montañana et al.

Destination

Source������������������

(a)
(b)

Fig. 5. Example of pattern applied in a (a) 6 × 6 and (b) 7 × 7 Torus network

shows the paths computed for a given pair of switches for a 7 × 7 Torus by using the
patterns shown in Figure 4.

Notice also that A-SPFTR (2 VLs and 3 SLs) also scales. In this case, new rows
could be added along regions 3, 4, 5, and 6, and new columns along regions 1, 5, and 8,
maintaining the same region structure shown in Figure 3.(b).

In order to extend the methodology to n-dimensional Torus, we will use the same
routing algorithm described in Section 4.2. It will define the routing restrictions (Fi-
gure 6.(a) shows an example for a 3 × 3 × 3 Torus network). In particular, for every
plane in the 3D Torus we can find an orientation at which all restrictions are allocated
in the same positions as in the 2D Torus shown in Figure 2.(a).

restriction
routing

Bidirectional

Z

X

Y

(a)

1sw

Only contains one switch1sw

0 1

2 3

4 5

6 7

(b)

Fig. 6. (a) Frontal view of routing restrictions in the plain X-Y of a 3D Torus. (b) SPFTR Regions
in a 3D Torus

Then we can define the SLtoVL table (defining the output VL for each pair of links),
considering that each pair of links can be allocated in a plane and using the SLtoVL
tables for the corresponding 2D plane, as shown in Figure 6.(a). By doing this in all 2D
planes, all the entries for the SLtoVL tables (for the 3D case) will be filled.

A Scalable Methodology for Computing Fault-Free Paths 89

Notice that every pair of links which are in the same direction will be included in
two planes. Therefore, the SLtoVL values for them must be the same in both planes.
That is, SLtoVL tables must be compatible plane by plane. The final regions in a 3D
Torus can be shown in Figure 6.(b).

In the case of a 3D Torus the number of route patterns for each plane will be the same,
then we will have 3 times the quantity of patterns defined for a plane (153 patterns).
Additionally it is needed to add the route patterns for the pair of nodes not included in
the same plane. Finally, the total amount of route patterns is 726.

6 Evaluation

In this section, we will evaluate SPFTR and A-SPFTR. Notice that both models are sca-
lable in size but only SPFTR is scalable in dimensions too. For comparison purposes we
will also evaluate the up*/down* routing scheme. First, we will present the evaluation
model, describing all the simulation parameters and the Torus networks we have used.
Finally, we will present the evaluation results.

6.1 Evaluation Model

We will evaluate the routing algorithms in 2D and 3D Torus networks. We have ana-
lyzed 2D tori with different sizes from 16 switches (4x4) up to 400 switches (20x20).
Also 3D tori will be analyzed, from 64 switches (4x4x4) up to 512 switches (8x8x8).

In the analysis, we will only consider faults of links connecting switches. Note that
a switch failure can be viewed as if all its links had failed. Moreover, a failure in a link
connecting a host to a switch does not change the topology. The number of disjoint paths
depends on the minimum degree of any switch in the network. Therefore, at maximum,
there will be 4 disjoint paths in a 2D Torus (6 in a 3D Torus). Hence, at most, 3 faults
can be tolerated (5 in a 3D Torus). The methodology will also be evaluated in terms
of network performance. In particular, network performance degradation due to faults
will be analyzed when applying the proposed methodology. The network performance
is evaluated using the simulation tool and simulation parameters presented in [7]. The
simulator models an IBA network, following the IBA specifications [6].

6.2 Evaluation Results

Fault Tolerance. We define a singular case as the fault combination that can not be
tolerated by the routing algorithm, while still maintaining the network connected. In
other words, those fault combinations for which the routing algorithm is not able to
obtain a valid path for a particular source-destination pair.

We will evaluate the fault tolerance degree analyzing which combinations of faults
are supported and which are not (singular case), for different amounts of link failures.

Figure 7 shows the percentages of singular cases when using up*/down*, SPFTR,
(results for A-SPFTR are similar to SPFTR) for different number of faults. As can be
observed, SPFTR (same happens for A-SPFTR) do not present any singular case up to
any combination of (2n − 1) faults in n-dimensional tori, as it is able to provide 2n

90 J.M. Montañana et al.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

Pe
rc

en
ta

ge
 o

f
Si

ng
ul

ar
 C

as
es

Number of Fault links

10x10
9x9
8x8
7x7
6x6
5x5

(a)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f
Si

ng
ul

ar
 C

as
es

Number of Fault links

5x5
6x6
8x8

10x10
12x12
14x14
15x15
18x18
20x20

6x6x6
7x7x7
8x8x8

(b)

Fig. 7. Singular cases for (a) Up*/Down* and (b) SPFTR in 2D and in 3D (Maximum of 100.000
fault combination evaluated at each point when number of fault combinations is higher than
100.000)

disjoint paths. Therefore, the methodology is (2n − 1)-fault tolerant with 2 VLs and 4
SLs for n-dimensional tori (SPFTR) or with 2 VLs and 3 SLs for 2D tori (A-SPFTR).
On the other hand, we can see that up*/down* does not tolerate even a single failure.

From four faults and beyond we can see that none of the routing methods is able to
tolerate all the failure combinations. Indeed, for 4 faults in the network, 30% of failure
combinations are not tolerated in the worst case (5x5 Torus network). However, this is
a reasonable fault-tolerance degree taking into account the analyzed network sizes, and
that the mean time between failures is much greater than the mean time to repair.

However, notice that the up*/down* routing algorithm has a pretty worse behaviour.
Practically, all fault combinations, even with one fault, are not tolerated by this algo-
rithm. Also, notice that when a singular case arises the only solution will be to launch a
network reconfiguration process to compute new routing tables.

Length of Paths. Figures 8.(b) and 8.(c) shows the average length of the shortest paths
for the SPFTR, A-SPFTR (for 2D tori) and up*/down* routing, also showing the ave-
rage topological distance between switches. When considering only the shortest path
for every pair of switches (the common case in the absence of failures), SPFTR and
A-SPFTR achieve, on average, shorter paths than up*/down*. Additionally, as network
sizes increases, the difference between the average path length and the average topolo-
gical distance slightly increases. This is due to the fact that only one forbidden transition
is allowed (2 VLs are used) and some route patterns would need to take longer paths
to reach destination. Also, in Figures 8.(b) and 8.(c) we can see for 2D and 3D tori,
respectively, the average lengths of the shortest paths and the average length when the
complete set of alternative paths is considered.

Performance degradation with faults. Figure 8.(a) shows the performance degrada-
tion suffered by the network in the presence of faults when the SPFTR algorithm is
used (similar results have been obtained for A-SPFTR). In the presence of faults every
source node will use the shortest disjoint path that does not traverse any faulty link.

A Scalable Methodology for Computing Fault-Free Paths 91

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0 1 2 3 4 5 6

T
hr

ou
gh

pu
t (

by
te

s/
cy

cl
es

/s
w

)

Number of Fault links

’5x5’
’6x6’
’7x7’
’8x8’

(a)

 0

 5

 10

 15

 20

 25

 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
at

h
L

en
gh

t

Radix

All paths in SPFTR
All paths in A-SPFTR

Shortest paths in Up/Down
Shortest paths in SPFTR

Shortest paths in A-SPFTR
Average Topological distance

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 4.5 5 5.5 6 6.5 7 7.5 8 8.5

A
ve

ra
ge

 P
at

h
L

en
gh

t

Radix

All paths in SPFTR
Shortest paths in Up/Down

Shortest paths in SPFTR
Average Topological distance

(c)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25

C
om

pu
ta

tio
n

tim
e

fo
r

al
l p

at
hs

 (
s)

Radix

(d)

Fig. 8. (a) Degradation of performance with faults for SPFTR and A-SPFTR. (b) Average length
of paths in 2D Torus. (c) Average length of paths in 3D Torus. (d) Computation Cost in 2D Torus.
Radix stands for the number of switches per dimension.

For a particular number of faults, different random combinations of faults are injected.
For every combination of faults the network is simulated, obtaining its throughput and
displaying the average results. Error bars are shown for every number of faults.

As can be observed, throughput decreases as the number of faults increases. Howe-
ver, it can be noticed that performance degradation is relatively lower in larger networks.
For instance, with 6 faulty links, throughput decreases in SPFTR up to 28 % for the 4×4
Torus and a 23 % for the 8 × 8 Torus. This is because the same number of faulty links
affects a lower percentage of paths in larger networks. For up*/down* no results can be
plotted as practically it does not tolerate any failure combination.

Computation Time. Finally, Figure 8.(d) shows the computation time of SPFTR (for
A-SPFTR same results are obtained) for different 2D tori with different sizes. As can
be observed, the computation time grows quadratically with the number of switches in
the network. Notice that only the computation of forwarding tables is required. This is
because SLtoVL tables and route patterns are already computed (tables for 2D Torus
in Table 1). As an example, all routing information for a 20x20 Torus network was
computed in less than 10 seconds using an Intel Xeon 3.06 GHz.

92 J.M. Montañana et al.

7 Conclusions

In this paper, we have proposed a scalable and effective methodology to design fault-
tolerant routing strategies for IBA that is able to provide several disjoint paths between
every source-destination pair, taking advantage of the APM mechanism provided by
IBA. The proposed methodology uses some network resources (VLs and SLs) and gua-
rantees deadlock-freedom by removing cycles in the CDG.

The resulting fault-tolerant routing strategy (referred to as SPFTR) on n-dimensional
Torus networks uses only 2 VLs and 4 SLs, regardless of the network size. Furthermore,
if we focus on 2D tori, the number of SLs required is reduced down to 3 to tolerate up to
2n − 1 link failures. This can be considered an interesting result if we take into account
that the up*/down* routing algorithm is not able to tolerate one single failure.

As future work, we plan to analyze other regular topologies as meshes or Multistage
networks (MINs). We also plan to use this methodology in conjunction with a reconfi-
guration process to support a larger number of failures.

References

1. Abe supercomputer, http://www.ncsa.uiuc.edu/
2. Top500 supercomputer list (June 2007), http://www.top500.org
3. Adiga, N., Blumrich, M., Chen, D., et al.: Blue Gene/L torus interconnection network. IBM

Journal of Research and Development 49 (March 2005)
4. Boden, N.J., et al.: Myrinet: A Gigabit-per-second local area network. IEEE Micro 15(1),

29–36 (1995)
5. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks. An Engineering Approach.

Morgan Kaufmann, San Francisco (2003)
6. Architecture. Specification Release 1.0, InfiniBand Trade AssociationTM (October 2004)
7. Lysne, O., et al.: Simple Deadlock-Free Dynamic Network Reconfiguration. In: 11th Int.

Conference on High Performance Computing (HiPC), December 19-22, 2004, Bangalore,
India (2004)

8. Montañana, J.M., Flich, J., Robles, A., Duato, J.: A Transition-Based Fault-Tolerant Routing
Methodology for InfiniBand networks. In: IPDPS 2004. Proc. of the 2004 Int. Parallel and
Distributed Processing Symp, IEEE Computer Society Press, Los Alamitos (2004)

9. Mukherjee, S., Bannon, P., Lang, S., Spink, D.W.A.: The Alpha 21364 network architecture.
IEEE MICRO (January-February 2002)

10. Petrini, F., et al.: The quadrics network (qsnet): High-performance clustering technology. In:
HotI 2001. Proceedings of the 9th IEEE Hot Interconnects, Palo Alto, California (August
2001) (original version), IEEE Micro January-February 2002 (extended version)

11. Schroeder, M.D., et al.: Autonet: A high-speed, self-configuring local area network using
point-to-point links. Journal on Selected Areas in Comm. 9(8) (October 1991)

http://www.ncsa.uiuc.edu/
http://www.top500.org

Using a Way Cache to Improve Performance of

Set-Associative Caches�

Dan Nicolaescu, Alexander Veidenbaum, and Alexandru Nicolau

Department of Computer Science
University of California Irvine

{dann,alexv,nicolau}@ics.uci.edu

Abstract. Modern high–performance out–of–order processors use L1
caches with increasing degree of associativity to improve performance.
Higher associativity is not always feasible for two reasons: it increases
cache hit latency and energy consumption. One of the main reasons for
the increased latency is a multiplexor delay to select one of the lines in
a set. The multiplexor is controlled by a hit signal, which means that
tag comparison needs to be completed before the multiplexor can be
enabled. This paper proposes a new mechanism called Way Cache for
setting the multiplexor ahead of time in order to reduce the hit latency.
The same mechanism allows access to only one of the tag stores and
only one corresponding data store per cache access, which reduces the
energy consumption. Unlike way prediction, the Way Cache always con-
tains correct way information - but has misses. The performance of Way
Cache is evaluated and compared with Way Prediction for data and in-
struction caches. The performance of the Way Cache is also evaluated
in the presence of a Cached Load/Store Queue, an integrated L0 cache-
Load/Store Queue which significantly reduces the number of accesses to
the L1 cache.

1 Introduction

The increasing gap between processor and memory speeds requires further ad-
vances in cache design to minimize processor stalls due to slower memory. In-
creasing cache associativity is one way to improve the average performance of
the memory system and thus the overall processor performance. Both high-
performance and embedded microprocessors have been steadily increasing the
associativity of their first-level data and instruction caches.

Examples of high-associtivty L1 caches include the Transmeta Crusoe [1]
and Motorola’s MPC7450 [2] in the embedded domain and high-performance
Pentium–M[3] processors, which all use an 8–way set–associative L1 data cache.
The Digital StrongArm and Intel XScale embedded processors have even imple-
mented 32–way set associative caches.

� This work was supported in part by the National Science Foundation under grant
NSF CCR-0311738.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 93–104, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

The increased associativity poses several challenges for processor designers:
an increased access time as well as increased energy consumption. The reason
for both of these is the timing of a cache access.

An access in a set–associative cache is initiated before the cache ”way” con-
taining the requested address is known. All cache ways in a set are therefore
accessed in parallel to reduce the access latency, a critical design parameter.
The timing of the access is as follows: first, a simultaneous access to all N in-
dependent tag arrays of an N-way set–associative cache is performed, followed
by N tag comparisons to generate the hit/miss signal. Access to N data arrays1

is initiated at the same time as the tag access to minimize latency. An N-input
multiplexor is used next to select the desired data array. The multiplexor is
controlled by the tag comparison results and its presence thus delays the data
availability. Accessing N tag and N data arrays even though tag/data may only
reside in at most one array is also the reason for energy inefficiency.

Several mechanisms (discussed in more detail in Section 2) have been proposed
as a way to reduce latency and/or save energy. One such mechanism, way predic-
tion, has been used in high-performance processors [4,5]. The predictor records
the most recently used way for each set and predicts that this way is going to be
accessed again next. Only one way for both tags and data needs to be accessed.
Furthermore, the output multiplexor can be set up in parallel with tag/data
access. A successful tag comparison confirms that the predicted way contains
the requested data, otherwise a standard, parallel N-way lookup is performed
next. Misprediction thus leads to additional delay and energy consumption. In
addition, predictor access delay needs to be hidden.

This paper presents a different mechanism that allows a cache way containing
the desired data to be known before intiating the cache access. This is accom-
plished via a Way Cache (WC), a very small cache of recently observed address-
way mappings. A hit in the WC guarantees that the data is in the cache way the
WC supplied. A miss in the WC can occur for two reasons: a) the data is not
in the cache and the access is going to be a miss, or b) the data is in the cache
but the WC does not have a mapping. In either case a standard, N-way cache
access is initiated. The main advantage of the new approach is that it requires a
single access to the cache and cannot have mis-predictions. In addition, it may
be possible to integrate the WC into the load/store queue (LSQ).

The proposed approach should work well because of locality. That is, a cache
line being accessed is very likely to have been accessed in the recent past. This
paper shows that the Way Cache can be implemented effectively for both data
and instruction Level–1 (L1) caches and that, in addition to reducing access
latency it significantly reduces the L1 cache energy consumption. Its effectivness
increases with cache associtivity thus making it very suitable for next-generation
caches. It is also shown to have higher performance than way prediction for high-
associativity caches because the Way Cache does not have mis–predictions and
the associated additional cache access delays.

1 CAM-based implementations, such as StrongArm and Xscale, access only the desired
data after the CAM tag comparison is completed.

Using a Way Cache to Improve Performance of Set-Associative Caches 95

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes the Way Cache and how it operates. The design of the Way
Cache is described in Section 4. The simulation setup and benchmarks used are
described in Section 5. The Way Cache is evaluated in Section 6 and compared
with the performance of a way predictor in Section 6.1. Section 6.2 examines
the performance of Way Cache in the presence of Cached Load/Store Queue
(CLSQ). CLSQ allows both load and store data to be kept in the LSQ after
corresponding instructions retire. It is thus a type of L0 cache integrated in the
LSQ with little additional hardware cost. CLSQ significantly reduces the number
of L1 cache accesses and alters their reference patterns. Thus it is interesting to
examine its effect on the Way Cache.

2 Related Work

Several approaches, both hardware and software, have been proposed to reduce
the delay and/or energy consumption of set–associative caches.

A phased cache [6] avoids the associative lookup to the data store by first
accessing all N ways of the tag store and then only accessing the desired data
way after the tag comparison completes and indicates the correct way for the
data. This technique has the undesirable consequence of increasing the cache
access latency and has a significant impact on performance. It is not suitable for
high-performance L1 caches, but has been successfully applied to L2 caches [7]
without significant performance impact.

A way–prediction scheme (mentioned above) was first implemented in the
R10000 processor [8] (also described in [6]). It uses a predictor with an entry for
each set in the cache. Each predictor entry stores the most recently used way for
the cache set. On an access only the way returned by the predictor is accessed.
In case of an incorrect prediction the access is restarted, accessing all the cache
ways in parallel. Also, given the required predictor size for large modern L1
caches, it may increase the cache latency even for correct predictions.

Way prediction in L1 I-cache has been implemented by adding a pointer to
the next line/way to each I-cache line [5] or in the branch target buffer [9], but
these mechanisms do not work well in D-caches.

A mixed hardware–software approach was presented in [10]. Tag checks are
avoided by having a compiler output special load/store instructions that use tags
from a previous load. This approach requires changes to the compiler and the
ISA and adds hardware complexity.

3 Way Caching

The goal of this work is to determine before or at the start of a cache access
exactly which way needs to be accessed. This will allow for an energy reduction
as well as reducing the access latency. The latter is possible because the signal
that enables the data output multiplexor (MUX) will be generated very early in
the access and the multiplexor delay reduced. (Note that this may or may not
have an impact on the cycle time.)

96 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

This ”way determination” is accomplished by a Way Cache (WC). The Way
Cache is accessed prior to an L1 cache access using a CPU address. It supplies
the way number where the desired data resides if the WC tag matches the
address. WC access can be overlapped with the LSQ lookup on the data side
or the BTB lookup on the instruction side. A block diagram of the Way Cache
integrated in the data cache system is shown in Figure 1.

To Data Path

Address Way

Way CacheWay Cache

Scheduler/

Cache

Controller

L1

Cache

L1

Cache

MUX

Fig. 1. The Way Cache in the cache hierarchy

The L1 cache address is sent to the Way Cache at the same time it is sent to
the load/store queue for lookup. On a Way Cache hit the WC returns the cor-
responding way number. This way number is used to access only the designated
way in both the tag and data stores.

On a Way Cache miss a standard N–way associative cache lookup is performed
with all N ways accessed in parallel. At the same time a new entry is created in the
WC containing the line address and empty way field. The L1 cache controller up-
dates the entry’s way field when it becomes known and marks the entry valid. All
valid addresses in the WayCache have been previously seenby the L1 cache and the
way information stored in the WC is always correct. This is one of the main differ-
ences between the Way Cache and previously proposed systems using prediction.

Cache lines are accessed repeatedly due to both spatial and temporal locality
and therefore the Way Cache can have a small number entries and still cover
a significant number of accesses. Being small is important for the Way Cache
because it allows for a fast access and small energy overhead. Since the Way
Cache lookup is done in parallel with the LSQ access the Way Cache and the
LSQ should be of similar size and latency to avoid adding extra latency to the
cache access.

4 The Way Cache Design

The proposed Way Cache design is shown in Figure 2. The Way Cache is a small
cache in which an entry contains a line address, way number, and a valid bit.

Using a Way Cache to Improve Performance of Set-Associative Caches 97

Way

Cache Line

Address

Modulo

counter

Cache line

address

Way

LOOKUP

UPDATE

Tag}

{Replacement

logic

} Way store

Valid bit

Fig. 2. The Way Cache structure

The address serves as the tag and the WC is assumed to be fully associative
(due to its small size),

The Way Cache is accessed in two cases: to lookup a way for an address, and
to add (write) a new address–way pair (an operation similar to an “update” in
a predictor).

The WC lookup is like any cache read: given a cache line address the WC
returns a way number for a matching tag (provided the entry is valid). The Way
Cache is written to in two cases: on an L1 cache miss or WC miss and L1 cache
hit. On a WC miss a new WC entry is immediately allocated, the line address
is written to the tag part and the corresponding way number is recorded when
the L1 cache controller determines it. The valid bit is set to true as soon as the
way number is available. If the WC is full, the newly allocated entry replaces
the oldest entry in the WC. The implementation used in this paper determines
the oldest entry by using a modulo counter.

The WC design must address the issue of its coherence with the L1 cache on
L1 line replacement or invalidation. The corresponding WC entry (if it exists)
needs to be marked invalid in such cases. Another approach is to allow the L1
access to proceed using the WC–supplied way and to have a cache miss occur
when the L1 cache tag comparison is performed. Since the way that the WC
points to was the only place the line could have been found at, the L1 tag miss–
match indicates a miss and does not require the search of all other cache ways.
The WC will be updated when the line is allocated again. This is a more energy–
efficient approach than the invalidation and it is used in the design presented
here.

One last comment on the WC design. On the data side the WC performs a
tag compare of a CPU line address which is only a few bits shorter than the
LSQ address tag compare. Since both are performed at the same time after the
address becomes available, the CAM structure can possibly be largely shared.
(43-logN-3) bits of tag can be ”shared” assuming a 43b physical address, N-way
associativity, and a 64Byte line. Way number may then be recorded in the LSQ
to be used when the entry is issued to the cache.

98 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

5 Experimental Setup

The Way Cache was evaluated by implementing the proposed architecture in a
modified SimpleScalar–3.0c simulator [11]. Modifications included support for a
longer pipeline, cached LSQ, and other simulator improvements.

Table 1. Processor configuration

L1 I–cache 32KB, 64 byte/line, 1 cycle

L1 D–cache 32KB, 64 byte/line,
3 cycle, 2 R/W ports

L2 cache 2MB, 8 way, 64 byte/line, 20 cycle

Issue 4 way out-of-order

Branch predictor 64K entry g–share, 4K-entry BTB

Reorder buffer 256 entry

Load/Store Queue 64 entry

Arithmetic Units 4 integer, 4 floating point units

Complex Units 2 INT, 2 FP multiply/divide units

Pipeline 15 stages

The architecture modeled was an aggressive 64–bit high–performance archi-
tecture. The SPECINT2000 benchmark suite was used in performance evalu-
ation (see Table 2). The benchmarks were compiled with the -O4 flag using
the Compaq compiler targeted for the Alpha 21264 processor. The benchmarks
were fast–forwarded for 500 million instruction, then fully simulated for 5 billion
instructions.

The memory hierarchy latencies are 3/20/200 cycles for the L1/L2/memory
accesses, respectively. The details of the processor and system model are given
in Table 1.

The Alpha “Universal NOP” – unop instruction is encoded as a type of load
(ldq u) with destination register ($31). These loads were treated as true NOPs in
the modified simulator and did not perform any LSQ, WC, or L1 cache accesses.

A brief description of the benchmarks used is given in Table 2.

6 Performance Evaluation

This section presents an experimental evaluation of the proposed Way Cache.
Several factors are examined in order to evaluate the potential of the Way Cache:
its hit rate and how it varies with Way Cache size and L1 cache associativity, the
difference in behavior for data and instruction caches, and the impact of cached
LSQ on WC performance.

Figure 3 shows the Way Cache hit rates for 32–, 64–, and 128–entry WCs and
an 8–way set associative L1 data cache. The average hit rates are slightly higher
for integer benchmarks (up to 85%) than for floating–point ones (up to 80%).

Using a Way Cache to Improve Performance of Set-Associative Caches 99

Table 2. Benchmark description

SpecINT Description SpecFP Description

bzip2 Compression applu Partial Differential Equations
crafty Game Playing: Chess apsi Pollutant Distribution
eon Computer visualization art Neural Network
gap Group theory equake Seismic Wave Propagation
gcc C optimizing compiler facerec Face Recognition
gzip Compression fma3d Finite-element Simulation
parser Word processing galgel Computational Fluid Dynamics
perlbmk PERL interpreter lucas Primality Testing
twolf Place and route simulator mesa 3-D Graphics
vortex Object–oriented database mgrid Multi-grid Solver
vpr Circuit place & and route sixtrack Nuclear Physics

swim Shallow Water Modeling
wupwise Quantum Chromodynamics

30

40

50

60

70

80

90

100

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

A
V

G
_
in

t

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

A
V

G
_
fp

32entry 64entry 128entry

Fig. 3. Way Cache hit rate for an 8 way L1 data cache

mcf has the lowest WC hit rate of all SpecINT benchmarks. This benchmark
does a lot of pointer chasing which reduces the DL1 hit rate. More importantly,
it has not been correctly ported for LP64 systems (i.e. systems that store C data
types long and pointer as 64–bit quantities) further gratuitously increasing the
DL1 miss rate. This can be fixed by applying a 6 line change to the benchmark
code, but was intentionally not done in this paper. The art benchmark would
benefit from a high-level compiler transformation that transforms the funda-
mental data structure used by the benchmark from an array of structures to
a structure of arrays. This would greatly improve the DL1 access patterns and
performance. The compiler used in this paper does not make the above trans-
formation, hence the low WC hit rate for this benchmark. The galgel and swim
benchmarks benefit from another high level compiler transformation that sig-
nificantly affects the DL1 access pattern: loop interchange. The fact that this
optimization was not performed for the binaries used here explains the lower
WC hit rates obtained. If the issues enumerated above were to be solved the WC
average performance would be significantly improved.

100 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

It is easy to observe in Figure 3 that the hit rates increase significantly with
the WC size. However, even for the smallest WC, average hit rates of over 76%
(SpecINT) and 73% justify adding a WC to a processor’s D–cache system. A
128–entry WC may be a bit large and possibly not fast enough, but only detailed
VLSI design can determine this. All of the results below only use 32– and 64–
entry WC given that the LSQ used in the processor has 64 entries. Also, only
the INT and FP averages are presented from here on to avoid making graphs
too busy.

66

68

70

72

74

76

78

80

82

84

AVG_int AVG_fp

4w ay-32entry 8w ay-32entry 16w ay-32entry

4w ay-64entry 8w ay-64entry 16w ay-64entry

Fig. 4. Average hit rates for different L1 associativities and WC sizes

One of the main motivations for introducing the Way Cache is the trend to
increase cache associativity in modern processors. Figure 4 shows the average hit
rates for 32– and 64–entry WC and 4, 8 and 16–way associative caches. It can
be observed that the WC hit rates are almost constant with associativity (this
trend is also observed for individual benchmarks). This is very important since
the accuracy of previously proposed way-prediction schemes tends to degrade
with higher associativity. The fact that Way Cache works because of spatial
and temporal locality, which does not vary very much with cache associativity,
explains this trend.

The potential energy savings from using the Way Cache can be estimated as
follows. Most of the L1 cache energy consumption is due to accessing the tag and
data arrays, the rest of the components consume much less. On a Way Cache
hit only the L1 tag and data array for one way in the set are accessed, so the
upper bound on the access energy savings is Access Energy ∗ (N − 1)/(N) (N
being the number of ways). The reason why this is an upper bound is that the
Way Cache itself consumes energy reducing the potential energy savings. Given
that the energy savings are proportional to the WC hit rate, and that the hit
rate is high the L1 cache energy savings obtained by using the Way Cache will
be significant.

Using a Way Cache to Improve Performance of Set-Associative Caches 101

As mentioned in the introduction, the Way Cache also reduces the L1 cache
hit latency because the data output multiplexor can be enabled before the data
access completes. The precise latency reduction can only be determined after
a detailed VLSI design, which is beyond the scope of this paper. The results
presented in this paper do not assume a change in the cache hit time.

6.1 Comparison to Way Prediction

Recall that a major difference between the way predictor and the Way Cache
is that for the former in the case of a mis-prediction the L1 access has to be
repeated, accessing all the L1 cache ways. This costs 2 extra cycles in our model,
one cycle less than full a cache access (no new TLB and LSQ accesses are needed).

Figure 5 shows the average way prediction hit rates for a 4, 8 and 16–way L1
data cache. The hit rates decrease significantly with the increase in associativity.
This puts way prediction at a significant disadvantage when compared to the
Way Cache given the trend of increasing L1 associativity. Way Cache also has
higher hit rates for the 64–entry configuration.

A way predictor incurs a performance penalty on a way prediction miss. Fig-
ure 6 shows the execution time increase for way prediction over the Way Cache.
The performance penalty follows the mis–prediction trend: it increases with in-
creased associativity. For most benchmarks the performance penalty is under
5%, but it can be as high as 25.6% for galgel and 18.7% for mgrid. Way Cache,
not being a predictor, does not incur performance penalties, even on WC misses.

6.2 Way Caching and Cached Load–Store Queue

[12] proposed caching data in a modified Load/Stored Queue called Cached
Load/Store Queue (CLSQ). The CLSQ contains data from both stores still in

60

65

70

75

80

85

AVG_int AVG_fp

4w ay 8w ay 16w ay

Fig. 5. Average way prediction hit rate for different L1 cache associativities

102 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

0

5

10

15

20

25
b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

A
V

G
_
in

t

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

A
V

G
_
fp

4w ay 8w ay 16w ay

Fig. 6. Average way prediction performance degradation vs associativity

execution (as in a standard LSQ) and also data from completed load and store
instructions. The CLSQ address tag is checked prior to an L1 cache access and,
on match, the L1 cache access is avoided and the CLSQ data is used. On average,
the 64-entry CLSQ reduces the number of DL1 accesses by 39% for SpecINT
(up to 60% for bzip2) and 23% for SpecFP (up to 65% for fma3d).

The Way Cache performance needs to be evaluated in a system containing
a CLSQ since CLSQ causes a significant reduction in L1 cache accesses. In
addition, CLSQ use causes a significant change in locality which may affect the
WC behavior (or that of a way predictor, if it was used).

As it turns out, the WC hit rate actually increases in all situations, especially
for the SpecFP benchmarks, with better hit rates for higher associativities. This
shows that even though the CLSQ significantly alters the memory reference
patterns, the Way Cache still works very well. The WC obtains good performance
in conjunction with CLSQ (and perhaps other devices that try to accomplish
the same goal).

Both the CLSQ and the Way Cache use addresses as tags, thus it may be
possible to unify the two structures in order to reduce the area overhead. A
future study will try to design a hybrid CLSQ–Way Cache structure.

6.3 Way Caching for the I-Cache

Given the success shown by the Way Cache for data cache, it is interesting to see
if it works well with the instruction cache. The WC can be performed in parallel
with BTB access in the pipeline and should not incur time delay. It is therefore
assumed here that adding either a WC or a way predictor to the I–cache does not
change the timing. Given the sequential nature of I–cache accesses, it is assumed
that the I–cache controller can avoid doing “classical” associative accesses to the
I–cache for consecutive instruction references that do not cross line boundaries.
This reduces the number of times the WC or way predictor need to be accessed
to an average of 9% of the instructions for SpecInt and 11% for SpecFP.

Figure 7 shows the average accuracy of the Way Cache and way predictor
for an 8–way instruction cache. The 64–entry WC performs better that the way

Using a Way Cache to Improve Performance of Set-Associative Caches 103

65

70

75

80

85

90

AVG_int AVG_fp

32entry WC 64entry WC w pred

Fig. 7. Way Cache and Way Prediction hit rates for an 8–way I–cache

predictor. It thus has the potential to provide energy savings and performance
improvement for instruction cache.

7 Conclusions

This paper presented the design and evaluation of the Way Cache, a device that
can be used to reduce the associative cache access latency and energy usage.
The Way Cache is not a predictor and thus does not suffer from delay penal-
ties in case of mis–prediction. The Way Cache has an important property: its
performance improves with the increase in associativity, which continues to in-
crease in current and future processors. Way prediction becomes less effective
with increased associativity.

The Way Cache was shown to be highly accurate in supplying way infor-
mation, especially as its size increases to 64 or even 128 entries, which is still
quite small for a cache size even if fully–associative. The WC access latency can
be completely overlapped with other CPU activities, such as the LSQ access
for data or the BTB access for instructions. It was suggested that the WC can
perhaps be integrated in the LSQ. The WC is even effective after the memory
reference stream has been significantly altered by using the cached LSQ.

The Way Cache was shown to be effective for the instruction cache as well.
Future work will furhter study the integratation of the Way Cache in the I–cache
system.

Use of a larger Way Cache has shown that there is further potential for im-
provement. Finding methods to only put in the Way Cache addresses that are
more likely to be referenced in the future and using a better replacement policy
are future directions of research.

104 D. Nicolaescu, A. Veidenbaum, and A. Nicolau

References

1. Klaiber, A.: The technology behind Crusoe processors. Technical report, Transmeta
Corporation (2000)

2. Motorola: MPC7450 RISC Microprocessor Family User’s Manual (2001)
3. Intel: Intel Pentium M Processor Datasheet (2003)
4. Yeager, K.C.: The MIPS R10000 superscalar microprocessor. IEEE Micro 16, 28–40

(1996)
5. Kessler, R.E.: The Alpha 21264 microprocessor. IEEE Micro 19, 24–36 (1999)
6. Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-associative cache for high

performance and low energy consumption. In: ACM/IEEE International Sympo-
sium on Low Power Electronics and Design, pp. 273–275. IEEE Computer Society
Press, Los Alamitos (1999)

7. McNairy, C., Soltis, D.: Itanium 2 processor microarchitecture. IEEE Micro 23,
44–55 (2003)

8. MIPS Technologies, Inc.: MIPS R10000 Microprocessor User’s Manual Version
2.0.(1996)

9. Tang, W., Veidenbaum, A., Nicolau, A., Gupta, R.: Simultaneous way-footprint
prediction and branch prediction for energy savings in set-associative instruction
caches. In: IEEE Workshop on Power Management for Real-Time and Embedded
Systems (2001)

10. Witchel, E., Larsen, S., Ananian, C.S., Asanovic, K.: Direct addressed caches for
reduced power consumption. In: Proceedings of the 34th Annual International Sym-
posium on Microa rchitecture (MICRO-34) (2001)

11. Burger, D., Austin, T.M.: The SimpleScalar tool set, version 2.0. Technical Report
TR-97-1342, University of Wisconsin-Madison (1997)

12. Nicolaescu, D., Veidenbaum, A., Nicolau, A.: Reducing data cache energy con-
sumption via cached load/store queue. In: Proceedings of the 2003 International
Symposium on Low Power Electronics and Design, pp. 252–257. ACM Press, New
York (2003)

Design of Fast Collective Communication

Functions on Clustered Workstations with
Ethernet and Myrinet�

Dongyoung Kim and Dongseung Kim

Department of Electrical Engineering
Korea University

Seoul, 136-701, Republic of Korea
Telephone nos.: +82 2 3290 3232(voice); Fax: +82 2 928 8909

dkim@classic.korea.ac.kr

Abstract. In cluster computing, current communication functions un-
der MPI library are not well optimized. Especially, the performance is
worse if there are multiple sources and/or destinations involved, which
are the cases of collective communication. Our algorithms uses multidi-
mensional factorization and pairwise exchange communication/dissemi-
nation methods to improve the performance. They deliver better per-
formance than previous algorithms such as ring, recursive doubling and
dissemination algorithms. Experimental results show the improvement
of 50% or so over MPICH version 1.2.6 on a Linux cluster.

Keywords: cluster computing, MPI, broadcast, message passing com-
munication.

1 Introduction

Message passing is performed to efficiently exchange data among parallel/ dis-
tributed computing processors (or nodes). However, the operation is usually
slow compared to recent high-performance CPUs, and the overall execution
time of parallel programs is critically dependent on the speed of interprocessor
communication[7,8]. A great deal of efforts has been made to improve the com-
munication performance in areas of interconnection network, switching method,
routing algorithm, and system communication kernel. For programmers, the ex-
ecution performance relies on software writing since they write parallel pro-
grams using standardized communication functions such as those supported
by PVM[4] or MPI[5]. However, the collective communication functions like in
MPI Bcast[11] have shown poor performance because of naive implementation.
For this reason, many programmers have often written their own collective com-
munication routines using point-to-point communication functions.
� This research was supported by Korea Science and Engineering Foundation(grant

no.: R01-2001-0341-0). Preliminary results of the paper are to appear at Int. Conf.
on Parallel and Distributed Systems, July 22, 2005.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 105–116, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

106 D. Kim and D. Kim

To improve MPI collective communication functions, we develop new MPI func-
tions based on factorization and pairwise-exchange dissemination algorithms.
Among a complete set of MPI collective communication functions, we focus only
on allgather, and then extend the algorithm to apply to broadcast and allreduce.
This is because allgather consists of common procedure of other collective
communication.

2 Communication Model and Collective Communication

Instead of general model of parallel computation, we focus on cluster computers
for practical purpose. They consist of distributed-memory parallel computing
nodes, and each node has one computational processor indexed from to P − 1.
We assume that the time taken to send a message between any two nodes can be
modeled as α + nβ, where α is the start-up time per message, β is the transfer
time per bytes, and n is the number of bytes transferred. The time taken is
independent of the distance between the communication nodes, and the network
is fully connected. When the communication requires arithmetic operations in
reduction, the cost is denoted by γ. In parallel computation, the communica-
tion is usually performed by send and receive, with one sender and one receiver,
which are called point-to-point communication. However, collective communi-
cation functions are frequently used such as broadcast and reduce that invoke
multiple senders, multiple receivers, or both. For simplicity, we consider the case
of collective operations where all processors take part in the communication as
either senders or receivers. Broadcast gives out a common message from a sender
to all other processors. Scatter is to send a private message from a singe sender
to the respective receivers. Gather is to collect an individual message from each
sender at a single receiver, whereas reduce performs a designated arithmetic op-
eration onto the gathered data to draw one resultant data. Allgather is to send
an individual message from each sender to all receiver processors, whereas allre-
duce performs a designated arithmetic operation on the gathered data to find
a set of resultant values, then it is sent to all processors. allgather is important
since it includes core communication procedures of other collective communica-
tion functions such as scatter, gather, broadcast, all-to-all broadcast, allreduce,
etc. Thus, we like to focus on the algorithmic details and the ways to imple-
ment allgather. Let P, n, and M denote the number of processors, the integrated
message size for collective communication, and the message size of one proces-
sor. Each processor and each message are distinguished by their indexes. For
example, initial messages of P processors of P0, P1, · · · , PP−2, PP−1 for gather
operations are respectively M0, M1, · · · , MP−2, MP−1 where Mi is stored at pro-
cessor i (Pi). For simplicity we also assume that processors have messages of
equal length if applicableWe will use the relationship M · P = n. If necessary,
we assume P = 2k, where k is an integer. The indexes of the communication
partners are usually found by addition or subtraction to the sender/receiver ids
with modular-P arithmetic to avoid out-of-range value.

Design of Fast Collective Communication Functions 107

3 Previous Implementation of Collective Communication

Three algorithms are reported previously to improve the performance. Ring,
recursive doubling, and dissemination algorithms are introduced below.

In the old MPICH version, messages of each processor travel along a virtual
circle of processors. Each processor Pi sends a copy of size-M data received
from Pi−1 in the previous step to Pi+1 which was originated from Pi−1, and
receives a size-M message from Pi−1 which is a copy of Mi−2. This action
continues like a pipeline operation until all processors have P · M messages,
M0, M1, · · · , MP−2, MP−1. The total number of steps of this ring algorithm[14]

is P −1, and the execution time taken is
P−1∑
k=1

(
α +

1
P

nβ

)
= (p − 1)α+

P − 1
P

nβ.

Recursive doubling. Algorithm [7] is used in the version of MPICH 1.2.5 to
implement allgather. We assume that there are P = 2k processors for some
integer k. In the first step, each two adjacent processors (groups) exchange
their messages. Thus, P0&P1, P0&P1, · · · , PP−2&PP−1 are the pairs to exchange
messages. In the following steps, new groups are created to include twice the
processors in the previous step, and intergroup message exchange is performed
between each two adjacent groups. For example, in step 2, there will be P/2
groups G0 (P0, P1) , G1 (P2, P3) , G2 (P4, P5) , G3 (P6, P7) , · · · and P0&P2, P1&P3,
P4&P6, P5 &P7, · · · are the pairs to exchange their data of size-2M which include
their own data as well as another from its partner. In a similar manner, in the j-th
step there are 2j−1 processors in each group, and the size of data to exchange is
2j−1 ·M . In this way, all processors collect all data with the size P ·M of in log P

steps. The total time in this case is
log P∑
k=1

(
α +

2k−1

P
nβ

)
= log Pα +

P − 1
P

nβ.

If P is not a power of 2, additional communication process (post processing) is
needed [1].

Dissemination algorithm. For the allgather is based on dissemination bar-
rier algorithm [6]. In the first step, Pi sends Mi to P(i+1) mod P and receives
M(i−1) mod P from P(i−1) mod P . Note that this communication is not an ex-
change between a pair of processors, but is composed of a send to one pro-
cessor in the right (in circular way), and a receive from one in the left. In
the second step, each Pi sends Mi + M(i−1) mod P to P(i+2) mod P , and receives
M(i−2) mod P + M(i−3) mod P from P(i−2) mod P . In the j-th step, Pi sends a mes-
sage of size 2j−1 ·M to P(i+2j−1) mod P . The communication repeats log P times.
If the number of processors is not a power of two, an additional step is needed
in which each processor sends a message whose size is

(
P − 2�log P�) · M to its

partner processor that has not received complete data yet. The total time taken

by this method is given by
�log P�∑

k=1

(
α +

2k−1

P
nβ

)
= �log P �α +

P − 1
P

nβ. It has

the smallest number of steps for allgather without using pairwise-exchange [1].

108 D. Kim and D. Kim

4 New Algorithms

A new method called factorization has been reported simultaneously by E.Chan
et al.[2] and Kims[8]. After factoring the number of processors, they logically
form a multidimensional mesh, and messages are propagated dimension-by-
dimension using proper communication algorithms selected according to message
length for best performance in the cluster computer.

In factorization algorithm, the number of processors P should be factorized,

i.e. P =
k∏

i=1

Pi , where Pis are some integers. When the factorized groups ex-

change data, various algorithms such as ring, dissemination, or recursive doubling
can be applied. For simplicity and regularity, only ring algorithm is used in this
analysis. Processors are logically configured such as c × b × a for c ≤ b ≤ a.
The factor 2(two) is advantageous since more data can be exchanged in one step
by pairwise-exchange. In the first step, each group consists of a processors and
there are c × b groups. a · M data in each group are collected(all-gathered) in-
ternally. The merge is done by ring algorithm in this step. In the second step,
there will be c groups where each group consists of b × a processors. Like in
the previous step, b · (a · M) data are merged within each group. The group-
ing and merging continues until all processors get the complete merged data of
M0, M1, · · · , MP−2, MP−1. When the factor is 2, pairwise-exchange is used in
merging that gives better performance in TCP/IP protocol using than a send
and a receive operations. Figure 1 shows an example of factorization for 12
processors where processors are partitioned into three dimensional (2 × 2 × 3)
groups. The total time taken is

P1−1∑
i=1

(
α+ 1

P nβ
)
+

P2−1∑
i=1

(
α + P1

P nβ
)
+

P3−1∑
i=1

(
α + P1P2

P nβ
)
+· · ·+

Pk−1∑
i=1

(
α + P

PPk
nβ

)

=
k∑

i=1

(Pi − 1)α + (P1−1)+(P1P2−P1)+(P1P2P3−P1P2)+···+(P−P1P2···Pk−1)
P nβ

=
k∑

i=1

(Pi − 1)α + P−1
P nβ .

We may use dissemination algorithm instead of ring algorithm in data merging
steps. The time in this case is

�log P1�∑
m=1

(
α + 2m−1

P nβ
)

+
�log P2�∑

m=1

(
α + 2m−1P1

P nβ
)

+ · · · +
�log Pk�∑

m=1

(
α + 2m−1P

PPk
nβ

)

=
k∑

i=1

�log Pi�α + P−1
P nβ .

Design of Fast Collective Communication Functions 109

If we apply both ring algorithm (k times) and dissemination algorithm (l times)

in P =
k∏

i=1

Pi ·
l∏

j=1

Pj to maximize the performance, the total time becomes

k∑
i=1

�log Pi�α +
l∑

j=1

(Pj − 1)α +
P − 1

P
nβ.

The performance of factorization algorithm is dependent on k (the number

of factors), where P =
k∏

i=1

Pi. Greater k will reduce the iteration steps, thus

the communication overhead shrinks due to reduced α term. When P is not
factored or the current factors are not good enough, we may add some dummy
processors or subtract a part of P before applying the algorithm. Suppose we
add Pα processors to yield the total number of processors Q to be factorized.
Factorization algorithm applies as before on Q processors (for example, if the
number of processors is 15, Q is 16 Pα with of 1). If we use ring algorithm in every

steps, the total time taken by this approach for Q =
k∏

i=1

Qi is
Q1−1∑
i=1

(
α + 1

P nβ
)
+

Q2−1∑
i=1

(
α + Q1

P nβ
)

+ · · · +
Qk−1∑
i=1

(
α +

∐k
j=1 Qj

1
P nβ

)
=

k∑
i=1

(Qi − 1)α + Q−1
P nβ.

Another way to have greater partitions of factorization is to use smaller value
Q by removing a few processors from P . For example, if P = 17, Q is 16 and, Pb

is 1. The compensation is performed at the end for the removed processors. Fac-
torization algorithm is applied to Q processors in the same way on Q processors
as before, then, proper communication follows for the excluded Pb processors.
For some collective communication functions like broadcast, however, the com-
pensation can be ignored or reduced.. If we use ring algorithms at every step,

the total time taken by this approach for Q =
k∏

i=1

Qi is

Q1−1∑
i=1

(
α+ 1

P nβ
)
+

Q2−1∑
i=1

(
α+ Q1

P nβ
)
+· · ·+

Qk−1∑
i=1

(
α +

∐k
j=1 Qj

1
P nβ

)
+ T (n, Pb) =

k∑
i=1

(Qi − 1)α + α + Q−1
P nβ + T (n, Pb)

Pairwise-exchange dissemination algorithm
This algorithm follows the core pattern of dissemination algorithm in the imple-
mentation of allgather as before. However, the actual data communication is per-
formed by pairwise-exchange instead of previous send-to-the-right and receive-
from-the-left pattern. It utilizes efficient communication function that minimizes
the overhead in the previous send-to-one and receive-from-another by exchange
within a pair of processors. The way of partitioning and communication differs
whether or not P is even.

110 D. Kim and D. Kim

Suppose P is an even number. In the first step, P processors are parti-
tioned into two equal sized groups, GL

(
P0 : Pk/2−1

)
and GR

(
Pk/2 : Pk

)
. Pi

in GL exchanges Mi with Pi+P/2 in GR (Refer to Figure 2 for 12 processors).
In the second step, Pi in GL exchanges 2 · M data composed of both Mi of
its own and M(i+1) mod (P/2) from the previous communication partner with
PP/2+(i+1) mod (P/2) in GR. In each step k, Pi exchanges 2k−1 · M data with

processor
P

2
+

(
i + 2k−1 − 1

)
mod

P

2
.

Fig. 1. Example of factorization applied to 12 processors

This pattern of communication repeats log P times. More formal description
is given in Figure 4. The sendrecv here is a combined function of both send and
receive between two processors. If P is not a power-of-two, an additional step is
needed, in which each processors sends additional (P − 2�logP �) ·M data to the
corresponding destination and to fill up the yet-to-be-received part. The total

time taken by this approach is given by
�log P�∑

k=1

(
α +

2k−1

P
nβ

)
= �log P �α +

P − 1
P

nβ.

Design of Fast Collective Communication Functions 111

Fig. 2. Allgather using pairwise-exchange dissemination algorithm for 12 processors
Shading/color represents the data movement at the corresponding step

Now, if P is odd, we apply both pairwise-exchange dissemination algorithm
and general dissemination algorithm in two partitions, respectively. In the first
stage, the processors are partitioned into two nearly equal sized groups
GL

(
P0 : P�P/2�

)
(with even processors) and GR

(
P�P/2�+1 : PP

)
(with odd pro-

cessors) respectively like shown in Figure 3. Because the execution in the even
number of processors is superior to one in the odd number of processors, the
group with even processors uses pairwise-exchange dissemination algorithm in
GL

(
P0 : P�P/2�

)
, and the odd sized group adopts general dissemination algo-

rithm in GR

(
P�P/2�+1 : PP

)
. In the second stage, each processor in two groups

except the root processor exchanges their own data with its partner processor.
Finally, a root processor receives the remaining required data of size �P/2� ·
M from any other processor (This last stage can be ignored for broadcast
because a root processors has already all data). The total time needed by

this approach consists of three parts,
�log�P/2��∑

k=1

(
α +

2k−1

P
nβ

)
, which is the

time to communicate within each group, and α + �P/2�
P nβ, which is the time

112 D. Kim and D. Kim

Fig. 3. Allgather using pairwise-exchange dissemination algorithm for 7 processors

to communicate by pairwise-exchange between two groups, and α + �P/2�
P nβ,

which is the time to send data to the root processor. The summation results
�log�P/2��∑

k=1

(
α + 2k−1

P nβ
)

+ α + �P/2�
P nβ + α + �P/2�

P nβ =

�log(P − 1)�α + P−1
P nβ + P−1

2P nβ.

5 Experiments and Discussion

New algorithms have been implemented and run to compare to old functions in
MPICH 1.2.6, ring algorithm, and dissemination algorithm. The parallel system
used in the experiments consists of a cluster with 16 nodes where each node
has a 1GHz AMD processor, a 30GB local disk, and 256MB main memory. All
nodes are logically fully connected by Fast Ethernet and Myrinet switches. With
TCP protocol in the ethernet, messages can be sent and received simultaneously
if they do not exceed the buffer size (The usual buffer size is 16K Bytes to
64K Bytes, but it depends on various factors like the feature of network card,
switch, system kernel, and so on [3,10]). If the message size is greater than the
threshold, i.e. the buffer size, it cannot be sent and received simultaneously any-
more not to overflow the buffer [12]. Below the threshold, messages can be sent
and received simultaneously with full performance. When the communication is
performed only on two processors (this is the case of using pairwise-exchange
communication), the bandwidth shows the peak since the communication over-
head is minimized due to optimizing the exchange by piggybacking data on ACK
packets [1]. These phenomena may not exist in Myrinet. Thus, to compare the
algorithmic performance under different networks, both ethernet and Myrinet
switches are employed in the experiments.

Design of Fast Collective Communication Functions 113

Fig. 4. Allgather performance in Fast Ethernet with 64K, 256K, and 1M bytes

Fig. 5. Allgather performance in Myrinet with 64K, 256K, and 1M bytes

In the experiments, the overall sizes of the messages are measured by those
contributed by each processor in a run. Thus, if the message size per processor
is 256K bytes and if we use 4 processors, the total data accumulated at the

114 D. Kim and D. Kim

Fig. 6. Broadcast performance under Fast Ethernet

Fig. 7. Broadcast performance with Myrinet

end of allgather is 1M bytes. The data sizes of 64K, 256K, and 1M bytes are se-
lected to represent short, mid-size, and long messages, respectively. In the graphs,
”MPICH”, ”Ring” and ”Dissemination” denote the functions in MPICH 1.2.6,

Design of Fast Collective Communication Functions 115

ring algorithm, and dissemination algorithm respectively. ”Factorization” means
factorization algorithm and ”Pairwise dissemination” does pairwise-exchange
dissemination algorithms.

Figure 4 shows the execution times of allgather on the fast ethernet cluster. Note
that the figures are drawn with different scales in the Y axis. The performance of
short message exchange improves due to minimizing the overhead in start-up time
accumulation. The best algorithm of allgather is pairwise exchange dissemination
algorithm that requires only log P steps, and MPICH is the worst since due to no
performance optimization since it was implemented quite a few years ago.

The communication time of allgather for long messages is dependent on the
bandwidth term. Pairwise-exchange dissemination algorithm is the best because
it employs pairwise-exchange communication in all stages of communication.
Factorization algorithm that executes with partitioning of the processors shows
the second best performance. Dissemination and ring algorithms, however, give
poor performance because they do not lessen the start-up overhead of the point
to point communication, or they can not shorten the number of iterations and
minimize TCP traffic. Similar performance results can be observed in broadcast.

Figure 5 shows the execution times of allgather under Myrinet. They show quite
different results compared to ethernet except for MPI library function. Ring al-
gorithm performs better than the new algorithms since the overhead in each mes-
sage communication is minimized, and ring-like message propagation is not so bad
compared to ethernet communication because Myrinet uses firmware or hardware
to enhance those communication. Hence, our algorithms are not the best.

Figures 6 and 7 compare the performance of broadcast using ethernet and
Myrinet. When using ethernet cluster, new algorithms are more advantageous for
collective communication. However, similar to previous results of allgather, more
complex algorithms to reduce the overhead may not improve the performance
much under Myrinet. Also in this case, since broadcast employed in MPICH
1.2.6 does not use scatter and gather, it shows good performance.

6 Conclusions and Future Work

This paper reports new collective communication algorithms with comparisons
of their performance with previous ones. We verify analytically and experimen-
tally that they consistently perform better. More research is under progress to
expand the cluster size and to include other types of networks. Other collective
communication functions like all-to-all type functions will be included in the
enhancement soon.

References

1. Benson, G., Chu, C., Huang, Q., Caglar, S.: A comparison of MPICH allgather
algorithms on switched networks, Recent advances in Parallel Virtual Machine
and Message Passing Interface, 10th European PVM/MPI Users’ Group Meeting.
In: Dongarra, J.J., Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel
Virtual Machine and Message Passing Interface. LNCS, vol. 2840, pp. 335–343.
Springer, Heidelberg (2003)

116 D. Kim and D. Kim

2. Chan, E., Heimlich, M., Purkayastha, A., Geijn, R.: On Optimizing Collective
Communication. In: Proceedings of 2004 IEEE International Conference on Cluster
Computing, San Diego, USA, pp. 145–155 (September 2004)

3. Farrell, P., Ong, H.: Factors involved in the performance of computations on Be-
owulf clusters. Electronic Transactions on Numerical Analysis 15 (2003)

4. Geist, A., et al.: Parallel Virtual Machine, A User’s Guide and Tutorial for Net-
worked Parallel Computing. MIT Press, Cambridge (1994)

5. Gropp, W., Lusk, E., Dose, N., Skjellum, A.: A High-Performance, Portable Im-
plementation of the MPI Message Passing Interface Standard

6. Hensgen, D., Finkel, R., Manber, U.: Two algorithms for barrier synchronization.
International Journal of Parallel Programming 17(1), 1–17 (1988)

7. Hwang, K.: Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill, New York (1993)

8. Kim, D., Kim, D.: Fast Broadcast by the Divide-and-Conquer Algorithm. In: Pro-
ceedings of 2004 IEEE International Conference on Cluster Computing, San Diego,
USA, pp. 487–488 (September 2004)

9. Lee, K., Yoon, I., Kim, D.: Fast broadcast by message segmentation. In: Pro-
ceedings of 1999 Parallel and Distributed Processing Techniques and Applications,
Monte Carlo Resort, Las Vegas, Nevada, USA, June 28 - July 1, 1999, pp. 2358–
2364 (1999)

10. MPI and Embedded TCP/IP Gigabit Ethernet Cluster Computing, 27th Annual
IEEE Conference on Local Computer Networks (LCN 2002), 6 - 8 November 2002,
pp.733–734 (2002)

11. MPICH - A protable implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich

12. Pallas MPI Benchmarks - PMB, Part MPI-1. http://www.pallas.com
13. Sistare, S., Varrt, R., Loh, E.: Optimization of MPI collective on clusters of large-

scale SMPs. In: Proceedings of SC99: High Performance Networking and Comput-
ing (November 1999)

14. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH, Argonne National Laboratory

http://www.mcs.anl.gov/mpi/mpich
http://www.pallas.com

Dynamic Load Balancing in MPI Jobs

Gladys Utrera, Julita Corbalán, and Jesús Labarta

Departament d’Arquitectura de Computadors (DAC)
Universitat Politècnica de Catalunya (UPC)

{gutrera,juli,jesus}@ac.upc.es

Abstract. There are at least three dimensions of overhead to be con-
sidered by any parallel job scheduling algorithm: load balancing, syn-
chronization, and communication overhead. In this work we first study
several heuristics to choose the next to run from a global processes queue.
After that we present a mechanism to decide at runtime weather to ap-
ply Local process queue per processor or Global processes queue per job,
depending on the load balancing degree of the job, without any previous
knowledge of it.

1 Introduction

Scheduling schemes for multiprogrammed parallel systems can be viewed in two
levels. In the first level processors are allocated to a job, in the second, processes
from the job are scheduled using this pool of processors. When having more
processes than processors allocated to a job, processors must be shared among
them.

We will work on message-passing parallel applications, using the MPI [16] li-
brary, running on shared-memory multiprocessors (SMMs). This library is world-
wide used, even on SMMs, due to its performance portability on other platforms,
compared to other programming models such as threads and OpenMP and be-
cause it may also fully exploit the underlying SMM architecture without care-
ful consideration of data placement and synchronization. So the question arises
whether to map processes to processors and then use a local queue on each one,
or to have all the processors share a single global queue. Without shared memory
a global queue would be difficult to implement efficiently [8].

When scheduling jobs there are three types of overhead that must be taken
into account: load balance, to keep the resources busy, most of the time; synchro-
nization overhead, when scheduling message-passing parallel jobs; and commu-
nication overhead, when migrating processes among processors losing locality.

Previous work [24] has studied the synchronization overhead generated when
scheduling processes from a job need to synchronize each other frequently. It
proposes a scheme based on the combination of the best benefits from Static
Space Sharing and Co-Scheduling, the Self-Coscheduling. The communication
overhead is also studied in [25] when applying malleability to MPI jobs. In this
work we present a mechanism, the Load Balancing Detector (LDB), to classify

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 117–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 G. Utrera, J. Corbalán, and J. Labarta

applications depending on their balance degree, to decide at runtime the appro-
priate process queue type to apply to each job, without any previous knowledge
of it.

We evaluate first several heuristics to decide the next process to run from the
global queue depending on the number of unconsumed messages, the process
timestamp, the sender process of the recently blocked or the process executed
before the recently blocked one if it is ready. We obtained the best performance
when selecting the sender process of the recently blocked process or if is not
possible the one with the greater number of unconsumed messages.

When a process from a parallel job arrives to a synchronization point and can-
not continue execution, we do blocking immediately and then context switching
to a process in the ready queue. We present a novelty ratio to estimate load
balance from a job by observing the coefficients of variation of the number of
context switches and the user execution times, among processes. We constructed
an algorithm that calculates these at runtime, and after deciding the type of ap-
plication (balanced or imbalanced), applies immediately the appropriate type
of queue. Results show that we obtained better performance when choosing the
appropriate queue type at runtime, than applying a predefined queue type to all
the applications without taking into account their balance degree.

The rest of the paper is organized as follows. In Section 2 we discuss the related
work. Then in Section 3 the execution framework and in Section 4 follows the
scheduling strategies evaluated. Section 5 describes the proposal of this paper.
Section 6 shows the performance results and Section 7 the conclusions and the
future work.

2 Related Work

There is a lot of work in this area; here we mention some work related to imple-
mentations of local and global queues from the literature.

Using local queues of processes at each processor is a natural approach for
distributed memory machines. It is also suitable to shared memory machines as
there is some local memory as well. Provided that only one processor will use each
local queue, there won’t be no contention and no need to locks. However there
must be a decision where to map processes to processors and how to schedule
them to satisfy the communication requirements to minimize the synchronization
overhead.

There is an interesting and extensive discussion about using local and global
queues in [8]. Local queues have been used in Chrysalis [14] and Psyche [19]
on the BBN Butterfly. The issue involved in the use of local queues is load
balancing, by means of migrating processes after they have started execution.
The importance of load balancing depends on the degree of imbalance of the
job and hence of the mapping. Then a scheduling algorithm must ensure the
synchronization among processes [24][2][18][3][17][9]. There is also an interesting
proposal in [5] where they do load balancing by creating threads at loop level.

Dynamic Load Balancing in MPI Jobs 119

A global queue is easy to implement in shared memory machines. It is not the
case for distributed systems. The main advantage of using such queues is that
they provided automatic load balancing or named load sharing as in [8]. How-
ever this approach suffers from queue contention [1], lack of memory locality and
possible locks overhead, which is eliminated local per-processor, thereby reduc-
ing synchronization overhead. Other work in process scheduling has considered
overhead associated with reloading the cache on each context switch when a
multiprocessor is multiprogrammed. [21] argued that if a process suspends exe-
cution for any reason, it should be resumed on the same processor. They showed
that ignoring affinity can result in significant performance degradation. This is
discussed also in [26].

Global queues are implemented in [6]. Here they implement a priority queue
based on the recent CPU usage plus a base priority that reflects the system load.
However this issue is not crucial as in most cases the cache is emptied after a
number of other applications have been scheduled [12].

A combined approach is implemented in [7], where at each context switch a
processor would choose the next thread to run from the local queue or the global
queue depending on their priority.

About job classification at runtime there is a work in [10], where they clas-
sify each process from a job and varying the working set when applying gang
scheduling.

3 Execution Framework: Resource Manager (CPUM)

Here we present the characteristics of our resource manager that is the Cpu
Manager (CPUM). It implements the whole mechanism to classify applications
depending on their balance degree and takes all the necessary actions to apply the
appropriate queue type to each job. It also is in charge of deciding the partition
size, the number of folding times depending on the maximum multiprogramming
level (MPL) established, the mapping from processes to processors.

The CPUM is a user-level scheduler developed from a preliminary version
described in [15]. The communication between the CPUM and the jobs is done
through shared memory by control structures.

In order to get control of MPI jobs we use a dynamic interposition mechanism,
the DiTools Library [20]. This library allows us to intercept functions like the
MPI calls or a system call routine which force the context switch among process
and is invoked by the MPI library when it is performing a blocking function.

All the techniques were implemented without modifying the native MPI li-
brary and without recompilation of the applications.

The CPUM wakes up periodically at each quantum expiration and examines
if new jobs have arrived to the system or have finished execution, updates the
control structures and if necessary depending on the scheduling policy, redis-
tributes processors, context switch processes by blocking and unblocking them
or change based on the mechanism proposed in this article the process queue
type to each job.

120 G. Utrera, J. Corbalán, and J. Labarta

4 Processor Sharing Techniques Evaluated

In this section we describe the main characteristics of each scheme used for the
evaluation as well as the LDB.

4.1 Local Queues

As the number of processors assigned to a job could be less than its number of
processes, there may be a process local queue at each processor. We choose the
next process to run in a round robin fashion, and as soon as a process reaches a
synchronization point where it cannot proceed execution (e.g. an MPI blocking
operation), it blocks immediately freeing the resource.

Notice that processes in local queues are assigned to the processor during the
whole execution, avoiding migrations and preserving locality.

4.2 Global Queues

While in Local queues we have a process queue assigned fixed to each processor,
in Global queues we have a unique queue for each application assigned fixed to a
processor partition. The unassigned processes are kept in the global queue until
the scheduler select them to run on a newly freed processor.

We implemented several heuristics to choose the next process to run, which
we describe below:

– Timestamp: Each process has a timestamp which is incremented when it is
waiting in the global queue, in order to do aging. The selected process will
be the one with the greater timestamp. This turn out to be the classical
round robin.

– Unconsumed messages: The selected process will be the one with the greater
number of unconsumed messages.

– Sender: The selected process will be the sender of the recently blocked pro-
cess if it has also the number of unconsumed messages equal or greater than
zero. This last condition is to ensure that it will have useful work to do when
unblocked. If it is not possible, the first with a number of unconsumed msgs
greater than zero is selected.

– Affinity: The selected process will be a process that has already ran in the
processor that is asking context switching. If it doesn’t exist then the first
process with unconsumed messages greater or equal than zero is selected.

After applying the heuristic if there isn’t any eligible process, then the context
switch is not done. Notice that there will be several process migrations because
the last cpu where a process was allocated will not be taken into account except
for Affinity. However, in this case it is not a strong condition because if there
aren’t ready processes that satisfies the condition, then it is ignored the affinity.

Notice also that when applying global queues process mapping to processors
is not a crucial decision as in Local queues, since they may be migrated during

Dynamic Load Balancing in MPI Jobs 121

execution. Another interesting aspect of this approach is that the next process
to run is chosen from the global queue, so there will be a higher probability of
finding a process which can continue executing than in Local queues.

5 Our Proposal: The Load Balancing Detector (LBD)

We propose a mechanism which decides dynamically, without any previous
knowledge of the application, whether to apply Local or Global process queues
to it by measuring its load balancing degree.

We have observed that usually the applications at the beginning of the exe-
cution have an imbalanced behaviour, because processes start creating, the data
is distributed among them, and after that, they normally perform a global syn-
chronization function. So at this point all the jobs behave as imbalanced ones,
after that they start doing regular work. As a matter of fact the coefficient of
variation1 (CV) of the number of context switches detected among processes
during this period is higher than the rest of the execution due to this chaotic
behaviour.

Fig. 1. Coefficient of variation of the number of context switches for a well-balanced
application: lu.A and for an imbalanced application: bt-mz.B.36

In Fig. 1 it is possible to see graphically the coefficient of variation of the
number of context switches (CVCS) for lu.A as a well-balanced application and
for the bt-mz.B.36 as an imbalanced one. Both executed applying Global queue
types for the whole running with MPL=4. After a while the CVCS goes down
and remains constant until the end of the execution, no matter the load balancing
degree of the jobs. We can observe also that the time spent by the job in doing the
initializations is variable and depends on it. We base our criterion to measure at
runtime the balance degree of an application on two CVs: the number of context
switches and the user time. The first one gives us an impression when exactly

1 Percentage of the standard deviation in the average value.

122 G. Utrera, J. Corbalán, and J. Labarta

the job has started executing regularly. The second one quantifies the difference
in time spent in calculation by each process in order to measure their balance
degree.

The user time per process shows exactly the time spent in calculation. By
calculating the coefficient of variation of the user time (CVUT) among processes
from a job, it is possible to quantify its load balancing degree. During the cal-
culation of this measure we apply Global queue type to the job, to ensure a fair
distribution of the cpu time among processes, until a decision is made. As the
beginning of the execution is chaotic, we delay any decision until this phase has
finished.

Fig. 2. Internal structure of the CPUM with the mechanism proposed to classify jobs
depending on their load balancing degree

In Fig. 2 we can see graphically the internal structure of the the CPUM, used
for the implementation of the mechanism. We have the Stabilization detector
which is in charge of calculating the CVCS given the number of context switches
from the processes of a job. This detector determines when the job has passed
the initialization part by analyzing the CVCS and stating when it has reached
a constant value. After that, the detector informs the Balance degree calculator
that the CVUT is now a valid indicator. This calculator has also the information
about the user time of each process from a job to calculate the CVUT. Finally
the scheduler determines with the CVUT if the job must be considered balanced
or imbalanced.

Once the job is classified the scheduler decides whether to continue the exe-
cution using Global queues or to switch to Local queues.

In Fig. 3, we show graphically the CVUTs for the same executions showed
in Fig. 1. It can be viewed clearly that at the beginning of the execution the
CVUTs are high, and then they go down depending on the load balancing degree
of the job. This means that the current CVUT can give us a true idea of the
balance degree of the job.

6 Evaluations

We conducted the experiments in the following way: first we ran isolated all the
applications with MPL=2, 4 and 6, applying Global queues described in Section

Dynamic Load Balancing in MPI Jobs 123

Fig. 3. Coefficient of variation of the user time for two well-balanced applications: cg.B
and lu.A and two imbalanced applications: a synthetic u.50x1 and the bt-mz.B.36

4.2 and comparing with the performance under Local queues. From this part
we take the heuristic that showed the best performance. In the second part of
the evaluation we re-execute all the applications with MPL=4 under Local and
Global queues statically and using our LDB described in Section 5.

6.1 Architecture

Our implementation was done on a CC-NUMA shared memory multiprocessor,
the SGI Origin 2000 [16]. It has 64 processors, organized in 32 nodes with two
250MHZ MIPS R10000 processors each. The machine has 16 Gb of main memory
of nodes (512 Mb per node) with a page size of 16 Kbytes. Each pair of nodes
is connected to a network router. The operating system where we have worked
is IRIX version is 6.5 and on its native MPI library with no modifications.

6.2 Applications and Workloads

For the evaluations we use as well-balanced applications the NAS Benchmarks:
cg, lu, bt, sp, ep, ft and as imbalanced applications the bt-mz multi-zone ver-
sion [27] and synthetic applications. They consist of a loop with three phases:
messages, calculation, and a barrier. The amount of calculation varies in order
to generate imbalance. We use two types of imbalance: a) 50% of processes with
2, 3 and 6 times greater in calculation than the other 50%, see Fig. 4; b) a ran-
dom number of amount of calculation for each process with the biggest 6 times
greater than the smallest.

We worked with a number of processes per application of 32, running in
isolation on a processor partition sized depending on the MPL. For the first part
of the evaluation we used MPLs=2, 4 and 6, so the processor partition sized
16, 8 and 5 respectively. For the second part we executed with MPL=4 so the
partition size was 8.

124 G. Utrera, J. Corbalán, and J. Labarta

Fig. 4. Different imbalance degree changing the amount of calculation

6.3 Performance Results

First we compare heuristics to choose the next to run from a global queue, and
in the second part we evaluate the performance of the LDB.

6.3.1 Global Queues
Here we present the performance results for the applications with different MPLs
under Global queues schemes, with all the heuristics described before.

6.3.1.1 Well-balanced Applications. For the well-balanced case we present a
high communication degree applications, the cg.B, one with global synchroniza-
tions, the ft.A and one low communication degree, the ep.B.

We can see in Fig. 5, the slowdowns with respect to Local queues of well-
balanced applications cg.B.32, the ft.A.32 and the ep.B.32 evaluated using global
queues with the different heuristics to choose the next to run. For the cg.B.32,
the Sender+Msgs heuristic seem to work best. The worst is the Timestamp which
does not take into account the synchronization between processes, which is an
important issue because the cg is high communication degree.

The main difference between local and global approximations is the number of
process migrations. While under Local queues this number is zero, under Global
queues it increases significantly, thus generating context switching overhead ef-
fect degrading performance.

On the other hand the number of times a process asks context switching di-
minishes under Global queues because it has a higher chance of choosing the
”right” process to run than Local queues, incrementing the number of cosched-
uled processes.

We conclude that for well-balanced jobs, even Global queues reduce the num-
ber of context switches, they don’t compensate the locality provided by Local
queues.

The ft.A, in spite of being well-balanced performs similar under the Local
and Global approaches. This is may be due to it is composed only by global
synchronizations, so their processes must executed as much as coscheduled as
possible. While locality favours the local approach, the Global approach ensures
a more fair distribution of the cpu time among processes.

For the ep.B, the differences are diminished because the processes does not
block very often as they rarely call blocking functions.

Dynamic Load Balancing in MPI Jobs 125

Fig. 5. Slowdown of the execution times under Global queues with respect to Local
queues varying the # assigned processes per processor (MPL)

6.3.1.2 Imbalanced Application. For the imbalanced case, we show in Fig. 5
the bt-mz, a multi-zone version from the NAS Benchmarks. Here a Global queue
seems a more attractive option than using Local queues as the slowdown is under
1. This is due to the automatic load balancing effect. We can observe that for
Sender+Msgs heuristics the coefficient of context switches over the execution
time is reduced with respect to Local queues in about 20 % for MPL=4.

In conclusion, analyzing the performance of the jobs showed in the figures
above the best option for well-balanced high and low communication degree
applications is Local queues, as they have a slowdown greater than 1. On the
other hand the imbalanced synthetic application, using Global queues seems a
more attractive option. The FT and EP seems to work well under both schemes,
global and local. About the heuristics when using Global queues, select the next
process to run the one with the greater number of unconsumed messages seems
the best option.

For the rest of the evaluation we use MPL=4, as it is the maximum MPL that
can be reached before performance degrades [24].

6.3.2 Evaluating Our Proposal: LDB
In this section we present the performance results of the applications using local,
global and dynamic queues. Notice that the execution time under the dynamic
queue approach is always a little worse than the best of the rest of queue types.
This is caused by the initial CV calculation.

126 G. Utrera, J. Corbalán, and J. Labarta

In Table 1 we show the execution times for the applications running under
Local, Global and under the LDB, that is decide at runtime the appropriate
queue type.

After analyzing the executions, we stated empirically that with a CVUT below
0.1 shows the application is well-balanced, otherwise is imbalanced.

The difference between both approximations are the number of migrations,
while using Local queues this number is zero, keeping affinity, under Global
queues increments significantly, thus generating context switching overhead ef-
fect degrading performance.

Table 1. Execution time in seconds using local, global and dynamic queues

Local Global LDB Avg CVUT

bt.A.36 298 342 306 0.02

cg.B.32 390 521 408 0.025

sp.B.36 193 248 195 0.032

lu.A.32 135 151 140 0.05

mg.B.32 54 80 58 0.071

ft.A.32 23 24 25 0.139

ep.B.32 49 51 51 1.128

u.50x1 290 236 236 0.316

u.50x3 437 315 315 0.482

u.50x6 825 538 538 0.686

u.rand.1 1307 1152 1152 0.14

u.rand.2 1287 1111 1111 0.217

u.rand.3 1279 1046 1046 0.322

bt-mz.B.36 447 368 368 0.386

On the other hand the number of times a process asks for context switching
diminishes under Global queues, because a process has a higher chance of choos-
ing the right process to run than in Local queues. In this way the number of
coscheduled processes, is increased.

Finally we conclude that in spite of Global queues reduce the number of
context switches really taken, they don’t compensate the locality provided by
the Local queues which obtain the best performance.

7 Conclusions and Future Work

Given the many-to-few relation of processes to processors allocated to a job, the
question is whether to map processes to processors and then use a local queue
on each one, or to have all the processors share a single global queue. Without
shared memory a global queue is difficult to implement efficiently.

In this work we propose a mechanism, the Load Balancing Detector (LDB),
to classify applications dynamically, without any previous knowledge of it, de-
pending on their balance degree and apply the appropriate process queue type
to each job.

Dynamic Load Balancing in MPI Jobs 127

The work consisted on two parts. First we analyze several heuristics to ap-
ply in Global queues to choose the next to run. We founded that the sender
process of the currently running, performs best. In the second part we evalu-
ate our proposal, the LDB. We use the NAS benchmarks and several synthetic
applications.

Our proposal demonstrated to work quite well, especially for the imbalanced
jobs. The well-balanced jobs suffer from an overhead which is not crucial; they
still work better under the new scheme than under the Global one. However for
the FT and EP as they behave as well-balanced jobs, they switched queue type
suffering from an overhead, having the worst performance under our proposal.
On the other hand, our mechanism applies to each job independently, that means
that in a workload there may be jobs executing with different queue types.

For the future we plan to extend our experiments to a wide variety of appli-
cations in order to establish a more accurate limit for the coefficient of variation
of the user time (CVUT) and context switches (CVCC) among processes, to
determine the balance degree of a job.

We are planning also to use the CVUT and the CVCC to map processes to
processors in to implement a dynamic load balancing with Local queues.

Acknowledgments

This work was supported by the Ministry of Science and Technology of Spain
under contract TIN2004-07739-C02-01 and the HiPEAC European Network of
Excellence. And has been developed using the resources of the DAC at the UPC
and the European Centre for Parallelism of Barcelona (CEPBA).

References

1. Anderson, T.E., Lazowska, E.D., Levy, H.M.: The performance Implications of
Thread Management Alternatives for Shared Memory Multiprocessors. IEEE
Trans. on Comp. 38(12), 1631–1644 (1989)

2. Arpaci-Dusseau, A., Culler, D.: Implicit Co-Scheduling: Coordinated Scheduling
with Implicit Information in Distributed Systems. ACM Trans. Comp. Sys. 19(3),
283–331 (2001)

3. Bailey, D., Harris, T., Saphir, W., Wijngaart, R., Woo, A., Yarrow, M.: The NAS
Parallel Benchmarks 2.0, Technical Report NAS-95-020, NASA (December 1995)

4. Bershad, B.N., Lazowska, E.D., Levy, H.M.: The Performance Implications of
Thread Management Alternatives for Shared Memory Multiprocessors. IEEE
Trans. on Comp. 38(12), 1631–1644 (1989)

5. Bhandarkar, M., Kale, L.V., de Sturler, E., Hoeflinger, J.: Object-Based Adaptive
Load Balancing for MPI Programs. In: Alexandrov, V.N., Dongarra, J.J., Juliano,
B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2074, pp. 108–117.
Springer, Heidelberg (2001)

6. Black, D.L.: Scheduling support for concurrency and parallelism in the Mach op-
erating system. Computer 23(5), 35–43 (1990), [16] Silicon Graphics, Inc. IRIX
Admin: Resource Administration, Document number 007-3700-005 (2000),
http://techpubs.sgi.com

http://techpubs.sgi.com

128 G. Utrera, J. Corbalán, and J. Labarta

7. Bryant, R.M., Chang, H.-Y., Rosenburg, B.: Experience developing the RP3 oper-
ating system. Computing Systems 4(3), 183–216 (1991)

8. Feitelson, D.: Job Scheduling in Multiprogrammed Parallel Systems. IBM Research
Report RC 19790 (87657) (October 1994), Second Revision (August 1997)

9. Feitelson, D.G., Jette, M.A.: Improved Utilization and Responsiveness with Gang
Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1997. LNCS, vol. 1291,
Springer, Heidelberg (1997)

10. Frachtenberg, E., Feitelson, D., Petrini, F., Fernandez, J.: Flexible CoSheduling:
Mitigating Load Imbalance and Improving Utilization of Heterogeneous Resources.
In: IPDPS 2003 (2003)

11. Gupta, R.: Synchronization and Comunication Costs of Loop Partitioning on
Shared-Memory Multiprocessor Systems. In: Gupta, R. (ed.) ICPP 1999, pp. II:23–
30 (1989)

12. Gupta, A., Tucker, A., Urushibara, S.: The impact of operating system scheduling
policies and synchronization methods on the performance of parallel applications.
In: SIGMETRICS Conf. Measurement & Modeling of Comp. Syst., pp. 120–132
(May 1991)

13. Hofmann, F., Dal Cin, M., Grygier, A., Hessenauer, H., Hildebrand, U., Linster,
C., Thiel, T., Turowski, S.: MEMSY: a modular expandable multiprocessor system.
In: Dal Cin, M., Bode, A. (eds.) Parallel Computer Architectures. LNCS, vol. 732,
pp. 15–30. Springer, Heidelberg (1993)

14. LeBlanc, T., Scott, M., Brown, C.: Largescale parallel programming: experience
with the BBN Butterfly parallel processor. In: Proc. ACM/SIGPLAN, pp. 161–
172 (July 1988)

15. Martorell, X., Corbalan, J., Nikolopoulos, D., Navarro, J.I., Polychronopoulos, E.,
Papatheodorou, T., Labarta, J.: A Tool to Schedule Parallel Applications on Mul-
tiprocessors: the NANOS CPU Manager. In: Feitelson, D.G., Rudolph, L. (eds.)
IPDPS-WS 2000 and JSSPP 2000. LNCS, vol. 1911, pp. 55–69. Springer, Heidel-
berg (2000)

16. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
Journal of SuperComputer Jobs 8(3/4), 165–414 (1994)

17. Moreira, J.E., Chan, W., Fong, L.L., Franke, H., Jette, M.A.: An Infrastructure
for Efficient Parallel Job Execution in Terascale Computing Environments. In: SC
1998(1998)

18. Nagar, S., Banerjee, A., Sivasubramaniam, A., Das, C.R.: A Closer Look at
Coscheduling Approaches for a Network of Workstations. In: 11th ACM Symp.
on Parallel Algorithms

19. Scott, M., LeBlanc, T., Marsh, B., Becker, T., Dubnicki, C., Markatos, E., Smith-
line, N.: Implementation issues for the Psyche multiprocessor operating system.
Comp. Syst. 3(1), 101–137 (1990)

20. Serra, A., Navarro, N., Cortes, T.: DITools: Applicationlevel Support for oids Dy-
namic Extension and Flexible Composition. In: Proc. of the USENIX Annual Tech-
nical Conference, pp. 225–238 (June 2000)

21. Squillante, M.S., Nelson, R.D.: Analysis of Task Migration in Shared-Memory Mul-
tiprocessor Scheduling. In: Proc. of the 1991 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Comp. Syst., pp. 143–145 (May 1991)

22. Thomas, R., Crowther, W.: The Uniform System: An Approach to Runtime Sup-
port for Large Scale Shared Memory Parallel Processors. In: Proc. of the ICPP
1988, pp. 245–254 (August 1998)

Dynamic Load Balancing in MPI Jobs 129

23. Tucker, A., Gupta, A.: Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors. In: Proc. of the SOSP 1989, pp.159–166 (Decem-
ber 1989)

24. Utrera, G., Corbalan, J., Labarta, J.: Scheduling of MPI applications: Self Co-
Scheduling. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004.
LNCS, vol. 3149, Springer, Heidelberg (2004)

25. Utrera, G., Corbalan, J., Labarta, J.: Implementing Malleability on MPI Jobs. In:
PACT 2004, pp. 215–224 (2004)

26. Vaswani, R., Zahorjan, J.: Implications of Cache Affinity on Processor Scheduling
for Multiprogrammed, Shared Memory Multiprocessors. In: Proc. SOSP 1991, pp.
26–40 (October 1991)

27. www.nas.gov/News/Techreports/2003/PDF/nas-03-010.pdf

www.nas.gov/News/ Techreports/2003/PDF/nas-03-010.pdf

Workload Characterization of Stateful

Networking Applications

Javier Verdú1, Mario Nemirovsky2, Jorge Garćıa1, and Mateo Valero1,3

1 Departament d’Arquitectura de Computadors, UPC
Barcelona, Spain

2 Consentry Networks Inc.
Milpitas, CA, USA

3 Barcelona Supercomputing Center
Barcelona, Spain

{jverdu,jorge,mateo}@ac.upc.edu
mario@consentry.com

Abstract. The explosive and robust growth of the Internet owes a lot
to the ”end-to-end principle”, which pushes stateful operations to the
end-points. The Internet grow both in traffic volume, and in the richness
of the applications it supports. A whole new class of applications requires
stateful processing.

This paper presents the first workload characterization of stateful net-
working applications. The analysis emphasizes the study of data cache
behaviour. Nevertheless, we also discuss other issues, such as branch pre-
diction, instruction distribution and ILP. Another important contribu-
tion is the study of the state categories of the networking applications.
The results show an important memory bottleneck that involves new
challenges to overcome.

Keywords: Flow, state, non-additional-data, stateless, stateful.

1 Introduction

The explosive and robust growth of the Internet pushes stateful operations to
the end-points. The Internet grow both in traffic volume, and in the richness of
the applications it supports. The growth also brought along new security issues.
The sophistication of attack methods is progressing rapidly.

The attackers take advantage of stateless firewalls that cannot look beyond
the single individual packet while inspecting network traffic. The attacks may be
spread out in several packets, such as inter-packet signature, or even may be un-
detectable with signature-based detection systems, such as portscan, unknown
attacks, or zero day attacks [7,8]. Additionally, stateless Network Intrusion De-
tection Systems (NIDSs) may be overwhelmed with the Snot [5] and Stick [2]
attacks. These attacks work by generating packets that are expected to trigger
alerts by the NIDS. Therefore, more complex firewalls, that keep track of the
processed packets, are being developed in order to catch these new attacks.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 130–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Workload Characterization of Stateful Networking Applications 131

Another area of stateful applications is network monitoring, such as the com-
mercial tool, called Cisco NetFlow [3], and the publicly available application,
called Argus [4]. They are able to record important information along different
granularity levels. From flow level, such as number of packets of a given flow, up
to user level, such as where do the users go on the network.

The development of network processors is focused on overcoming the time
constraints of both network line rates and networking applications workloads,
mainly on the fast-path. Internet traffic continues to grow vigorously close to
100% per year [17] and consequently the traffic aggregation level reflects an
incremental trend. On the other hand, concerning the statefulness of the appli-
cation, there are more flow states maintained and more complex applications
generate larger states. Consequently, the memory capacity requirements become
a bottleneck.

This paper presents the first workload characterization of stateful network-
ing applications. The analysis emphasizes the study of data cache behaviour.
Nevertheless, we also discuss other issues, such as branch prediction, instruction
distribution and ILP. Another important contribution is the study of the state
categories of the networking applications. Our conclusions show that stateful
applications present an important memory bottleneck that involves new chal-
lenges to overcome. We demonstrate that the basis of our conclusions can be
generalized to other new stateful programs.

The rest of this paper is organized as follows. Section 2 provides related work
on current networking benchmark suites and their workload characterizations. In
Section 3, we present the benchmark selection, the traffic traces, and the method-
ology to perform the evaluation. The workload characterization is presented in
Section 4. Finally, we conclude in Section 5.

2 Related Work

Benchmarking NPs is complicated by a variety of factors [9], such as emerging
applications that do not yet have standard definitions. There is a high interest
and an ongoing effort in the NP community to define standard benchmarks [15].

Several benchmarks suites have been published in the NP area: CommBench
[25], NetBench [14] and NpBench [12]. Wolf et al. [25] present the CommBench
benchmark suite: a set of eight benchmarks classified in Header Processing Appli-
cations (HPA) and Payload Processing Applications (PPA). The suite is focused
on program kernels typical of traditional routers. The workloads are character-
ized and compared versus SPEC benchmarks.

Memik et al. [14] present a set of nine benchmarks, called NetBench. The
authors categorize the benchmarks into three groups, according to the level of
networking application: micro-level, IP-level and application-level. The work-
loads are compared versus MediaBench programs.

Lastly, Lee et al. [12] propose a new set of ten benchmarks, called NpBench.
It is focused on both control and data plane processing. In this case, the bench-
marks are categorized according to the functionality: traffic management and

132 J. Verdú et al.

quality of service group (TQG), security and media processing group (SMG),
and packet processing group (PPG). The study of the workloads is compared
with the CommBench workloads.

All the above benchmarks are no stateful applications, since they do not keep
track of the previous processed packets. An IDS called Snort [1], which is included
in the NetBench suite, although it is not included in the original paper [14], is
the single application that presents stateful features. Moreover, depending on
Snort’s configuration, the statefulness of the processing may vary a lot. There
are several publications that present studies about Snort [19,11,20]. However,
the workload and the cache behavior of the stateful configuration have not been
analyzed yet.

3 Environment and Methodology

3.1 Benchmarks Selection

According to the data management along the packet processing, there are the
following application categories: non-additional-data applications are those pro-
grams that do not need to search any kind of data related to the packet or
connection to be able to perform the packet processing. For example, CRC only
needs the IP packet header. The stateless category includes the applications that
generate no record of previous packet processing and each packet processing has
to be handled based entirely on its own information. For instance, the packet
forwarding do not record information about previous packet forwarding. Unlike
non-additional-data category, stateless applications search information related
to the packet (e.g. IP lookup data structures). Finally, the third category is the
stateful applications that keep track of the state of packet processing [13], usually
by setting fields of state related to the flows or connections. For example, TCP
termination requires to maintain the state of the TCP flows. The main differ-
ence between stateful and stateless programs is the former may update a variety
of fields within the state. Instead stateless applications only require the value
and do not update any information. As our concern is to characterize stateful
applications, the results of the other benchmarks are used to explain in a better
way the differences among the above categories.

Table 1 shows the selected benchmarks according to the above classification.
We select the benchmarks that present a similar performance than the aver-
age of the category. Due to the lack of stateful applications within the publicly
available benchmark suites, there is only a single application that presents a
potentially statefulness feature: Snort 2.3 [1]. We employ three different con-
figurations: Snort SLess is configured to execute stateless preprocessors, and
Snort Str4 and Snort Pscan are tuned to use the stateful preprocessors called
Stream4 and Flow Portscan, respectively. The former is the inspection of es-
tablishing TCP connections and their maintenance and prevents attacks such
as Snot [5] and Stick [2]. The latter is an engine designed to detect portscans
based on flow creation and the goal is to catch one to many hosts and one to
many ports scans. Additionally, we select Argus [4] (i.e. network Audit Record

Workload Characterization of Stateful Networking Applications 133

Table 1. Selected Benchmarks

App. Category State Categories Benchmark Bench. Suite
Non-Additional-Data Pkt AES NpBench

Pkt MD5 NpBench

Stateless Pkt & Global Route NetBench
Pkt & Global Nat NetBench
Pkt & Global Snort SLess NetBench

Stateful Pkt & Global & Flow Snort Str4 NetBench
Pkt & Global & Flow Snort Pscan NetBench

Pkt & Global & Flow & App Argus

Generation and Utilization System) even it is not included in any benchmark
suite. This application is a fixed-model Real Time Flow Monitor. That is, it can
be used to monitor individual end systems or activity on the entire enterprise
network.

The stateful granularity level of every application is shown in the column
called ”State Categories”. We discuss and analyze this classification in Sec-
tion 4.2.

3.2 Traffic Traces

In order to perform a strict comparison among applications from different bench-
mark suites we cannot use the default traffic traces included in the suites. Ob-
taining representative network traffic traces always has been an obstacle to over-
come. There are several public sites (e.g. NLANR [16], CAIDA [6]) where there
are publicly available traffic traces from a wide open range of routers (e.g. MRA,
etc.). However, for confidentiality reasons the IP packet addresses of these traces
are sanitized [18]. The sanitization of addresses involves the loss of spatial lo-
cality of the Internet IP address distribution [10] and it could affect the results
of some networking application studies. Verdú et al. [23] shows that the loss of
spatial IP address distribution has no significant influence on the evaluation of
Snort with a stateful configuration. In fact, our analysis show that stateful ap-
plications do not present significant variations. This means that sanitized traffic
is representative to do research in stateful applications. The non-additional-data
applications are unaffected by the sanitization, because they do not need the
IP address to perform any search. Finally, the stateless applications are affected
by the use of sanitized traces. However, our studies show that they present no
significant variations in the application performance and, moreover, currently
there is no better way to perform this analysis.

In order to keep track of TCP connections, the traces have to hold packets in
the two directions of the flows (i.e. packets from server to client and vice versa).
In other case, the connection does not follow the TCP protocol and the flow
state could not be updated. There is a reduced number of public traces with this
property. We select traces from an OC12c (622 Mbit/s) PoS link connecting the

134 J. Verdú et al.

Table 2. Baseline Configuration

Processor Configuration
Fetch Width 4

Queues Entries 64 int, 64 fp, 64 ld/st

Execution Units 6 int, 3 fp, 4 ld/st

Physical Registers 192 int, 192 fp

ROB Size 256 entries

Branch Predictor Configuration
Branch Predictor 256 perceptrons,

Perceptron 4096 x 14 bit local
40 bit global history

Branch Target Buffer 256, 4-way

RAS 32 entries

Memory Configuration
ICache 64KB, 2-way, 8 banks,
DCache 32B lines, 1 cycle access

L2 Cache 2MB, 8-way, 16 banks,
32B lines, 20 cycles access

Main Memory 500 cycles access

TLB 48-entry I + 128-entry D

TLB miss penalty 160 cycles

Merit premises in East Lansing to Internet2/Abilene (i.e. MRA traces within
the NLANR site).

Finally, there is no public traces with representative traffic aggregation lev-
els with bidirectional traffic. As we need a trace with a representative traffic
aggregation level in order to obtain representative results [24], we synthetically
generate traffic traces simulating different bandwidths. From four original traffic
traces of the same link we sanitized them using four mechanisms that assure the
independence of IP addresses between traces. The traffic trace used simulates to
a bandwidth link of roughly 1Gbps, showing 170K active flows on average.

3.3 Evaluation Methodology

We use different analysis tools depending on the target of the study. We instru-
ment the binary code with ATOM [21] and generate statistics for instruction
distribution. On the other hand, for studying the performance of selected ap-
plications, we use a modified version of the SMTSim simulator [22]. Table 2
shows the configuration employed of a single threaded out-of-order processor.
The baseline is an ample configuration in order to understand the actual appli-
cation behaviour.

We run every benchmark using the selected traffic traces and processing the
same number of packets. Before starting to take statistics, we run the applica-
tions until the initial stage is finished, such as the creating of IP lookup table.
Subsequently, the applications are warmed running enough packets in order to

Workload Characterization of Stateful Networking Applications 135

reach the stable behaviour of the program. Our studies indicate that 10K pack-
ets are enough. Also, these studies indicate that on average 50K packets is a
representative amount of packets for obtaining representative statistics.

4 Characterization of Benchmarks

4.1 Instruction Mix and ILP

Our results show that roughly 50% of instructions are arithmetic, shift and
logic operations. The great part of the applications present a similar percentage
of branch operations (12% on the average). Only AES shows a lower percent-
age. Finally, an average of 40% of instructions are memory accesses. Moreover,
roughly two thirds of the memory accesses are loads.

The instruction distribution shows minor variations according to the applica-
tion categories. Unlike the non-additional-data applications, the other network-
ing programs require the search of additional data in order to do the packet
processing, such as IP lookup or flow state. Due to the search of data structures,
stateless and stateful applications are slightly more memory stressed.

On the other hand, we evaluate the instruction level parallelism (ILP) of the
applications. The processor configuration presents variations over some of the
baseline parameters (see Table 2) towards avoiding any additional performance
constraint. There are no limitations on both fetch bandwidth and functional
units. The new configuration also presents an oracle branch predictor and a
perfect memory system, where every memory access has one cycle latency.

Figure 1 shows the available ILP within the applications. We can observe
that the available ILP is independent of the application category, although it
is inherent to the application itself. For example, MD5 presents an ILP of 2,3
against the 4,5 of AES, even though both of them belongs to the same category.
This difference is emphasized with the average ILP of Control Plane and Data
Plane applications of the NpBench benchmark suite, where the greatest part of
the applications belongs to the non-additional-data category.

The evaluated stateful applications present an ILP of 3,7 on average. Actu-
ally, the data flow of the standard stateful packet processing present a reduced

0

10

20

30

40

50

AES
M

D5
Nat

Rou
te

Sno
rt_

Sles
s

Sno
rt_

Str4

Sno
rt_

Psc
an

Arg
us

Con
tro

l P
lan

e

Dat
a

Plan
e

IP
C

(~4200)

Fig. 1. Available Parallelism

136 J. Verdú et al.

ILP. Since the type of packet processing cannot exploit the ILP like the other
applications.

4.2 State Categories

The variables and data accesses of an application are allocated into three seg-
ments of the memory model, namely: data segment, heap, and stack. From the
application point of view, the data can be classified according to the variable
environment, such as global to the application or local to a given function.

In general, the networking applications use to handle a global state. That
is, the data structures are shared between packets. Actually, the data can be
classified in two subsets. One is the global variables set, such as total number
of processed packets. These variables are independent of any network traffic
parameter. The other is represented by the global state data structures, such as
IP lookup table. This state use to be related to a network feature, such as IP
address. Thus, the temporal locality of these data between packets is determined
by the network traffic properties. Generally, the lifetime of these data structures
is eternal.

Nevertheless, the networking applications shows an additional classification
that categorizes the data according to the granularity of the state that they
represent:

– Packet: The data only cover the current packet processing, such as packet
content. The lifetime of these data structures is very short, since they are
reset every packet processing. The inter-packet temporal locality of this data
set is independent of any network traffic parameter. In fact, depending on the
target of the application, the temporal locality within the packet processing
use to be very high.

– Flow: The data structures are related to the network connection, such as
flow state. The temporal locality is determined by the traffic aggregation
level of the network link. Although the lifetime is longer than Packet State
Data, it is delimited by the lifetime of the flow.

– Application: The data structures are associated to the application layer,
such as Real Time Protocol (i.e. a transport protocol designed to provide
end-to-end delivery services for data with real-time characteristics). A similar
granularity state level could be defined as macro-flow, such as counters of a
set of flows, which is used in monitoring/billing applications between others.
The temporal locality is determined by the traffic aggregation level. However,
the lifetime of the data is determined by the group of flows.

Lower statefulness granularity involves longer lifetime of the states and, in
general, larger data structures. In fact, there can be more stateful data cat-
egories depending on the statefulness granularity of the application, namely:
User State Data, which maintain state for every user; Department State Data,
which maintain information for a group of users; etc.

Figure 2 depicts the data access distribution depending on the data categories
of the evaluated applications. The non-additional-data applications do a very

Workload Characterization of Stateful Networking Applications 137

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
E

S

M
D

5

N
at

R
ou

te

S
no

rt
_S

le
ss

S
no

rt
_S

tr
4

S
no

rt
_P

sc
an

A
rg

us

Non-Additional-Data Stateless Stateful

Pkt Global

Flow App

Fig. 2. Data Access Distribution

high rate of data accesses on the Packet State Data. On the other hand, stateless
applications use to search data for the packet processing. Due to this, the rate
of Packet Data accesses is lower, whereas the Global Data access rate is higher.
Depending on the target of the application, this search could be intensive, such
as rule matching in a rule-based Intrusion Detection System. Finally, stateful
applications present access rates to a wide variety of state data structures. The
rate of flow state accesses can vary according to the statefulness granularity level
of the application. Due to the properties of every data category, the data access
distribution of an application directly affects the data cache behaviour.

4.3 Data Cache Behavior

In this section we discuss the data cache miss rate of the evaluated applications,
and we analyze the impact of the data access distribution shown in the above
section. We do not include an analysis of instruction cache. As other papers
explain [25,14,12], the networking applications present on average near to 100%
of instruction cache hit rates. Moreover, our studies show similar results with
stateful applications.

Figure 3(a) shows the L1 data cache miss rate using a variety of sizes. The
x-axis shows the sizes of L1 data cache. In the legend of the graph we group
the benchmarks according to the application category. We can observe that the
non-additional-data applications present very reduced data cache miss rate, even
with reduced size data caches. The greatest part of the working set is related to
the packet state. Thus, the data cache is very useful in order to maintain this
type of structures. The working set of stateless applications is larger due to global
data structures, such as IP lookup table. As the access rates to these structures
is higher, reduced caches present higher miss rates. However, a cache size of 16
KBytes or higher presents a low data cache miss rate of 2% on average. On the
other hand, Snort SLess could present higher miss rates if it was a rule-based
IDS and there was a large number or rules. Finally, stateful applications present
higher miss rates than the rest of applications, due to a larger working set and
the variety of data structures that are dependent on networking properties, such
as distance between two packets of the same flow.

138 J. Verdú et al.

0

2

4

6

8

10

12

14

16

18

20

4K 16K 64K 256K 1M

D
at

a
M

is
s

R
at

e
(%

)

AES

MD5

Nat

Route

Snort_Sless

Snort_Str4

Snort_Pscan

Argus

N-A-D

Stateless

Stateful

(a) L1 Data Cache Miss Rate

0

1

2

3

4

5

1M 2M 4M 8M

D
at

a
M

is
s

R
at

e
(%

)

AES

MD5

Nat

Route

Snort_Sless

Snort_Str4

Snort_Pscan

Argus

N-A-D

Stateless

Stateful

(b) L2 Data Cache Miss Rate

Fig. 3. Data Cache behaviour

We analyze the effects of increasing the associativity level, but there are no
significant benefits. Because the main problem are not cache conflicts, but the
cache inability of maintaining the data of the active flows. However, using a
larger cache line size we take advantage of spatial locality within the packet
processing itself. For example, if we enlarge from 32B up to 64B cache line size
we achieve a 3% reduction on average in the cache miss rate. This fact represents
three times the improvement obtain doubling the cache associativity degree.

Nevertheless, the most important impact resides in the L2 data cache miss rate
shown in Figure 3(b). Whereas non-additional-data and stateless applications
present near to zero miss rate, stateful applications show a saturated miss rate
from 1% up to 1,7%. In other words, even using a large L2 data cache, the misses
due to stateful data structures cannot be eliminated. Thus, when we use a very
large DL1 cache, almost 100% of DL1 misses also are misses in L2.

Depending on the size of flow-states and the traffic aggregation level, we can
require several MBytes of data structures for flow-states. In fact, the memory
performance of stateful applications is very sensitive to the traffic aggregation
level [24], since the memory capacity requirements significantly grows and the
temporal locality of flow state is reduced. Obviously, with larger flow-states
the sensitivity is higher. Our studies show that Snort Str4 and Argus requires
roughly 420 Bytes and 1 KByte, respectively. As we mentioned in Section 3.2, we
maintain 170K flows on average. Thus, the memory requirements of Snort Str4
and Argus are roughly 68 MBytes and 166 MBytes, respectively. Therefore,
this requirement will be higher with more statefulness applications that process
traffic with higher aggregation level.

4.4 Branch Prediction

In this section we evaluate the behaviour of the branches through the study
of branch prediction accuracy. The impact of branches on the IPC will be dis-
cussed in Section 4.5. We employ a perceptron predictor [26,27]. Additionally,
we also have studied other branch predictors, such as g-share [28]. However, the

Workload Characterization of Stateful Networking Applications 139

results show a slightly lower accuracy than the perceptron predictor, and higher
sensitivity to the PHT size.

As we can see in Section 4.1, all the benchmarks present between 10% and
20% of branches within the workload, excepting AES that shows a lower rate.
On average 70% of these branches are conditional branches.

The results show a high branch prediction accuracy for every benchmark.
AES, MD5, and Snort SLess present more than 99% of accuracy. Snort Pscan
and Argus shows roughly 98% of hit rate. Finally, the lowest accuracy rate is
95% by Snort Str4. Our studies show that, as well as this application presents
high branch rate, the branches are more sensitive to the network properties than
the other applications. Thus, there is a negative aliasing among independent
packets, unlike Snort Pscan and Argus that present lower negative aliasign.

The key insight is that certain branches depend on the flow-state itself. Thus,
regarding the statefulness of the application, coupled with the traffic aggrega-
tion level, the likelihood of obtaining lower branch prediction accuracy could be
stronger.

4.5 Impact of Bottlenecks

Figure 4 presents the IPC of every benchmark using four different configurations:
the baseline configuration, an oracle branch predictor, a perfect memory system
(i.e. every memory access has one cycle latency), and a oracle predictor with a
perfect memory system.

The Stateless applications present a baseline IPC of roughly 2,75. The main
improvement resides in the branch prediction with a 12% on average. With the
perfect configuration of memory and branch prediction we achieve an average of
20%. However, as Snort SLess shows lower miss rates, its preformance improve-
ment with the perfect configuration is only 2%. The main problem is the global
data structure properties, such as size and locality. On the other hand, the state-
ful applications emphasize a lot the properties of global data structures through
the accesses to flow and application data structures. Due to this, the memory
bottleneck is stressed and L2 data cache is unable to maintain the states of the
active flows. A perfect memory system can obtain roughly 3x of speedup on

0

0,5

1

1,5

2

2,5

3

3,5

4

AES
M

D5
Nat

Rou
te

Sno
rt_

SLe
ss

Sno
rt_

Str4

Sno
rt_

Psc
an

Arg
us

Baseline Perfect Branch

Perfect Mem Perfect Branch & Mem

Fig. 4. Impact on IPC

140 J. Verdú et al.

average. The baseline IPC could be lower and the speedup could be emphasized
when statefulness of the application is higher. Once the memory bottleneck is
overcome, we can achieve an additional improvement of 12% on average.

5 Conclusions

To the best of our knowledge, we present the first workload characterization of
stateful networking applications. We analyze the main differences between the
networking application categories according to the management of state data.
Actually, stateful applications present a variety of statefulness granularity levels.

The main bottleneck of stateful applications resides in the memory system,
since even L2 data cache is unable to maintain the state of active flows. The
evaluated applications show 3x of speedup on average using a perfect memory
system. Nevertheless, this speedup can vary depending on the statefulness level
of the application.

As future work we are concerned about to do a deep analysis of the archi-
tectural impact of the stateful applications. On the other hand, as the variety
of stateful benchmarks is still reduced, we continue looking for other publicly
available stateful applications.

Acknowledgements

This work has been supported by the Ministry of Education of Spain under
contract TIN–2004–07739–C02–01, and grant BES-2002-2660 (J. Verdú), the
HiPEAC European Network of Excellence, and the Barcelona Supercomputing
Center. The authors also would like to thank Rodolfo Milito for his review and
technical inputs of this work.

References

1. Beale, J., Foster, J.C., Posluns, J., Caswell, B.: Snort 2.0 Intrusion Detection.
Syngress Publishing Inc. (2003)

2. Coretez, G.: Fun with Packets: Designing a Stick, Draft White Paper on Stick,
http://www.eurocompton.net/stick/

3. Cisco IOS NetFlow.
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml

4. Argus - Auditing Network Activity. http://www.qosient.com/argus
5. Snot V0.92 alpha. http://www.stolenshoes.net/sniph/snot-0.92a-README.txt
6. Cooperative association for internet data analysis. www.caida.org
7. The Computer Emergency Response Team. http://www.cert.org
8. The System Administration, Networking and Security Organization.

http://www.sans.org
9. Chandra, P., Hady, F., Yavatkar, R., Bock, T., Cabot, M., Mathew, P.: Bench-

marking network processors. In: Proc. NP1, Held in conjunction with HPCA-8,
Cambridge, MA, USA (February 2002)

http://www.eurocompton.net/stick/
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml
http://www.qosient.com/argus
http://www.stolenshoes.net/sniph/snot-0.92a-README.txt
www.caida.org
http://www.cert.org
http://www.sans.org

Workload Characterization of Stateful Networking Applications 141

10. Kohler, E., Li, J., Paxson, V., Shenker, S.: Observed structure of addresses in IP
traffic. In: Proc. of the 2nd ACM SIGCOMM Workshop on Internet measurment
workshop, Pittsburgh, PA, USA (August 2002)

11. Kruegel, C., Valeur, F., Vigna, G., Kemmerer, R.: Stateful intrusion detection
for high-speed networks. In: Proc. IEEE Symposium Security and Privacy, IEEE
Computer Society Press, CA, USA (2002)

12. Lee, B.K., John, L.K.: Npbench: A benchmark suite for control plane and data
plane applications for network processors. In: Proc. of ICCD, San Jose, CA, USA
(October 2003)

13. Melvin, S., Nemirovsky, M., Musoll, E., Huynh, J., Milito, R., Urdaneta, H., Saraf,
K.: A massively multithreaded packet processor. In: Proc. of NP2, Held in con-
junction with HPCA-9, Anaheim, CA, USA (February 2003)

14. Memik, G., Mangione-Smith, W.H., Hu, W.: Netbench: A benchmarking suite for
network processors. In: Proc. of ICCAD, San Jose, CA, USA (November 2001)

15. Nemirovsky, A.: Towards characterizing network processors: Needs and challenges.
Xstream Logic Inc., white paper (2000)

16. National lab of applied network research. http://pma.nlanr.net/Traces
17. Odlyzko, A.M.: Internet traffic growth: Sources and implications. In: Dingel, B.B.,

Weiershausen, W., Dutta, A.K., Sato, K.-I. (eds.) Proc. SPIE, Optical Transmission
Systems and Equipment for WDM Networking II, vol. 5247 (September 2003)

18. Pang, R., Paxson, V.: A high-level programming environment for packet trace
anonymization and transformation. In: Proc. of the ACM SIGCOMM Conference
(August 2003)

19. Roesch, M.: Snort- lightweight intrusion detection for networks. In: LISA. Proc. of
the 13th Conference on Systems Administration, Seattle, WA, USA (1999)

20. Schaelicke, L., Slabach, T., Moore, B., Freeland, C.: Characterizing the perfor-
mance of network intrusion detection sensors. In: Proc. of RAID-6, Pittsburgh,
PA, USA (September 2003)

21. Srivastava, A., Eustace, A.: ATOM - A system for building customized program
analysis tools. In: Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pp. 196–205 (June 1994)

22. Tullsen, D.M.: Simulation and modeling of a simultaneous multithreading proces-
sor. In: 22nd Annual Computer Measurement Group Conference (December 1996)

23. Verdú, J., Garćıa, J., Nemirovsky, M., Valero, M.: Analysis of traffic traces for
stateful applications. In: Proc. of NP3, Held in conjunction with HPCA-10, Madrid,
Spain (February 2004)

24. Verdú, J., Garćıa, J., Nemirovsky, M., Valero, M.: The Impact of Traffic Aggrega-
tion on the Memory Performance of Networking Applications. In: Proc. of MEDEA
Workshop, Held in conjunction with PACT-2004, France (September 2004)

25. Wolf, T., Franklin, M.A.: Commbench - a telecommunications benchmark for net-
work processors. In: Proc. of ISPASS, Austin, TX, USA (April 2000)

26. Jimenez, D., Lin, C.: Neural methods for dynamic branch prediction. ACM Trans-
actions on Computer Systems 20(4), 369–397 (2002)

27. Vintan, L., Iridon, M.: Towards a high performance neural branch predictor. In:
Proc. of IJCNN, vol. 2, pp. 868–873 (July 1999)

28. McFarling, S.: Combining Branch Predictors. Technical Report TN-36, Compaq
Western Research Lab (June 1993)

http://pma.nlanr.net/Traces

Using Recursion to Boost ATLAS’s Performance

Paolo D’Alberto1 and Alexandru Nicolau2

1 Department of Electrical and Computer Engineering - Carnegie Mellon University
pdalbert@andrew.cmu.edu

2 Department of Computer Science - University of California at Irvine�

nicolau@ics.uci.edu

Abstract. We investigate the performance benefits of a novel recursive
formulation of Strassen’s algorithm over highly tuned matrix-multiply
(MM) routines, such as the widely used ATLAS for high-performance
systems.

We combine Strassen’s recursion with high-tuned version of ATLAS
MM and we present a family of recursive algorithms achieving up to 15%
speed-up over ATLAS alone. We show experimental results for 7 differ-
ent systems.

Keywords: dense kernels, matrix-matrix product, performance opti-
mizations.

1 Introduction

In this paper, we turn our attention to a single but fundamental basic kernel in
dense and parallel linear algebra such as matrix multiply (MM) for matrices
stored in double precision.

In practice, software packages such as LAPACK [1] or ScaLAPACK are based
on a basic set of routines such as the basic linear algebra subroutines BLAS [2,3].
Moreover, The BLAS is based on an efficient implementations of the MM kernel.

In the literature, we find an abundant collection of algorithms, implementa-
tions and software packages (e.g., [4,5,6,7,8,9,10,11]), that aim at the efficient
solution of this basic kernel. However, among all ATLAS [11] is one of the most
widely recognized and used.

In today’s high performance computing, the system performance is the result
of a fine and complicated relation between the constituent parts of a processor
–i.e., the hardware component, and the sequence of instructions of an appli-
cation –i.e., the software component. For example, ATLAS [11] is an adaptive
software package implementing BLAS that addresses the system-performance
problem by careful adaptation of the software component. In practice, ATLAS
generates an optimized version of MM tailored to the specific characteristics of
the architecture and ATLAS does this custom installation by an combination
of micro-benchmarking and an empirical search of the code solution space. In

� This work has been supported in part by NSF Contract Number ACI 0204028.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 142–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Recursion to Boost ATLAS’s Performance 143

this work, we show how an implementation of Strassen’s algorithm can further
improve the performance of even highly-tuned MM such as ATLAS.

In the literature, other approaches have been proposed to improve the classic
formulation of MM by using Strassen’s strategy [12] (or Winograd’s variant). In
fact, Strassen’s algorithm has noticeably fewer operations O(nlog2 7) = O(n2.86)
than the classic MM algorithm O(n3) and, thus, potential performance benefits.
However, the execution time of data accesses dominates the MM performance
and this is due to the increasing complexity of the memory hierarchy realty.

In fact, experimentally, Strassen’s algorithm has found validation by several
authors [13,14,5] for simple architectures, showing the advantages of this new
algorithm starting from very small matrices or recursion truncation point
(RP) [15]. The recursion point is the matrix size n1 for which Strassen’s algo-
rithm yields to the original MM. Thus, for a problem of size n = n1, Strassen’s
algorithm has the same performance of the original algorithm, and, for every
matrix size n ≥ n1, Strassen’s algorithm is faster than the original algorithm.
With the evolution of the architectures and the increase of the problem sizes, the
researcher community witnessed the RP increasing [16]. We now find projects
and libraries implementing different version of Strassen’s algorithm and consid-
ering its practical benefits [15,17,18], however with larger and larger RP, mining
the practical use of Strassen’s algorithm.

In this paper, we investigate recursive algorithms for an empirical RP deter-
mination and we embody our ideas so as to combine the high performance of
tuned dense kernels –at the low level– with Strassen’s recursive division pro-
cess –at the high level– into a family of recursive algorithms. We present our
experimental results for 7 systems where we tested our codes.

Our approach has the following advantages over previous approaches. First,
we do not pad the original matrices so as to have even-size or, worse, power-of-
two matrices [12]. Second, our codes have no requirements on the matrix layout,
thus, they can be used instead of other MM routines (ATLAS) with no modifi-
cations or extra overhead to change the data layout before and after the basic
computation (unlike the method proposed in [18]). In fact, we assume that the
matrices are stored in row-major format and, at any time, we can yield control
to a highly tuned MM such as ATLAS’s dgemm(). Third, we propose a balanced
recursive division into subproblems, thus, the codes exploit predictable perfor-
mance; unlike the division process proposed by Huss-Lederma et al. [15] where
for odd-matrix sizes, they divide the problem into a large even-size problem, on
which Strassen can be applied, and a small, and extremely irregular, compu-
tation. Fourth, we investigate recursive algorithms that can unfold the division
process more than once so to achieve further performance (in contrast to [15,18]
where the unfolding is limited to one level).

The paper is organized as follows. In Section 2, we present a generalization
of Strassen’s algorithm better suited for recursion. In section 3, we present our
techniques to determine the RP for our codes. In Section 4, we present our
experimental results. Finally, Section 5, we present our concluding remarks.

144 P. D’Alberto and A. Nicolau

2 Strassen’s Algorithm for Any Square-Matrix Sizes

In this section, we show that Strassen’s MM algorithm can be generalized quite
naturally and more efficiently than previous implementations available in the
literature [12,18,15] so that it can be applied to any square-matrix size.

From here on, we identify the size of a matrix A ∈ M
m×n as σ(A) = m × n.

We assume that an operand matrix A of size σ(A) = n × n is logically composed
by four near square matrices; that is, every submatrix has number of rows r
and number of columns c that differ by at most one, i.e., |r − c| ≤ 1, [9].

The classical MM of C = AB can be expressed as the multiplication of
the submatrices as follows: C0 = A0B0 + A1B2, C1 = A0B1 + A1B3, C2 =
A2B0+A3B2 and C3 = A2B1+A3B3. The computation is divided in four basic
computations, one for each submatrix composing C. Thus, for every matrix Ci

(0 ≤ i ≤ 3), the classical approach computes two products, for a total of 8 MMs
and 4 matrix additions (MA).

Notice that every product is the MM of near square matrices and it computes
a result that has the same size and shape of the submatrix destination Ci.
Furthermore, if we compute the products recursively, each product is divided in
further four subproblems on near square matrices [9].

Strassen proposed to divide the problem into only 7 MMs and to introduce
18 matrix additions/subtractions. When the matrices have power-of-two sizes,
n = 2k, all multiplications and additions are among square matrices of the same
sizes even if the computation is recursively carried on. We adapt Strassen’s
algorithm so as to compute the MM for every square matrix size as follows:
C0 = M1 + M4 − M5 + M7, C1 = M2 + M4, C2 = M3 + M5 and C3 =
M1 + M3 − M2 + M6 where every Mi is defined as follow:

M1 = T0T1 with T0 = A0 + A3 of size σ(T0) = �n� × �n�,
and with T1 = B0 + B3 of size σ(T1) = �n� × �n�
thus σ(M1) = �n� × �n�

M2 = T2B0 with T2 = A2 + A3 of size σ(T2) = σ(M2) = �n� × �n�
M3 = A0T3 with T3 = B1 + B3 of size σ(T3) = σ(M3) = �n� × �n�
M4 = A3T4 with T4 = B2 − B0 of size σ(T4) = σ(M4) = �n� × �n�
M5 = T5B3 with T5 = A0 + A1 of size σ(M5) = σ(T5) = �n� × �n�
M6 = T6T7 with T6 = A2 − A0 and T7 = B0 + B1

of size σ(M6) = σ(T6) = σ(T7) = �n� × �n�
M7 = T8T9 with T8 = A1 − A3 of size σ(T8) = �n� × �n�

and T9 = B2 + B3 of size σ(T8) = �n� × �n�
and σ(M7) = �n� × �n�

As result of the division process, the matrices Ai, Bi and Ci are near square
matrices as in the classic algorithm but MA and MMs must be re-defined.

First, we generalize matrix addition. Intuitively, when the resulting matrix
X is larger than Y or Z, the computation is performed as if the matrix operands

Using Recursion to Boost ATLAS’s Performance 145

are extended and padded with zeros. Otherwise, if the result matrix is smaller
than the operands, the computation is performed as the matrix operands are
cropped to fit the result matrix. See a simple implementation for the addition
of two generic matrices in Figure 1.

/* C = A+B */
void Add(Mtype *c, int McolC, int mC, int pC,

 Mtype *a, int McolA, int mA, int pA,
 Mtype *b, int McolB, int mB, int pB) {

int i,j,x,y;

/* minimum sizes */
 x = min(mA,mB); y = min(pA,pB);

for (i=0; i<x; i++) {
/* core of the computation */
for (j=0;j<y;j++) c[i*McolC+j] = a[i*McolA+j] + b[i*McolB+j];

if (y<pA) c[i*McolC+y] = a[i*McolA+y]; /* A is larger than B */
else if (y<pB) c[i*McolC+y] = b[i*McolB+y]; /* B is larger than A */

 }

/* last row */
if (x<mA) { /* A is taller than B */
for (j=0;j<y;j++) c[x*McolC+j] = a[x*McolA+j];

if (y<pA) c[x*McolC+y] = a[x*McolA+y];
else if (y<pB) c[x*McolC+y] = b[x*McolB+y];

 }
else if (x<mB) { /* B is taller than A */
for (j=0;j<y;j++) c[x*McolC+j] = b[x*McolB+j];

if (y<pA) c[x*McolC+y] = a[x*McolA+y];
else if (y<pB) c[x*McolC+y] = b[x*McolB+y];

 }
}

Fig. 1. Addition C-code

Second, we generalize matrix multiplication as follows: X = Y ∗ Z where
σ(X) = m × n, σ(Y) = m × q and σ(Z) = r × n so as ci,j =

∑min(q,r)
k=0 y(i, k) ∗

z(k, j).
Notice that the product A0B0, which is a term of M1, is a necessary prod-

uct and it is required for the computation of C0; in contrast, A0B3 is an ar-
tificial product, computed in the same expression, and it must be reduced by
MAs (e.g., M1 + M4). The algorithm previously defined computes correctly all
necessary products and it annihilates all artificial products.

Both MA and MM, as previously defined, introduce negligible overheads. In
fact, the matrices involved in the computations are always near square matri-
ces (i.e., their sizes may differ by at most one) and, thus, the extra control is
negligible for the matrix sizes tested in this work.1 We explain how the two
approaches, that is, our version of Strassen’s and tuned ATLAS routines are
combined in Section 3.

In our codes, the matrix are stored in row-major format and we do not apply
any recursive layout strategy as in [18], for the following three reasons. First,
1 Furthermore, we use the highly tuned ATLAS dgemm() to reduce further the effects

on the overall performance.

146 P. D’Alberto and A. Nicolau

modern memory hierarchies use (4+ way) associative caches for which the effects
of cache interferences, due to the matrix layout, is relatively minimal. Second,
the MAs in the Strassen’s algorithm create a smaller working space where the
operands are stored dynamically, so the effect of interference can be reduced
further. Third and last, non-standard layout complicates the development of
correct and efficient leaf-computation routines for any square matrices; in fact,
these leaf routines must be tailored to the type of layout.

The simplicity of our code in conjunction with the performance improvements
achievable make our approach a good strategy addition to the already widely
used software packages such as ATLAS, especially for large problems. Our pseudo
code is presented in Figure 2. We also reorganized the original Strassen’s com-
putation so as to use only three temporary matrices, as already proposed in the
literature [15].

/*
* | C0 C1 | | A0 A1 | | B0 B1 |
* | C2 C3 | = | A2 A3 | * | B2 B3 |
*/

C mul(A, B) {

if (Problem_Size < leaf_strassen)
 CC = AA atlas_dgemm BB;
else {
 Allocate_workspace(T1,T2,M1);

 T1 = A0 add A3; T2 = B0 add B3;
 M1 = T1 mul T2;
 C0 = M1; C3 = M1;

 T1 = A2 add A3;
 M2 = T1 mul B0;
 C2 = M2; C3 = C3 sub M2;

 T1 = B1 sub B3;
 M3 = A0 mul T1;
 C1 = M3; C3 = C3 add M3;

 T1 = B2 sub B0;
 M4 = A3 mul T1;
 C0 = C0 add M4; C2 = C2 add M4;

 T1 = A0 add A1;
 M5 = T1 mul B3;
 C0 = C0 sub M5; C1 = C1 add M5;

 T1 = A2 sub A0; T2 = B0 add B1;
 M6 = T1 mul T2;
 C3 = C3 add M6;

 T1 = A1 sub A3; T2 = B2 add B3;
 M7 = T1 mul T2;
 C0 = C0 add M7;

 Deallocate_workspace();
 }
}

Fig. 2. Pseudo Strassen’s Algorithm

Using Recursion to Boost ATLAS’s Performance 147

3 Empirical Considerations on the Recursion Truncation
Point

In this section, we propose a technique for determining when the algorithm’s
strategy must change so as to stop Strassen’s and to yield control to the regular
MM, the recursion truncation point (RP). In other words, we consider the prob-
lem of when to have a recursive call (to Strassen’s MM) or a call to an highly
tuned dgemm (e.g., such as the one offered by ATLAS). We show in Section 4
that the optimal strategy is a function of the problem size and of the underlying
system.

Strassen’s algorithm embodies different locality properties because its two
basic computations exploit different data locality: MM has spatial and temporal
locality, and MA has only spatial locality. In fact, consider that the matrix
operands fit a cache level, for example L2, but do not fit the lower cache, such as
L1. Note that the MA does not exploit data locality at the lower levels of cache
and, actually, data accesses to/from the CPU during the MA will flush previous
contents. In fact, MAs have little data reuse and, thus, data-access latency time
cannot be circumvented or hidden; for these applications a memory hierarchy
actually slows down the overall performance. In contrast, highly tuned MMs
exploit temporal and spatial locality at every level of cache, thus, having fast
memory accesses and fast computations. In a hierarchical memory system, the
two computations may have drastically different performance. Thus, Strassen’s
algorithm has a performance edge versus the regular MM only when the savings
in MMs, is higher (in execution time) than the cost of the extra additions.

In the literature, we find different and, often contradicting, experimental re-
sults about the RP. In fact, a few authors have found that for any problem size
Strassen’s (or Winograd’s variation) is always faster; a few authors have found
that the RP is about 500 for some systems and implementations; and a few
others, citing private communications, claim that the RP is larger than 1000
[14,16,5,15,18].

Even though the RP is machine and problem-size dependent, however it is
straightforward to determine, even if tedious and time consuming. We propose
to determine the RP empirically by direct measure of Strassen’s MM execution
and we do this for recursive Strassen’s algorithm with different unfolding levels.
This idea is very similar to the one applied for the solution search in ATLAS.

4 Experimental Results

We installed our codes and the software package ATLAS on 7 different architec-
tures, Table 1. Once the installation is finished, we then determined experimen-
tally the RP n1 based on a simple linear search. Note that for the Fosa system,
we could find no problem size for which Strassen’s is faster than ATLAS’s.

In the following, we present the experimental results for five systems. We use
the following terminology: S-k-unfold is the Strassen algorithm for which k is
the number of times the recursion unfolds before yielding to ATLAS dgemm.

148 P. D’Alberto and A. Nicolau

Table 1. Systems

System Processors n1 Figure

Fujitsu HAL 300 SPARC64 100MHz 400 Fig. 3

Ultra 5 UltraSparc2 300MHz 1225 Fig. 4

Ultra-250 UltraSparc2 2 @ 300MHz 1300 No

Sun-Fire-V210 UltrasparcIII 1GHz 1150 Fig. 5

ASUS AthlonXP 2800+ 2GHz 1300 Fig. 6

Unknown server Itanium 2 @ 700MHz 2150 Fig. 7

Fosa Pentium III 800MHz N/A No

Fig. 3. Fujitsu HAL 300

Fig. 4. Ultra 5

(Note we opted to omit negative relative performance and no bar is presented in
the charts instead.) The performance obtained by the systems in Table 1, and
presented from Figure 3 to Figure 7, are obtained by the collection of the best
performance among several trials.

Note that the S-2-unfold algorithm is beneficial for very large problems and for
specific systems. However, for the systems in Table 1, the performance improve-
ments are some how limited. We have performance measures of the S-3-unfold
algorithm but for the current set of systems, the algorithm has no performance
advantage over ATLAS and, thus, we do not report them.

From Figure 3 to Figure 7, we present two measures of performance: relative
execution time over ATLAS, and relative MFLOPS for ATLAS dgemm over peak

Using Recursion to Boost ATLAS’s Performance 149

Fig. 5. Sun-Fire-V210

Fig. 6. ASUS A7N8X

Fig. 7. Linux Itanium 2 700 MHz

performance. In fact, the execution time is what any final user cares comparing
two different algorithms. However a measure of performance for ATLAS shows
whether or not Strassen’s algorithms improve the performance of a MM kernel
which is either efficiently or poorly designed.

5 Conclusions

We have presented a practical implementation of Strassen’s algorithm, which
applies a recursive algorithm to exploit highly tuned MMs, such as ATLAS’s.

150 P. D’Alberto and A. Nicolau

We differ from previous approaches because we investigate a family of recursive
algorithms with a balanced division process, which, in turn, makes the algorithm
performance more predictable.

We have tested the performance of our approach on 7 systems with different
level of recursion unfolding, and we have shown that not always Strassen is
applicable. We have also shown that for modern systems the RP can be quite
different and quite large.

As future work, we will investigate the implementation of a single adaptive
recursive algorithm. In fact, the ideas implemented in our codes yield to a natural
approach for the automatic determination of the RP for a recursive Strassen’s
algorithm for different systems.

References

1. Anderson, E., Bai, Z., Bischof, C., Dongarra, J.D.J., DuCroz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK User’
Guide, Release 2.0., 2nd edn. SIAM (1995)

2. Kagstrom, B., Ling, P., van Loan, C.: Algorithm 784: GEMM-based level 3 BLAS:
portability and optimization issues. ACM Transactions on Mathematical Soft-
ware 24, 303–316 (1998)

3. Kagstrom, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark. ACM
Transactions on Mathematical Software 24, 268–302 (1998)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
In: Proceedings of the 19-th annual ACM conference on Theory of computing, pp.
1–6 (1987)

5. Higham, N.J.: Exploiting fast matrix multiplication within the level 3 BLAS. ACM
Trans. Math. Softw. 16, 352–368 (1990)

6. Frens, J., Wise, D.: Auto-Blocking matrix-multiplication or tracking BLAS3 per-
formance from source code. In: Proc. 1997 ACM Symp. on Principles and Practice
of Parallel Programming, vol. 32, pp. 206–216 (1997)

7. Eiron, N., Rodeh, M., Steinwarts, I.: Matrix multiplication: a case study of algo-
rithm engineering. In: Proceedings WAE 1998, Saarbru̇cken, Germany (1998)

8. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: Pro-
ceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), pp.
1–27. IEEE Computer Society Press, Los Alamitos (1998)

9. Bilardi, G., D’Alberto, P., Nicolau, A.: Fractal matrix multiplication: a case study
on portability of cache performance. In: Workshop on Algorithm Engineering 2001,
Aarhus, Denmark (2001)

10. Goto, K., van de Geijn, R.: On reducing tlb misses in matrix multiplication. Tech-
nical Report Technical Report TR-2002-55, The University of Texas at Austin,
Department of Computer Sciences (2002)

11. Demmel, J., Dongarra, J., Eijkhout, E., Fuentes, E., Petitet, E., Vuduc, V., Wha-
ley, R., Yelick, K.: Self-Adapting linear algebra algorithms and software. In: Pro-
ceedings of the IEEE, special issue on Program Generation, Optimization, and
Adaptation, vol. 93 (2005)

12. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 14,
354–356 (1969)

Using Recursion to Boost ATLAS’s Performance 151

13. Brent, R.P.: Error analysis of algorithms for matrix multiplication and triangular
decomposition using Winograd’s identity. Numerische Mathematik 16, 145–156
(1970)

14. Brent, R.P.: Algorithms for matrix multiplication. Technical Report TR-CS-70-157,
Stanford University (1970)

15. Huss-Lederman, S., Jacobson, E., Tsao, A., Turnbull, T., Johnson, J.: Implemen-
tation of Strassen’s algorithm for matrix multiplication. In: Supercomputing 1996.
Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM), p.
32. ACM Press, New York (1996)

16. Bailey, D.H., Gerguson, H.R.P.: A Strassen-Newton algorithm for high-speed par-
allelizable matrix inversion. In: Supercomputing 1988. Proceedings of the 1988
ACM/IEEE conference on Supercomputing, pp. 419–424. IEEE Computer Society
Press, Los Alamitos (1988)

17. Bilmes, J., Asanovic, K., Chin, C., Demmel, J.: Optimizing matrix multiply using
PHiPAC: a portable, high-performance, Ansi C coding methodology. In: Interna-
tional Conference on Supercomputing (1997)

18. Thottethodi, M., Chatterjee, S., Lebeck, A.: Tuning Strassen’s matrix multiplica-
tion for memory efficiency. In: Proc. Supercomputing, Orlando, FL (1998)

Towards Generic Solver of Combinatorial

Optimization Problems with Autonomous
Agents in P2P Networks�

Shigeaki Tagashira, Masaya Mito, and Satoshi Fujita

Department of Information Engineering
Graduate School of Engineering, Hiroshima University

{shigeaki,mito,fujita}@se.hiroshima-u.ac.jp

Abstract. This paper proposes a new class of parallel branch-and-bound
(B&B) schemes. The main idea of the scheme is to focus on the func-
tional parallelism instead of conventional data parallelism, and to support
such a heterogeneous and irregular parallelism by using a collection of au-
tonomous agents distributed over the network. After examining several
implementation issues, we describe a detail of the prototype system imple-
mented over eight PC’s connected by a network. The result of experiments
conducted over the prototype system indicates that the proposed parallel
processing scheme significantly improves the performance of the under-
lying B&B scheme by adaptively switching exploring policies adopted by
each agent participating to the problem solving.

Keywords: P2P system, combinatorial optimization problem, parallel
branch-and-bound, autonomous agents, winner determination problem.

1 Introduction

According to the recent advancement of network technologies, it emerges an
increasingly strong requirement for high performance computing over the large-
scale interconnection networks. In general, a high complexity of server procedures
will limit the scalability of distributed systems, and it motivates the study of
fully distributed systems such as grid computers and pure peer-to-peer (P2P)
systems. A P2P system consists of a collection of host computers called nodes or
peers [1,5], and those nodes are connected with each other by an interconnection
network such as the Internet. In recent years, a lot of important services such
as shared file systems and Domain Name Systems (DNS) are constructed over
the P2P model, and they have been used in many application fields, such as
electronic bulletin board, network auction systems, and so on.

In this paper, we propose a new application field for such fully distributed sys-
tems, and discuss several implementation issues to realize it in actual distributed
environments. As the concrete target of our research, we will focus our attention
to a distributed execution of parallel branch-and-bound (B&B) schemes [2,6],

� This research was partially supported by the Grant-in-Aid for Scientific Research.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 152–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Generic Solver of Combinatorial Optimization Problems 153

which have been applied to many important fields as a generic solver to gen-
erate an optimum solution to computationally hard optimization problems in a
relatively short computation time. In addition, as the concrete problem to be
solved, we will focus on the Winner Determination Problem (WDP, for short) in
combinatorial auctions, which has also been studied extensively in recent years
to realize a fair match-making among individual customers participating to e-
Markets and e-Auctions (a formal definition of WDP will be given in the next
section). It should be worth noting that in most of previous work, parallel B&B
schemes are designed by merely focusing on the data parallelism that naturally
exists in exhaustive tree search schemes. Although it would be slightly compli-
cated compared with a simple OR parallelism, such a small difference is mainly
due to the mutual dependency between the upper and the lower bounds, which
could be efficiently handled by adopting an appropriate broadcast mechanism
within the framework of data parallelism.

In our recent paper [4], we proposed a new class of parallel B&B schemes that
could naturally be applied to fully distributed systems such as P2P systems. We
examined several design issues toward the implementation of a prototype of the
distributed B&B system, and conducted preliminary experiments. In the current
paper, we report a detail of our first prototype system. The prototype system is
implemented on eight nodes, embedded with three schemes to select appropriate
policies (i.e., functions) for exploring a given portion of the search tree. Several
experiments were conducted to evaluate the goodness of the proposed system.
The result of experiments shows that among three schemes, a dynamic one based
on the feedback from participating agents exhibits a good performance compared
with the other schemes including those with fixed and uniform policies.

The remainder of this paper is organized as follows. Section 2 describes nec-
essary definitions and concepts. Section 3 describes an overview of the proposed
system, and in Section 4, we propose three schemes for selecting an appropriate
policy. The result of experiments is given in Section 5, and finally in Section 6,
we conclude the paper with future problems.

2 Preliminaries

2.1 Problem

Let S = {x1, x2, . . . , xm} be a set of goods sold by the auctioneer. In combina-
torial auctions, buyers submit a set of bids to the auctioneer, where a bidding
is made on a subset of goods instead of a single good as in classical auctions,
and the auctioneer selects a subset of those bids in such a way to maximize the
revenue of the auctioneer. A bidder of a selected bid is called a “winner” of the
auction. In this paper, we assume that each bidder can submit any number of
bids, and can be a winner of several bids, without loss of generality. Note that
this assumption enables us to separate bids from bidders.

Let B = {B1, B2, . . . , Bn} be a set of bids submitted by the bidders. Each bid
Bi ∈ B is an ordered pair 〈Si, vi〉, where Si is a nonempty subset of S called
bidset (or simply “bid”) and vi is an integer referred to as the bid value (or

154 S. Tagashira, M. Mito, and S. Fujita

simply “value”). A subset B′ of B is said to be feasible if any two bids in the
subset do not intersect with each other. In addition, a bid Bi(∈ B) is said to
be feasible with respect to B′(⊆ B) if set B′ ∪ {Bi} is feasible. The revenue
of subset B′(⊆ B), denoted by r(B′), is the sum of bid values contained in B′.
The winner determination problem (WDP) is the problem of, given a finite set
of bids B, finding a feasible subset B′ of B with a maximum revenue.

2.2 Branch-and-Bound Method

The basic idea of the branch-and-bound (B&B) method for solving WDP is
described as follows. In what follows, a feasible subset of B is referred to as a
partial solution. Let B′ be a partial solution. In a list scheduling (LS, for
short) method, all bids in B are first given a total ordering, and those bids are
sequentially selected to be contained in the partial solution, in such a way that
any two selected bids do not intersect with each other. It is known that LS
is a “complete” scheme in the sense that for any instance, there exists a total
ordering of bids in B to generate an optimum solution under the scheme. In
other words, by attempting LS for all of the n! permutations, we can always
find an optimum solution to WDP. This idea can be realized by conducting an
exhaustive search in a tree structure satisfying the following three properties: 1)
each vertex of the tree corresponds to a partial solution, 2) the root of the tree
corresponds to a partial solution with respect to an empty set of bids, and 3) if
a vertex x corresponds to a partial solution, then a child of x corresponds to a
partial solution that is obtained by greedily appending a single bid to x, which
is not contained in x and does not intersect with any bid in x. Note that in
such trees, any path from the root to a leaf corresponds to a permutation over
a feasible subset of B.

The B&B method performs a depth-first (or best-first) search over the above
tree structure in an exhaustive manner. A trick to reduce the execution time is to
“prune” subtrees if it is guaranteed that there can exist no better solutions than
the currently best one on the subtrees. Such a guarantee is generally realized
by evaluating an upper bound for each partial solution, which implies that any
solution generated from the partial solution can not be better than that bound.

3 Proposed Scheme

3.1 Design Concept

In this paper, we consider a distributed execution of parallel B&B schemes. The
main issues for realizing efficient B&B schemes are: 1) how to find a better
partial solution quickly, and 2) how to calculate a sharp upper bound quickly. It
should be worth noting that those two issues are closely related with each other.
That is, the time before finding a better partial solution could be reduced by
pruning as many meaningless branches as possible, and the possibility of pruning
a branch at a given upper bound could generally be increased by providing a
better partial solution.

Towards Generic Solver of Combinatorial Optimization Problems 155

In our proposed scheme, the function of each agent is designed by focusing
on the following two points [4]. The first point is concerned with the upper
bound; i.e., there is a trade-off between the cost and the accuracy of calculating
an upper bound. That is, in general, we could obtain a sharper upper bound by
spending more calculation time. However, since the objective of calculating a
sharp upper bound is to prune meaningless branches as much as possible, in this
context, this problem could be regarded as a simple YES/NO problem (i.e., the
result is whether we could prune a subtree or not). Hence in order to realize a
pruning with a low calculation cost, we should prepare several procedures for
calculating upper bounds, and should apply them sequentially in the order of
lower calculation cost. The next point we have to consider is about the lower
bound; i.e., there is a dilemma in determining the expansion order of partial
solutions. In general, a bid order that quickly derives a better lower bound could
not derive partial solutions that are unlikely to be pruned by upper bounds.
Such a dilemma could particularly be observed when we could determine the
bid selecting order for each partial solution independently. More concretely, a
subtree that could not be efficiently pruned is a branch whose upper bound could
not be accurately calculated, which is generally different from a branch that is
likely to derive a better lower bound.

The above problems are due to the fact that we have to make a selection
from several candidates , and thus, could be relaxed by introducing the notion
of parallel execution. First, as for the trade-off on the upper bound, we could
resolve it by preparing (at least) two kinds of agents, i.e., basic agent and ad-
vanced agent, and by executing those agents concurrently, in such a way that:
1) basic agents calculate the initial upper bound for each partial solution, and
2) advanced agents try to improve the initial upper bound for several selected
partial solutions. In the selection of partial solutions, for example, we could take
into account the success rate of previously executed pruning operation, the level
of partial solution in the search tree, and the expected calculation time for the
improvement. In realizing such a mechanism in distributed environments with
no centralized control, we have to design each agent in such a way that those
selections are conducted in a heuristic and autonomous manner.

On the other hand, as for the dilemma on the way of expansion, we could
resolve the problem by expanding several branches simultaneously, while we
have to introduce a kind of strategies since the amount of available resources
is finite. One possible strategy is to use the following two phase control; i.e.,
initially, a quick improvement of the lower bound is given a higher priority, and
after observing the saturation of the improvement speed, it switches to another
heuristic in which a branch that is unlikely to be pruned is given a higher priority.

3.2 Upper Bound Agents

In the prototype system that will be described in the next section, the following
two types of upper bound (UB) policies are prepared, and each policy continu-
ously tries to improve the upper bound on partial solutions.

156 S. Tagashira, M. Mito, and S. Fujita

P0 P1 P2

Network

Subproblem Queue

Manager

Agent

Host Database

UB Cache

B&B
Solver

Agent
Core

UB Database

Manager
Core

Agent

UB Cache

B&B
Solver

Agent
Core

Agent

UB Cache

B&B
Solver

Agent
Core

Fig. 1. System configuration of the first prototype system

Type TRV. An agent of this type calculates an upper bound on the revenue
that could be derived from the partial solution, based on a heuristic estimation of
expected revenue [7]. Given feasible set of bids B′(⊆ B), let us define an estimated
revenue with respect to B′ as h(B′) def=

∑
x∈S′

{
maxSj�x,Sj∩(S−S′)=∅

(
vi

|Si|
)}

where S′ is the set of goods that are not contained in bids in B′. By using
the calculated value, an upper bound on the partial solution B′ is calculated as
r(B′) + h(B′) since it has already selected bids with total revenue r(B′).

Type LP. An agent of this type calculates an upper bound for each partial
solution B′ by solving a linear programming (LP) defined as follows:

maximize
∑

Bi �∈B′,Si∩(S−S′)=∅
vipi

subject to
∑

Bi �∈B′,Si∩(S−Si)=∅
ajipi ≤ 1 for all j ∈ S

where S′ is the set of goods that are not contained in bids in B′, 0 ≤ pi ≤ 1
and aji = 1 if xj ∈ Si and 0 otherwise. In the above formulation, several bids
containing the same good in common can be selected in a fractional manner with
fraction pi, as long as the sum of such fractions does not exceed one. Note that
an optimum solution to the above LP is not smaller than an optimum solution
to the original problem.

3.3 System Configuration

Figure 1 illustrates the configuration of our first prototype system. In the system,
each node is associated with its own agent, and a manager is associated to the
node who owns a problem to be solved (i.e., we invoke one manager for each
instance to be solved). A manager consists of a host database, an upper bound
database, a subproblem queue (s-queue, for short), and the manager core, which

Towards Generic Solver of Combinatorial Optimization Problems 157

realizes the communication with agents. Although the given instance is handled
by the manage in a centralized manner, we are planning to modify it in such a
way that the information on the given instance is shared by the participants in
a distributed manner (as in Distributed Hash Table, for example). On the other
hand, each agent consists of an upper bound cache, B&B solver, and an agent
core, which realizes the management of the agent and the communication to the
manager.

The basic procedure for solving a given problem over the system is as follows.

– (Initialization) After receiving a problem to be solved, the manager par-
titions it into several subproblems, and puts them into the s-queue in an
appropriate order. In the default setting of our prototype system, the num-
ber of subproblems is fixed to 64, and they are sorted in a non-increasing
order of a trivial upper bound of the root vertex. On the other hand, each
agent who wants to participates to the problem solving registers itself to
the host database by sending a message to the manager, and receives the
specification of the problem with a set of possible policies from the manager.

– To acquire a subproblem to be solved, each agent sends a request message
to the manager. Upon receiving the message, the manager sends back a
subproblem contained in the head of the s-queue, in such a way that no two
agents with the same policy receive the same subproblem.

– Each agent tries to solve the received subproblem by using the B&B solver
with its own policy, and after obtaining a solution to the subproblem, it im-
mediately replies it to the manager. Upon receiving the solution, the man-
ager removes the corresponding subproblem from the s-queue, and notifies
the fact to all nodes that have been assigned the same subproblem to in-
terrupt their execution. The interrupted node discards the corresponding
subproblem, and tries to acquire the next subproblem from the manager.

– Whenever it finds a better lower bound, the agent informs the fact to the
manager, which will be broadcast to all agents participating to the system.

– The agent stops the execution when the s-queue contains no subproblem
corresponding to its policy. In addition, when the s-queue becomes empty,
the manager terminates its operation after returning the solution to the user.

As an option, we could set up the system such that the upper bounds on
subproblems are shared by all participants in the following manner. In the pro-
totype system, upper bounds calculated by each node is locally stored in the
upper bound cache with a bit string representing unexplored set of bids. When
the option is selected, each node periodically uploads the (differential) contents
of this cache to the manager, which will be downloaded by the other agents via
a periodical reference to the manager.

4 Switching of Policy

In this section, we propose three schemes to select an appropriate policy for
solving a given subproblem in each node. The first two schemes are static ones

158 S. Tagashira, M. Mito, and S. Fujita

and the last scheme is a dynamic one. In the static schemes, we adopt LP as the
“background” policy, and selectively apply TRV to the instances that could be
efficiently solved with it. This approach is based on an observation on the result
of our preliminary experiments, in which we compared two policies in terms of
the number of solved instances within 1000 seconds and the average computa-
tion time for those solved instances (a concrete description of the examined 108
instances will be given in Section 5.1). The result of the preliminary experiments
is summarized as follows: 1) the number of solved instances is 76 for LP and 55
for TRV, and 2) the average computation time is 52.2 sec for LP and 49.0 sec
for TRV. Thus, we can conclude that LP could solve more instances than TRV,
whereas it takes a slightly longer time than TRV. In other words, LP is a good
selection for general instances, but for several specific instances, TRV beats the
performance of LP. In fact, in the experiment, we discovered an instance that
could be solved by TRV in 110 times faster than LP.

4.1 First Static Scheme

The first static scheme is based on an evaluation of the trade-off between TRV
and LP. In general, TRV should explore a larger space than LP due to the inac-
curacy of the derived upper bound. Thus, if the time required for the additional
exploration is shorter than the time required for the calculation of an upper
bound in LP, then TRV should be selected instead of LP. The size of the addi-
tional space and the time required for the calculation of an upper bound could
be approximated by measuring the accuracy of the upper bound at the root
vertex of the search tree and its concrete calculation time. Let UB(p) denote
the upper bound calculated at the root vertex with policy p, and T (p) denote
the calculation time. Then, the first static selection scheme selects policy TRV
if and only if UB(LP)/UB(TRV) > θupper and T (LP)/T (TRV) > θtime for some
thresholds θupper and θtime.

4.2 Second Static Scheme

In the preliminary experiment, we found that an instance could efficiently be
solved by TRV if it has an (optimum) solution consisting of small number of
bids. More concretely, TRV is better than LP if the solution contains less than
ten bids, and the superiority of the policy will be decreased as increasing the
number of bids contained in the solution. Let m̃ be an estimated number of bids
contained in an optimum solution, a formal definition of which will be given
later. According to the above observations, we designed the second static scheme
as follows: The scheme selects TRV with probability 1 if m̃ ≤ θ1, and selects
TRV with probability 0.5 if θ1 < m̃ ≤ θ2, where θ1 and θ2 are predetermined
thresholds. The estimation of value m̃ could be conducted as follows. Let d be
an average number of bids conflicting with a bid. For each i ≥ 1, let ai be an
integer defined as follows:

ai
def=

{
n if i = 1(
1 − d

n

)
ai−1 − 1 otherwise

Towards Generic Solver of Combinatorial Optimization Problems 159

Note that this formula provides an estimation of the number of selectable bids
after selecting the first i bids, in the following sense: By selecting the (i − 1)st
bid, among ai−1 remaining candidates, d × ai−1/n bids become unselectable in
expectation, which reduces the number of candidate bids from ai−1 to ai−1−(d×
ai−1/n+1). Note that this estimation assumes no locality on the selection of bids.
By solving the above recurrence, we have ai =

(
1 − d

n

)i (
n + n

d

) − n
d , and since

m̃ is equal to the smallest integer k such that ak = 0, we have m̃ = log 1/(d+1)
log(n−d)/n .

4.3 Dynamic Scheme

Next, we propose a dynamic scheme which adaptively selects an appropriate
policy according to the characteristics of the subproblems having been solved by
the agents. A concrete procedure for the proposed scheme is described as follows:

– The manager initializes local counters cL and cT to one.
– When a subproblem is sent out to an agent, the manager determines the

policy of the agent concerned with the subproblem to LP with probability
cL/(cL + cT) and to TRV with probability cT /(cL + cT).

– If it receives a solution from an agent with policy LP (resp. TRV), the man-
ager increments its local counter cL (resp. cT) by one.

It should be worth noting that the dynamic scheme could adapt itself to various
kinds of instances and could add new policies relatively easily (i.e., by simply
preparing a local counter corresponding to the new policy), although it would
take a relatively long time to converge to an appropriate policy.

5 Evaluation

5.1 Environment

To evaluate the goodness of the proposed scheme, we conducted several ex-
periments. The experiments was conducted over eight PCs with the following
specifications: CPU: Pentium4 3.2G, Memory: 2G, Network: 1GbE, Operating
System: FreeBSD 5.3. Two thresholds in the first static scheme are fixed as
θupper = 0.7 and θtime = 400; and those in the second static scheme are fixed as
θ1 = 10 and θ2 = 30. The option on the sharing of upper bounds is not selected,
and in all experiments, we fixed the timeout of each run to 1000 seconds.

As the benchmark set, we adopted three benchmark suites, Random, Uniform,
and Locality, a brief description of which could be stated as follows [8]:

Random: Each bid Bi is constructed by selecting ki goods from S without re-
placement and by assigning a bid value vi to it, where ki is a random value
drawn from {1, 2, . . . , m′}, where m′ ≤ m, and vi is a random value drawn
from {1, 2, . . . , Max}.

Uniform: Modify Random in such a way that the size of each bid is fixed to a
constant k.

160 S. Tagashira, M. Mito, and S. Fujita

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

(a) Random. (b) Uniform.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

(c) Locality.

Fig. 2. Computation time of each scheme

Locality: Modify Random in such a way that the goods selected by the bids follow
a locality according to the Zipf’s first law [9]1.

For each suite, we varied the average number of goods in a bid as 3, 6, and 9;
the total number of goods as 50, 200, and 350; and the number of bids is 100,
300, 500, and 700; i.e., we prepared 3 × 3 × 4 = 36 instances for each suite.

As an initial assessment, we evaluate the performance of the system by as-
signing LP to all agents (LPALL) or by assigning TRV to all agents (TRVALL).
In the experiment, we compare the number of instances (among 36 instances for
each suite) for which a given scheme exhibits the better performance than the
other scheme. The result is summarized as follows: for LPALL, such number of
instances for Random, Uniform, and Locality are 19, 9, and 30, respectively, and
for TRVALL, they are 9, 11, and 6, respectively. Thus, we can conclude that
LPALL is better than TRVALL for Uniform or Locality, and TRVALL is better
than LPALL for Random.

5.2 Results

Figure 2 compares the distribution of the computation time for each scheme.
From the figure, we could observe that:
1 In the law, the ith element wi in S is associated with a probability pi = 1/(i × Q),

where Q
def
=

∑|S|
i=1(1/i). Note that

∑|S|
i=1 pi = 1 holds by definition.

Towards Generic Solver of Combinatorial Optimization Problems 161

Table 1. The number of instances for which an optimum policy was selected

static 1 static 2

success failed success failed

Random 10 10 19 1

Uniform 13 15 27 1

Locality 31 5 14 22

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Instance No.

T
im

e
(s

)

LP(100) LP(75) LP(50) LP(25) LP(0) Dynamic

Fig. 3. Result for dynamic scheme

– The goodness of two static schemes depends on the class of given instances;
e.g., the first scheme is not good for Uniform and Random, and the second
scheme is not good for Locality.

– The performance of the dynamic scheme is relatively stable independent of
the class of instances; e.g., it is as good as LPALL for Uniform and Locality,
and it is as good as TRVALL for Random.

In order to examine the goodness of the static schemes in more detail, we verified
the appropriateness of the policy selected by the schemes. Table 1 shows the
number of instances for which an appropriate policy is successfully selected by
the schemes, where the selection with probability 0.5 in the second scheme is
considered to be successful. As is shown in the table, the first static scheme
could not select an appropriate policy except for Locality, which is due to the
inaccuracy of estimation at the root of the search tree. Conversely, the goodness
of the scheme for Locality is due to the tightness of the estimation at the root,
which makes the scheme to always select LP to generate a good solution.

On the other hand, the second static scheme could not select an appropriate
policy for Locality, although it could make an appropriate selection for Uniform
and Random. The badness for Locality is due to the inaccuracy of the number

162 S. Tagashira, M. Mito, and S. Fujita

Table 2. Probability of selection in Dynamic

Instance No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Probability [%] 99 13 93 97 97 4 31 96 1 1 39 6 6 1 60 1

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Subproblem No.

Pr
ob

ab
il

it
y

(%
)

No. 1

No. 6

No. 7

No. 14

Fig. 4. Temporal transition of selection probability

of bids in an optimum solution for the instances contained in Locality. In fact,
the actual number of bids contained in an optimum solution is 26,65, 28.54, and
25.83 for Random, Uniform, and Locality, respectively, whereas the estimated
number of bids are 30.68, 21.56, and 7.28, respectively.

In contrast to the static schemes, the dynamic scheme exhibits a stable per-
formance for all classes of the instances. An advantage of the dynamic scheme
is that it allows each agent to have its own policy. In order to examine the im-
pact of this advantage to the performance, we compare the performance of the
dynamic scheme with schemes with a fixed percentage of LP policy, where the
percentage is varied as 100%, 75%, 50%, 25%, and 0%. Figure 3 illustrates the
result for Random (the case of LP with x% is denoted as LP(x) in the figure),
and the probability of selecting LP is summarized for each instance in Table 2.
Note that this figure omits instances that could be solved in one second, and
of course, omits instances that could not be solved within 1000 seconds. From
the figure, we could observe the superiority of the dynamic scheme. Although
there are several instances for which the other schemes outperform the dynamic
scheme (e.g., instances No. 6 and 7), we could conclude that the dynamic scheme
could select an appropriate policy.

To see this in more detail, we evaluated how the probability of selecting LP
transits during the execution of the scheme. Figure 4 summarizes the result for
bad instances (No. 6 and 7) and good instances (No. 1 and 14). The horizontal

Towards Generic Solver of Combinatorial Optimization Problems 163

axis of the figure represents the sequence number of subproblems sent out to the
agents, and the vertical axis represents the probability of selecting LP for the
subproblem with a given sequence number. As is shown in the figure, for good
instances, it converges to an appropriate policy, although it takes relatively long
time before convergence. On the other hand, for bad instances, it often makes
a wrong decision, which causes unnecessary vibration of the probability. By a
detailed analysis of such instances, we found that such instances could be effec-
tively solved by appropriately solving a specific subproblem, and to efficiently
solve them, we have to select a specific policy, whereas the most of the remaining
subproblems do not strongly rely on the selection of the policy. An improvement
of the proposed dynamic scheme in such a way to in corporate with such a
situation is left as a future problem.

6 Concluding Remarks

In this paper, we proposed a new class of parallel B&B schemes, and described
a detail of our first prototype system implemented over eight PC’s. The result
of experiments conducted over the prototype system indicates that the dynamic
selection of exploring policies could improve the overall performance of the un-
derlying B&B scheme, and it could efficiently support the functional parallelism
residing in the original B&B scheme. We are now extending the prototype sys-
tem in such a way that the search space submitted by each node is shared by all
nodes participating to the problem solving.

References

1. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In: ICSI workshop on Design Issues in
Anonymity and Unobsevability, pp. 46–66 (July 2000)

2. Clausen, J., Perregaard, M.: On the best search strategy in parallel branch-and-
bound: Best-First Search versus Lazy Depth-First Search. Annals of Operations
Research 90(1), 1–17 (1999)

3. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complex-
ity of combinatorial auctions: Optimal and approximate approaches. In: Proc. IJCAI
1999, pp. 548–553 (1999)

4. Fujita, S., Tagashira, S., Qiao, C., Mito, M.: Distributed Branch-and-Bound Scheme
for Solving the Winner Determination Problem in Combinatorial Auctions. In: Proc.
AINA 2005, March 28–30, 2005, Tamkang University, Taiwan (2005)

5. Gnutella, http://gnutella.wego.com/
6. Portable Parallel Branch-and-Bound Library,

http://wwwcs.upb.de/fachbereich/AG/monien/SOFTWARE/PPBB/ppbblib.html
7. Sakurai, Y., Yokoo, M., Kamei, K.: An efficient approximate algorithm for winner

determination in combinatorial auctions. In: ACM Conf. on Electronic Commerce,
pp. 30–37 (2000)

8. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135(1-2), 1–54 (2002)

9. Zipf, G.K.: Human Behavior and Principle of Least Effort. Addison-Wesley, Boston
(1949)

http://gnutella.wego.com/
http://wwwcs.upb.de/fachbereich/AG/ monien/SOFTWARE/PPBB/ppbblib.html

New Evaluation Index of Incomplete Cholesky

Preconditioning Effect

Takeshi Iwashita1 and Masaaki Shimasaki2

1 Academic Center for Computing and Media Studies, Kyoto University,
Yoshida-Honmachi Sakyo-ku, Kyoto, Japan

iwashita@media.kyoto-u.ac.jp
2 Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura,

Nishikyo-ku, Kyoto, Japan
simasaki@kuee.kyoto-u.ac.jp

Abstract. In Incomplete LU (ILU) preconditioning, orderings often af-
fect the effect of preconditioning. The authors recently proposed a simple
evaluation way for orderings in the ILU preconditioning technique. The
present paper introduces the evaluation method in unstructured analy-
ses in which the effect of preconditioning is not easily estimated. The
evaluation index, which has a simple relationship with the matrix norm
of the remainder matrix, is easily computed without additional memory
requirement. The computational cost of the index is trivial in the total
iterative solution process. The effectiveness of the method is examined
by numerical tests using coefficient matrix data from the Matrix Market,
a finite-difference analysis of Poisson equation, and a 3-d electromagnetic
field analysis.

Keywords: Iterative method, ILU preconditioning, Convergence rate,
Convergence evaluation index, Ordering.

1 Introduction

The ILU factorization preconditioning is one of the most popular preconditioning
techniques for Krylov subspace iterative methods [1]. In this preconditioning
method, it is well-known that the preconditioning effect is significantly affected
by the ordering of the unknowns. Furthermore, since reordering technique has
been a well-known parallelization way of ILU preconditioning [2], the relationship
between ordering and convergence has been intensively investigated by several
researchers [3,4].

Most of previous investigations on orderings were mainly performed in finite
difference analyses. In these studies, the early and important work was done
by Duff and Meurant [3]. They indicated the significant effect of orderings on
convergence in ILU-preconditioned iterative solvers, and then proposed a use
of the norm of a remainder matrix for evaluation of orderings. The remainder
matrix R is given by R = M − A, where M is the preconditioning matrix and
A is the coefficient matrix. While the evaluation method has been confirmed

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 164–175, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 165

by various numerical tests, the remainder matrix has been commonly used as
a tool for examining convergence in subsequent research works [5,6]. Following
Duff and Meurant’s work, Doi, Lichnewsky and Washio performed a series of
works paying a special attention to ”incompatible nodes” [5,7]. In this research,
they proposed an evaluation index for orderings, which is called ”incompatibility
ratio”. The incompatibility ratio, which has a unique value for a fixed ordering, is
easily calculated. Next, the authors recently proposed a new evaluation index for
orderings, which is called ”S.R.I. (Simple Remainder Index)” [8]. This evaluation
index estimates the effects of all nodes including non-incompatible nodes, which
are not evaluated in incompatibility ratio.

In contrast to studies on ordering of nodes in finite difference analyses, the
effect of orderings in unstructured analyses has been rarely discussed. In the
unstructured analysis, the effect of individual property of a problem is not trivial.
Therefore, it is not easy to evaluate orderings in a simple way. But, we have
tried to propose an evaluation method for orderings in unstructured analyses by
permitting a small range of errors. Based on the results of Duff and Meurant’s
research, we finally proposed a new evaluation index ”P.R.I. (Precise Remainder
Index)” [8]. This index has a simple relationship with the remainder matrix
norm in a special case. Both of computational cost and memory requirement for
computing the index are trivial in the total iterative solution process. In this
paper, we examine our evaluation method in four numerical tests.

2 ILU Preconditioning

This paper deals with a following n-dimensional linear system of equations:

Au = f . (1)

While the coefficient matrix is symmetric and positive or semi-positive defi-
nite, our evaluation method is explained in a general format including a non-
symmetric coefficient matrix case.

When the linear system of equations is solved by means of iterative methods,
preconditioning techniques are often used [4]. In this technique, the linear system
is transformed into the preconditioned system

(K−1
1 AK−1

2)(K2u) = K−1
1 f , (2)

which accelerates the convergence of a basic iterative method. The matrix M =
K1K2 is called a preconditioner matrix. In ILU(0) preconditioning, the precon-
ditioning matrix is given by

M = LD−1U , (3)

where L, D and U are a lower triangular matrix, a diagonal matrix and a upper
triangular matrix, respectively. These matrices L, D and U are derived from
ILU factorization of the coefficient matrix A as follows:

A = (LD−1U) − Rilu, (4)

166 T. Iwashitac and M. Shimasaki

where Rilu is the matrix of the elements that are dropped during the incomplete
factorization.

In the ILU preconditioned iterative method algorithm, the transformation (2)
is not performed explicitly, and the preconditioning step is given by the solution
of a linear system:

(LD−1U)z = x. (5)

Since the preconditioner matrices depend on ordering of the unknowns, the pre-
conditioning effect is also affected by the ordering. Moreover, the degree of par-
allelism in the solution (5) depends on the ordering.

3 New Evaluation Index for Orderings

3.1 Remainder Matrix

A typical way to evaluate the preconditioning effect is through checking the
condition number or the eigenvalues of the preconditioned coefficient matrix.
But, the computational cost of computing eigenvalues is generally high. Thus,
the following method proposed by Duff and Meurant is widely used for evaluating
preconditioning effect.

Duff and Meurant’s method [3]
The effect of ILU preconditioning is evaluated by the norm of the re-
mainder matrix R,

R = M−A. (6)

A smaller norm of R results in better convergence.

In the ILU preconditioning case, it holds

R = Rilu. (7)

Duff and Meurant used the Frobenius norm of the remainder matrix in their
research [3]. Their numerical tests of finite difference analyses confirmed the ef-
fectiveness of their method. However, when the ILU preconditioning technique
is applied to a general sparse coefficient matrix, the additional memory require-
ment and computational cost for computing the Frobenius norm of the remainder
matrix are not small compared with the iterative solution process. Therefore,
another practical method is required for evaluating preconditioning effects in
unstructured analyses.

3.2 P.R.I.

In this subsection, we describe a new evaluation index, which is called P.R.I.
(Precise Remainder Index) [8]. In order to construct a new evaluation index, we
consider the remainder matrix in ILU preconditioning. The remainder matrix R

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 167

R = O
Irp = 0
for I = 1 to n − 1
for J = I + 1 to n
for K = I + 1 to n
if ãJ,I �= 0 & ãI,K �= 0 & ãJ,K �= 0 then
ãJ,K = ãJ,K − ãJ,I ∗ ãI,K/ãI,I

// (ILU factorization)
endif
if ãJ,I �= 0 & ãI,K �= 0 & ãJ,K = 0 then
rJ,K = rJ,K + ãJ,I ∗ ãI,K/ãI,I

// (Computation of R)
Irp = Irp + |ãJ,I ∗ ãI,K/ãI,I |
// (Computation of P.R.I.)
endif
end for
end for
end for

Fig. 1. Algorithm of ILU factorization with computing remainder matrix and P.R.I.

can be computed by using the algorithm associated with ILU factorization as is
shown in Fig. 1. When we focus on an arbitrary element rJ,K in the algorithm,
the element is updated several times depending on the non-zero element pattern
of the coefficient matrix. Since these update quantities are different to each
other, storing all dropped fill-ins is necessary for computing the exact remainder
matrix entries. Thus, in the P.R.I. evaluation, we use a summation of the absolute
values of the updates of the remainder matrix. The algorithm of calculating the
P.R.I. value Irp is shown in Fig. 1. The additional memory requirement for the
calculation is for only one variable. Moreover, its computational cost is generally
much smaller than the iteration process. When the coefficient matrix A has the
same signs in all diagonal entries and also has the same signs in all non-diagonal
entries, a simple relationship between the remainder matrix norm and the P.R.I.
is given as follows:

||R||A = Irp, (8)

where ||R||A is defined as a sum of the absolute values of all entries of R, and
is given by

||R||A =
∑
IJ

|rIJ |. (9)

The operator || · ||A satisfies the definition of the matrix norm shown in the
reference 9.

3.3 P.R.I. for Variants of ILU Preconditioning

In practical analyses, ILU factorization can fail due to pivot breakdown. One of
remedies for the breakdown is modification of the coefficient matrix before the

168 T. Iwashitac and M. Shimasaki

factorization, for example, diagonal sifts [10] [11]. Let AΔm be a modification
term, then the modified factorization is given by

A + AΔm = (LmD−1
m Um) − Rilum. (10)

For this factorization, the remainder matrix is written as follows:

R = Rilum + AΔm. (11)

Here, we define the P.R.I. value for the factorization (10) as

Irpm = Irp0 + ||AΔm||A. (12)

In (12), Irp0 is the Irp value calculated in the algorithm shown in Fig. 1.
Next, we consider ILU(l) preconditioning, in which some fill-ins are allowed.

Although some fill-ins are admitted in the factorization, the preconditioning
matrix is given by (4) as well as in ILU(0) preconditioning case. Therefore, the
P.R.I. value for ILU(l) preconditioning can be defined by a summation of the
absolute values of the dropped fill-ins, and it is given by the algorithm in Fig. 1.

4 Numerical Results

In this paper, we present four numerical results: 1) Two coefficient matrices
data downloaded from the Matrix Market [12], 2) Finite difference analysis of
Poisson equation, 3) Electromagnetic field analysis (finite edge-element method).
Since the coefficient matrices are symmetric, the ICCG (Incomplete Cholesky
Conjugate Gradient) method is used. The convergence criterion of the iterative
method is given by ||r||2/||b||2 < 10−7 where r and b are the residual vector and
the right-hand side vector, respectively. The correlation between the P.R.I. and
convergence is examined by using 51 random orderings.

4.1 Matrix Market Data (1)

Fig. 2 shows the relationship between the P.R.I. and the number of iterations in
the numerical test for CYLSHELL S1RMQ4M1 data from the Matrix Market.
Fig. 3 depicts the convergence behavior. The coefficient matrix arises from a
finite element structure analysis with shell type elements. The information about
the coefficient matrix is shown in Table 1. Since strong correlation between the
iteration count and the P.R.I. value is shown in Fig. 2, our evaluation index gives
good estimates of convergence. The correlation coefficient reaches 0.86.

4.2 Matrix Market Data (2)

This subsection describes the numerical result using CYLSHELL S3RMT3M1
data from the Matrix Market. This data set is derived from a finite element
analysis with an unstructured triangular mesh. Fig. 4 depicts the relationship

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 169

Table 1. Coefficient matrix of S1RMQ4M1 from Matrix Market

Number of unknowns 5489

Number of entries 143300*2

Number of nonzero entries 262411

Band width 192

Max eigenvalue 6.874×105

Min eigenvalue 3.80×10−1

Condition number 1.81×106

Table 2. Coefficient matrix of S3RMT3M1 from Matrix Market

Number of unknowns 5489

Number of entries 112505*2

Number of nonzero entries 217669

Band width 192

Max eigenvalue 9.67×103

Min eigenvalue 3.90×10−7

Condition number 2.48×1010

80

100

120

140

160

180

200

220

1.2 1.6 2 2.4 2.8

N
um

be
r

of
 it

er
at

io
ns

PRI (*1E+8)

Fig. 2. Relationship between number of iterations and P.R.I. (Matrix Market data 1)

between the number of iterations and the P.R.I. values. In this numerical test,
many spikes are observed in the convergence behavior as is shown in Fig. 5.
Therefore, the convergence estimates by the P.R.I. include some errors especially

170 T. Iwashitac and M. Shimasaki

-7

-6

-5

-4

-3

-2

-1

0

1

0 20 40 60 80 100

lo
g(

|r
|/|

b|
)

Number of iterations

Fig. 3. Convergence behavior of residual vector (Matrix Market data 1)

600

650

700

750

800

850

900

0.015 0.02 0.025 0.03 0.035

N
um

be
r

of
 it

er
at

io
ns

PRI (*1E+8)

Fig. 4. Relationship between number of iterations and P.R.I. (Matrix Market data 2)

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 171

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

0 100 200 300 400 500 600 700 800 900

lo
g(

|r
|/|

b|
)

Number of iterations

Random ordering 1
Random ordering 2

Original ordering

Fig. 5. Convergence behavior of residual vector (Matrix Market data 2)

when orderings have high P.R.I. values. However, a high correlation coefficient
value, which is over 0.8, is obtained in the whole random ordering test.

4.3 Finite Difference Analysis of Poisson Equation

This subsection deals with a following two-dimensional Poisson equation with
the Dirichlet boundary condition:

−∇ · (κ∇u) = f (13)
in Ω(0, 1) × (0, 1)
u(x, y) = 0 on δΩ

if (1
4 ≤ x ≤ 3

4& 1
4 ≤ y ≤ 3

4) then

κ = 100.0
else κ = 1.0.

The equation is solved by means of 5-point finite difference scheme. The grid size
is 100×100 and the original ordering is lexicographical ordering. The right-hand
side f is given by 0.5 sin (id + 1) where id is the node number.

Fig. 6 shows the relationship between the number of iterations and the P.R.I.
values. Fig. 7 plots the convergence behavior when the original ordering is used.
Fig. 6 indicates that the preconditioning effect can be estimated by the P.R.I.
value.

172 T. Iwashitac and M. Shimasaki

70

80

90

100

110

120

130

140

0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 it

er
at

io
ns

PRI (*1E+8)

Fig. 6. Relationship between number of iterations and P.R.I. (Finite difference analysis
of Poisson equation)

4.4 Three-Dimensional Eddy-Current Analysis (Finite
Edge-Element Analysis)

In this subsection, we use test data of a three-dimensional eddy-current analysis.
The basic equation, which is derived from quasi static form of Maxwell equations,
is given as follows:

∇ × (ν∇ × Am) = −σ
∂Am

∂t
+ J0, (14)

where Am, ν, σ, and J0 are the magnetic vector potential, the magnetic reluc-
tivity, the electrical conductivity, and the exiting current, respectively. The basic
equation is solved by using the Galerkin method with A−formulation and the
backward time difference method [13].

In the present analysis, we use the IEEJ standard benchmark model of 3-
D eddy current analyses [14]. The analyzed model is discretized by first-order
brick-type edge elements. Table 3 lists the discretization data. The original linear
system is assembled with the lexicographical ordering. Since the analyzed model
includes non-conductive region, the coefficient matrix results in a semi-positive
definite matrix. The relationship between the P.R.I. and the preconditioning
effect is examined in one time step of the time-dependent calculation. Fig. 8
shows the relationship between the number of iterations and the P.R.I. values

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 173

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 20 40 60 80

lo
g(

|r
|/|

b|
)

Number of iterations

Fig. 7. Convergence behavior of residual vector (Finite difference analysis of Poisson
equation)

60

80

100

120

140

160

180

200

220

10 20 30 40

N
um

be
r

of
 it

er
at

io
ns

PRI (*1E+8)

Test 2
Test 1

Fig. 8. Relationship between number of iterations and P.R.I. (3-d eddy-current analy-
sis)

in two tests. Two different sets of random orderings are used in the numerical
test. Fig. 9 depicts the convergence behavior. In Test 1, we can observe strong
correlation between the P.R.I. and the convergence. On the other hand, in some

174 T. Iwashitac and M. Shimasaki

Table 3. Discretization data

Number of volume elements 327680

Number of nodes 342225

Number of unknowns 1011920

Time step 1 msec

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60 70

lo
g(

|r
|/|

b|
)

Number of iterations

Fig. 9. Convergence behavior of residual vector (3-d eddy-current analysis)

cases of Test 2, the convergence rate is worse than the P.R.I. estimation. But,
since two numerical results plot the identical P.R.I. estimation line, it is implied
that the P.R.I. value can be used for the convergence estimation in unstructured
finite element analyses.

5 Conclusion

The present paper introduces the convergence evaluation index in ILU precon-
ditioned iterative solvers. The evaluation index is easily computed without ad-
ditional memory requirement. The effectiveness of the method is examined by
four numerical tests. The numerical tests show strong correlation between the
number of iteration and the P.R.I. values. Accordingly, the P.R.I. values can be
used for estimating ILU preconditioning effects.

References

1. Meijerink, J., van der Vorst, H.A.: An Iterative Solution Method for Linear Sys-
tems of Which the Coefficient Matrix Is a Symmetric M-matrix. Mathematics of
Computation 31, 148–162 (1977)

New Evaluation Index of Incomplete Cholesky Preconditioning Effect 175

2. van der Vorst, H.A., Chan, T.F.: Parallel Preconditioning for Sparse Linear Equa-
tions. ZAMM. Z. angew. Math. Mech. 76, 167–170 (1996)

3. Duff, I.S., Meurant, G.A.: The Effect of Ordering on Preconditioned Conjugate
Gradients. BIT 29, 635–657 (1989)

4. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-
phia, PA (2003)

5. Doi, S., Washio, T.: Ordering Strategies and Related Techniques to Overcome
the Trade-off Between Parallelism and Convergence in Incomplete Factorization.
Parallel Computing 25, 1995–2014 (1999)

6. Eijkhout, V.: Analysis of parallel incomplete point factorizations. Linear Algebra
Appl. 154–156, 723–740 (1991)

7. Doi, S., Lichnewsky, A.: A Graph-Theory Approach for Analyzing the Effects of
Ordering on ILU Preconditioning. INRIA report 1452 (1991)

8. Iwashita, T., Nakanishi, Y., Shimasaki, M.: Comparison criteria for parallel order-
ings in ILU preconditioning. SIAM J. Sci. Comput. 26(4), 1234–1260 (2005)

9. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA (1997)
10. Fujiwara, K., Nakata, T., Ohashi, H.: Improvement of Convergence Characteris-

tic of ICCG Method for the A − φ Method Using Edge Elements. IEEE Trans.
Magn. 32(3), 804–807 (1996)

11. Benzi, M., Tuma, M.: A robust incomplete factorization preconditioner for positive
definite matrices. Numer. Linear Algebra Appl. 10, 385–400 (2003)

12. http://math.nist.gov/MatrixMarket/
13. Iwashita, T., Sokabe, R., Mifune, T., Shimasaki, M.: Three-dimensional Fi-

nite Brick-Type Edge-Element Eddy Current Analysis Using Parallelized Linear-
System Solvers. In: PARELEC 2000. Proc. Int. Conf. Parallel Computing in Elec-
trical Engineering, pp. 203–207 (2000)

14. Nakata, T., Takahashi, N., Imai, T., Muramatsu, K.: Comparison of Various Meth-
ods of Analysis and Finite Elements in 3-D Magnetic Field Analysis. IEEE Trans.
Magn. 27, 4073–4076 (1991)

http://math.nist.gov/MatrixMarket/

T-Map: A Topological Approach to Visual

Exploration of Time-Varying Volume Data

Issei Fujishiro1, Rieko Otsuka2, Shigeo Takahashi3, and Yuriko Takeshima1

1 Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
2 Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan

3 The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan

Abstract. The rapid advance in high performance computing and mea-
surement technologies has recently made it possible to produce a stupen-
dous amount of time-varying volume datasets in a variety of disciplines.
However, there exist a few known visual exploration tools that allow us to
investigate the core of their complex dynamics effectively. In this paper,
our previous approach to topological volume skeletonization is extended
to capture the topological features of large-scale time-varying volume
datasets. A visual exploration tool, termed T-map, is presented, where
pixel-oriented information visualization techniques are deployed so that
the user can identify partial 4D spatiotemporal domains with character-
istic changes in a topological sense, prior to detailed and comprehensible
volume visualization. A case study with datasets from atomic collision
research is performed to illustrate the feasibility of the proposed tool.

1 Introduction

At this moment, it is routinely performed in a large variety of disciplines to vi-
sualize a single regular-grid volume dataset with 2563–5123 voxels interactively.
This is due to intensive volume visualization R&D efforts over the past two
decades, including software optimization [1]; the advent of special hardware de-
vices [2]; and the development of commodity PC cluster systems with enhanced
volume graphics cards [3] and GPUs [4].

The recent rapid increase in the performance of computing and measurement
environments as well as in opportunities to use the global information infras-
tructure has made it possible to investigate the correlations among model pa-
rameters in complex scientific/engineering problems. A tremendous number of
runs/observations produce a multi-dimensional array of large-scale time-varying
(4D) volume datasets, which may not fit into even the virtual memory space
of modern computing facilities [5]. This background motivates us to develop a
novel scheme which can provide the user with the “serendipity” [6] by managing
and visualizing those datasets effectively.

As an initial step for establishing a promising scheme, this paper extends our
previous concept of volume data mining (VDM) [7] to propose a scheme, termed
T-map (Topology-map), which takes full advantage of knowledge in the field of
differential topology to capture the topological structure of a 4D volume. This

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 176–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

T-Map: A Topological Approach to Visual Exploration 177

is one of the main characteristics to differentiate the T-map from existing 4D
volume analysis tools, which rely primarily on geometric tracking of isosurface
components [8,9].

In the T-map, analyzed results are represented compressively into artificially-
designed spaces, termed index spaces , where the user is allowed to carry out drill-
down manipulations interactively, along with comprehensible rendering tech-
niques [7,10] to effectively visualize a limited number of volumes chosen from
regions of interest in the index spaces.

The remainder of this paper is organized as follows. As preliminaries, Sect. 2
describes two kinds of topological analysis methods for isosurfaces and snapshot
volumes. Section 3 presents the T-map with a special focus on how to design its
index spaces and related drill-down manipulations. In Sect. 4, the feasibility of
the T-map will be illustrated with an application to a practical problem from
atomic collision research. Lastly Sect. 5 concludes the paper with several remarks
on related future extensions.

2 Preliminaries

This section is devoted to an overview of topological tools that allow the user
to capture both local and global features of isosurfaces and snapshot volumes.
Also a basic idea is shown in which a topological index is employed to quantify
the resultant graph structures.

Before proceeding to the overview, let us make clear the basic structural re-
lationships among several related concepts. In general, an n-dimensional (n-D)
scalar field can be viewed as an (n + 1)-D hyper-surface (n ≥ 3). For example,
consider a time-varying 3D field F (x, y, z, t), called 4D volume interchangeably,
where (x, y, z) denotes an ordinary 3D spatial coordinate, and t time. The behav-
ior of the field F can be delineated through an analysis of the 5D hyper-surface:

w = F (x, y, z, t), (1)

where F is a single-valued function of (x, y, z) and t. Fixing a time t = T yields
a snapshot volume from the 4D volume:

V (T) ≡ { (x, y, z, w) ∈ IR4|w = f(x, y, z) = F (x, y, z, T)}. (2)

Similarly, if we fix a field value w = W as well as time t = T , an isosurface
IS(W, T) can be implicitly specified:

IS(W, T) ≡ { (x, y, z) ∈ IR3|W = f(x, y, z) = F (x, y, z, T)}.

2.1 Reeb Graph (RG)

The Reeb graph (RG) representation was originally imported into the computer
graphics community by Shinagawa and Kunii [11] to describe surface topology.
Consider a kind of RG, which represents the topological skeleton of a surface

178 I. Fujishiro et al.

in 3D space along a predefined axis for the height function. In this setting, the
node indicates a critical point, such as a peak , a pass , or a pit , and its link a set
of connected cross sectional contours. Figure 1(a) shows a depressed sphere on
the left, and its corresponding RG on the right.

height function
peak

peak
pass

pit

pit

#1
#2

#3
#4pass

#5

#6

Fig. 1. An example of Reeb graph construction. A depressed sphere (left) and its Reeb
graph (right).

Takahashi, et al. [12] proposed a robust geometric algorithm to extract an RG
from a surface described in the form of 3D mesh. While the algorithm effectively
constructs the RG from a polygonal surface, applicable surface types are limited
to topological spheres. The algorithm was extended in [13] so as to characterize
isosurfaces of arbitrary topological type, which may arise in real world datasets.
In this paper, we are going to use the extended RG extraction algorithm.

In general, changing the directions of the height axis may give different RGs.
This implies that the RG is an unambiguous, but non-unique representation of
the surface topology. Recently, a geometric transformation-invariant RG repre-
sentation using a geodesic distance was proposed in [14]. Such an RG is tailored
for topological matching of 3D shapes, but seems to be rather insensitive to the
difference in local shape of isosurfaces.

2.2 Volume Skeleton Tree (VST)

In order to capture the topological skeleton of a volumetric field, we extended
the RG representation described in Sect. 2.1 to what we call Volume Skeleton
Tree (VST) [10].

Cutting a volume dataset at different field values will produce the topological
changes of isosurfaces, where isosurfaces are split or merged. A volumetric critical
point will appear at a contact point between such splitting or merging isosurfaces.
More specifically, critical points of a volume are classified into four types: a
maximum (index 3), a saddle (index 2), a saddle (index 1), and a minimum (index
0). In this paper, the symbols C3, C2, C1, and C0 will be used to represent the
above critical points, where each subscript denotes the index of the corresponding
critical point.

T-Map: A Topological Approach to Visual Exploration 179

Figure 2 depicts isosurface behaviors around the critical points. At a max-
imum, a new topological sphere appears in 3D space. Conversely, an existing
sphere disappears at a minimum. At a saddle of index 2, two isosurfaces are
merged while an existing isosurface is split at a saddle of index 1. For such sad-
dles, in particular, the topological changes become more complicated when we
take into account embeddings of isosurfaces in 3D space. Figure 2 classifies such
changes in isosurface shapes depending on their embeddings in 3D space.

none
C3

C0

C3

C0
C2

C1

C2

C1
C2

C1

C2

C1
C2

C1

C2

C1

C2

C1

C2

C1

Fig. 2. Classification of isosurface changes at volumetric critical points

By adding a virtual minimum to the volume function (2), a volume dataset
becomes a topological 3D sphere S3. The Euler–Poincaré formula states that the
critical points of a 3D sphere S3 must satisfy the following condition:

#{C3} − #{C2} + #{C1} − #{C0} = 0, (3)

where #{Ci} represents the number of critical points of index i.
VST is a level-set graph that represents the splitting and merging of isosur-

faces with respect to the field value, and effectively delineates the transition
of such evolving isosurfaces. The node of the graph represents a critical point,
and its link one connected component of a varying isosurface in between. The
VST is constructed by assembling components as shown in Fig. 3, where each
component contains one critical point.

For constructing a VST, we have developed a topological volume skeletoniza-
tion algorithm [10] as a 3D extension of the RG extraction algorithm [12]. In
this paper, we employed a robust and efficient version of the algorithm [15].

Here, we take as an example, the following analytic volume function, which is
hereafter referred to as Bread Basket (BB):

180 I. Fujishiro et al.

w = f(x, y, z) = 4c2
(
(x − R)2 + (z − R)2

)
−(

(x − R)2 + y2 + (z − R)2 + c2 − d2
)2

+4c2
(
(x + R)2 + (z + R)2

)
−(

(x + R)2 + y2 + (z + R)2 + c2 − d2
)2

,

, (4)

where c > d > 0, c2 + d2 ≥ 6R2.

C3: C2:
or

C1:
or

C0:

Fig. 3. VST components around critical points, which are arranged so that the corre-
sponding field value decreases from top to bottom

We can analytically find the following five critical points of the BB volume
(4):

p1,2 :
(

∓
√

c2+d2−2R2

2 , 0, ±
√

c2+d2−2R2

2

)
,

p3,4 :
(

∓
√

c2+d2−6R2

2 , 0, ∓
√

c2+d2−6R2

2

)
,

p5 : (0, 0, 0) ,

(5)

and their corresponding critical field values :

f(p1,2) = 8c2d2,
f(p3,4) = 8c2d2 − 16R2(c2 + d2 − 4R2),
f(p5) = −2(c2 − d2)2 + 8R2(c2 + d2 − R2).

(6)

Isosurfaces of the BB volume function (4) grow as shown in Fig. 4(a), and
the resultant VST is shown in Fig. 4(b). Here, two croissant -shaped isosurfaces
appear at p1 and p2 first, and then they meet at p3 and p4 to become a torus
(donut). The hole of the torus is filled at p5, which makes the isosurface a sphere
(loaf) again. This isosurface evolution suggests that the critical points p1 and
p2 are of index 3 (i.e. C3), p3 and p4 are of index 2 (i.e. C2), and p5 is of index 1
(i.e. C1). Furthermore, p6 represents the virtual minimum. Clearly, these critical
points satisfies the Euler–Poincaré formula:

2 − 2 + 1 − 1 = 0.

T-Map: A Topological Approach to Visual Exploration 181

p1

p2p3

p4

p5

virtual
minimumx

z

y p6

p1

p2

p3

p4

p5

p6

(a) (b)

Fig. 4. Bread Basket Volume. (a) Critical points of the function (4); (b) Corresponding
VST.

2.3 Quantizing RG and VST

In order to compare the topological equivalence between a pair of isosurfaces
extracted from a 3D volume and a pair of snapshot volumes extracted from
a 4D volume, we need to examine the homogeneity of their RGs and VSTs.
To this end, we borrowed a topological index (T-index) from molecular sim-
ilarity research [16]. Indeed, we can derive a pair of characteristic quantities
from the adjacent and distance matrices for an RG or a VST. Suppose we have
the characteristic polynomial φC(g) and the distance polynomial φD(g) of the
graph g:

φC(g) =
∑n

i=0 aix
i

φD(g) =
∑n

i=0 a′
ix

i

Then, the two characteristic quantities IC(g) and ID(g) are defined as follows:

IC(g) =
∑n

i=0 |ai|
ID(g) =

∑n
i=0 |a′

i|.

The pair (IC(g), ID(g)) has been commonly used in computational chemistry to
identify a molecule structure qualitatively, with few exceptions [17].

Recall herein the Reeb graph RGDS for the depressed sphere shown in Fig. 1(a).
A simple eigensystem analysis shows that the characteristic polynomial and dis-
tance polynomial are φC(x) = x6 − 5x4 + 4x2 and φD(x) = x6 − 65x4 − 296x3 −
504x2 − 352x − 80. Therefore, (IC(RGDS), ID(RGDS)) equals (10, 1298). The
eigensystem analysis tool we use here is the Householder method [18].

It should be noted here that an isosurface extracted from a volume consists
of more than one connected component. In this case, we must compute an index
pair for each of the connected components, and adopt the list of index pairs to
represent the RGs for the isosurface. The VST always has a single connected
component.

182 I. Fujishiro et al.

3 T-Map

It is mathematically guaranteed that there exists a direct topological analysis
tool for 4D volumes. However, such a tool requires sophisticated memory man-
agement to be efficiently executed for large-scale time-varying volume datasets.
Therefore, this paper proposes T-map (Topology map), which relies heavily on
an extended use of the RG for isosurfaces and the VST for static volume fields,
and provides an interactive exploration environment for the user with the aid of
pixel-oriented information visualization technologies [19].

Figure 5 schematically shows the main processing flow of the T-map, which
consists of four major steps:

Step 1: Partition 4D volume dataset
A given large-scale 4D volume dataset is partitioned into a series of snapshot
volumes. If needed, each of snapshot volumes can be downsized.

Step 2: Extract topological structures
For each of the snapshot volumes generated in Step 1, the corresponding
topological features are analyzed in terms of RGs and VSTs.

Step 3: Visualize topological changes
The results of topological feature analysis performed in Step 2 are abstracted
onto a pixel map form, termed index space, through a pixel-oriented infor-
mation visualization [19]. The design of pixel glyphs strongly owes the topo-
logical graph quantification described in Sect. 2.3. The user is allowed to
modify the space interactively by using a set of predefined manipulations.

Step 4: Locate significant spatiotemporal regions
With the aid of the 4D volume drill-down mechanisms, the user can visually
identify a small set of snapshot volumes within a spatiotemporal subregion
on the index space, and visualize the subregion with judiciously designed vi-
sualization techniques. In this paper, opacity/color transfer functions are ac-
centuated semi-automatically for comprehensible volume visualization [7,10].

As in Sect. 2.2, the following 4D analytic volume function, referred to as
Time-series Bread Basket (TBB) volume, will be used throughout this section:

w = g(x, y, z, t)
= 16c2t(1 − t)((x − R)2 + (z − R)2)

−((x − R)2 + y2 + (z − R)2 + c2 − d2)2

+16c2t(1 − t)((x + R)2 + (z + R)2)
−((x + R)2 + y2 + (z + R)2 + c2 − d2)2,

(7)

where c > d > 0, c2 + d2 ≥ 6R2, t ∈ [0, 1].

Note that g(x, y, z, 0.5) reduces to f(x, y, z), which has already been analyzed
in (4). In the following experiments, the parameter values were set as follows:
c = 0.60, d = 0.50, R = 0.20. We sampled the TBB function into a series of 65
snapshot volumes commonly with 64 × 64 × 64 voxels.

T-Map: A Topological Approach to Visual Exploration 183

Snapshot
 volume

Time-varying volume data

Snapshot
 volume 1 ...

 { RG 1 }
 VST 1

Index space

 Comprehensible
 volume visualization

...

Step1

Step2

Step3

Step4

Manipulation

 n

 { RG 2 }
 VST 2

 { RG }
 VST

Snapshot
 volume 2 t

 nt
 nt

Fig. 5. Overview of processing flow in T-map.

3.1 Index Space

Index space (IS) is defined as a time-series of pixel glyphs, each of which repre-
sents the T-index of the VST extracted from the corresponding snapshot volume.
Figure 6 shows the VST glyph design adopted here.

I

DI

C Color series for IC

Color series for ID

Fig. 6. Definition of VST glyph in T-map IS.

Figure 7 visualizes the IS of the TBB volume. A glance at the IS leads to a fact
that the TBB volume is symmetric about the time t = 0.5. More detailed analysis
can be realized through interactive use of progressive drill-down manipulations,
which will be presented in the next subsection.

3.2 Progressive Drill-Down in T-Map

A set of T-map data manipulations is proposed herein to realize an interactive
environment for drilling down volumetric data progressively.

184 I. Fujishiro et al.

Fig. 7. IS of TBB volume

Expanding. Expanding provides the user with visual cues on the behavior of
a scalar field as a function of time by expanding a given IS into the direction
of the scalar field. The resultant space is termed Expanded Index Space (EIS)
(Fig. 8(a)). The inverse manipulation of expanding is called folding.

An EIS has two layers: one is the glyph layer and the other Critical Point layer
(CP layer). The glyph layer of the EIS is an array of glyphs to represent RG T-
indices, as defined in Fig. 8(b), and which is intended to visualize the space v.s.
time distribution of field complexity of the objective 4D volume. As described
before, the RG glyph may have a nested structure reflecting the variable-length
index list of the corresponding RGs (see Sect. 2). The same pair of color series
shown in Fig. 6 is used for the RG glyphs as well.

w

t

ID1

IC1

ID2

IC2

IDn

ICn

(a) EIS (b) RG glyph

Fig. 8. EIS and RG glyph used in EIS

On the other hand, a CP layer of EIS plots the location of critical field values
with X-shaped marks on each vertical line of snapshot volumes. A CP layer is
expected to track each of the critical points in VST as a function of time. To
this end, different mark colors are used to distinguish the type of critical points
(C3: red; C2: yellow; C1: green; C0: blue).

Figure 9 visualizes the EIS of the TBB volume, where the symmetrical struc-
ture of the field is visualized more precisely. In addition, we can understand that
all the critical field values are concentrated in the region with relatively high field
values. Note that the unimportant regions with very low field values have been
truncated. Furthermore, tracing VST critical points on the CP layer allows the
user to visually confirm the time-evolution of the volumetric field (see Fig. 4(a)):

T-Map: A Topological Approach to Visual Exploration 185

– t=0.0 (1.0): Two spheres meets at a single CP p5 of the BB volume;
– t=0.071 (0.929): Two CPs p1 and p2 of the BB volume appears/disappears;
– t=0.142 (0.858): Two CPs p3 and p4 of the BB volume appears/disappears;
– t=0.5: The case reduces to (4) (Sect. 2.2), as mentioned above.

Note that these critical timings are found analytically by substituting c = 0.60,
d = 0.50, R = 0.20 into (7), and solving two quadratic equations with respect to
t.

The well-known fisheyes and magic lenses metaphors [20] can be introduced
to realize the focus+context display and probing of ISs and EISs in the T-map.

Fig. 9. EIS of TBB volume

Displaying Details on Demand. Once a set of target timings has been found,
we take advantage of accentuated volume rendering for the limited number of
snapshot volumes. The key to comprehensible volume rendering is the design of
transfer functions (TFs), which map physical field values of given volume sam-
ples to optical properties such as color and opacity. In the T-map, informative
images of a single volume can be visualized with topologically-accentuated TFs
around the critical field values specified in the corresponding VST [7,10]. If a
restricted sequence of snapshot volumes are selected, TFs used commonly for
visualizing time-varying volume datasets [21] can also be designed more effec-
tively.

3.3 Potentials of T-Map

Let us recall the concept of RG described in Sect. 2.1. If we take time as the
axis for the height function, and examine the sequence of snapshot volumes in
terms of VST, we can find a particular time Tcritical, which is termed critical

186 I. Fujishiro et al.

timing (CT), exactly when the topological equivalence of consecutive snapshot
volumes is not maintained. The homogeneity of VSTs can be checked using the
pair of VST index quantities in Sect. 2.3. Since we do not have any information
between adjacent snapshot volumes, a true CT can not always be found on the
sampling time step. We may possibly pass over minor CTs in a case with sparse
time steps. However, we can rely on human visual perception to approximate
the location of CTs with a combination of the above-described functionalities.

In general, since a partial series of snapshot volumes around CPs are of partic-
ular interest for the user, it is desirable to provide the user with a semi-automatic
mechanism to shift his or her focus to the partial series, and to visually explore
the details with topologically-accentuated volume rendering schemes [10,13].

Potential scenarios of applying the T-map to managing very large-scale 4D
volume datasets include:

– Selective data migration: The objective 4D volume dataset stored in tape
libraries is examined entirely by the topological surface/volume skeletoniza-
tion algorithms in an offline manner to make the corresponding T-map IS
and EIS in advance. Then the user is allowed to investigate those spaces
to visually identify partial temporal regions of interest containing CTs, and
the corresponding portion of the dataset is migrated selectively into the
disk space of a computing environment for further visual exploration. This
challenging issue is in marked contrast to the concept of out-of-core visual-
ization [22].

– Adaptive computational steering: If necessary, more detailed recalcula-
tion can be requested within the selected temporal regions of interest.

4 Application to Real Dataset

In order to perform the feasibility study, we applied the T-map scheme to a large-
scale time-varying volume dataset, called H+-H here, which consists of data for
613 volumes over 104 time steps for simulated intermediate-energy collision of
a proton and a hydrogen atom [7]. Prior to the analysis of the volume field
topology, each snapshot volume has been downsized into 303 voxels.

The simulation deals with a fundamental atomic collision problem, and is very
important in that the problem has a wide spectrum of applications such as nu-
clear fusion, material sciences, and radiology. The purpose here is to investigate

H

H+
e-

Fig. 10. Proton–hydrogen atom collision process

T-Map: A Topological Approach to Visual Exploration 187

Fig. 11. IS of H+–H dataset

Fig. 12. CP layer of EIS of H+–H dataset

how the positive charge of an incident proton affects the behavior of an electron
around the target hydrogen atom (Fig. 10).

Figure 11 shows the IS of the H+–H dataset, where 100 VST glyphs are
visualized at 100 step intervals between 1st frame through 10,000th frame.

It is widely known that the stationary electron density distribution around
a hydrogen atom constitutes a completely layered structure of spherical isosur-
faces. Therefore, without producing a volume-rendered animation of the entire
time sequence, we can identify easily from the IS space, an approximate timing
of the collision as the portion with a least complexity of VST glyphs. Indeed,
the collision occurs around 5,000th frame, as indicated with a triangle icon in
Fig. 11. The fact was verified from other simulated information of the minimum
simulated distance between the incident proton and the target hydrogen atom.

Figure 12 shows the CP layer of the EIS space expanded from the IS in
Fig. 11. When taking a look at the expanded space, it turns out that the most

188 I. Fujishiro et al.

field
1

opacity

0

0.6

0.005
0.05

0.12 0.15

0.30

0.50

0.13 0.14

(a) (b) (c)

Fig. 13. Volume rendering the 5300th frame of H+–H dataset. (a) A critical isosurface
with VST; (b) TFs based on the VST (a); (c) Resultant image.

complicated portion in terms of CP distribution is found just after the collision.
This coincides qualitatively with the knowledge from quantum physics.

A comprehensible illustration of the phenomena can be obtained by visualiz-
ing the 3D distorted electron density distribution. Figure 13(c) shows a volume-
rendered snapshot of the 5300th frame. The snapshot was generated with the
TFs in Fig. 13(b) which were accentuated by the VST analysis in Fig. 13(a).
The resultant image shows more clearly the inner structures of the distorted
electron density distribution. In particular, it can be found from the image that
a topologically enhanced TFs succeeded in capturing an interesting arm-shaped
electron density flux connecting the two topological spheres around the hydro-
gen nuclei. This easy-to-miss phenomenon is not visible from animations which
commonly use the same TFs over the entire time interval.

5 Conclusions and Future Work

This paper proposed T-map as a topologically-based visual data mining envi-
ronment for large-scale time-varying volume datasets. The T-map relies on a
mathematically rigorous theory, and allows the user to grasp the topological fea-
tures of a given 4D scalar field. The present scheme can be extended to handle
a higher dimensional array of datasets for the purpose of parameter study. For
example, the IS and EIS can serve as a 2D-scrollable strip chart for visual data
mining spreadsheet called HyperCells [23].

Many related issues still remain open for future research, including:

– Introducing the level of detail control of RGs and VSTs for the multiresolu-
tional analysis to ISs and EISs.

– Providing a mechanism of similarity search for isosurfaces, snapshot volumes,
and partial sequences of 4D volumes based on the topological proximity of
RGs and VSTs.

– Extending VST to directly characterize a given 4D volume dataset repre-
sented as the samples of the 5D hyper-surface (1) to locate 4D critical points.

T-Map: A Topological Approach to Visual Exploration 189

– Enriching T-map manipulations so that they cover the basic visual-
information-seeking functions stated in the Shneiderman Mantra [24].

Acknowledgements

This work has been partially supported by Japan Society of the Promotion
of Science under Grants-in-Aid for Scientific Research (C) 13680401 and (B)
18300026 and Young Scientists (B) 17700092, and the Ohkawa Foundation for
Information and Telecommunications.

References

1. Meissner, M., Huang, J., Bartz, D., Mueller, K., Crawfis, R.: A practical evaluation
of popular volume rendering algorithms. In: Crawfis, R., Cohen-Or, D. (eds.) Proc.
IEEE Volume Visualization and Graphics Symposium 2000, vol. 151, pp. 81–90
(2000)

2. Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., Seiler, L.: The VolumePro real-
time ray-casting system. In: Rockwood, A. (ed.) Proc. ACM SIGGRAPH 1999, pp.
251–260 (1999)

3. Muraki, S., Ogata, M., Ma, K.L., Koshizuka, K., Kajihara, K., Liu, X., Nagano, Y.,
Shimokawa, K.: Next-generation visual supercomputing using PC clusters with vol-
ume graphics hardware devices. In: CD-ROM Proc. ACM/IEEE SuperComputing
2001 (2001)

4. Muraki, S., Lum, E.B., Ma, K.L., Ogata, M., Liu, X.: A PC cluster system for
simultaneous interactive volumetric modeling and visualization. In: Koning, A.,
Machiraju, R., Silva, C.T. (eds.) Proc. IEEE Symposium on Parallel and Large-
Data Visualization and Graphics 2003, pp. 95–102 (2003)

5. Chen, L., Fujishiro, I., Nakajima, K.: Optimizing parallel performance of unstruc-
tured volume rendering for the Earth Simulator. Parallel Computing 29, 355–371
(2003)

6. Ramakrishnan, N., Grama, A.Y.: Data mining: From serendipity to science. IEEE
Computer 32, 34–37 (1999)

7. Fujishiro, I., Azuma, T., Takeshima, Y., Takahashi, S.: Volume data mining using
3D field topology analysis. IEEE Computer Graphics and Applications 20, 46–51
(2000)

8. Ji, G., Shen, H.W., Wenger, R.: Volume tracking using higher dimensional isosur-
facing. In: Turk, G., van Wijk, J.J., Moorhead, R. (eds.) Proc. IEEE Visualization
1991, pp. 209–216 (1991)

9. Chen, J., Silver, D., Jiang, L.: The Feature Tree: Visulaizing feature tracking in
distributed amr datasets. In: Koning, A., Machiraju, R., Silva, C.T. (eds.) Proc.
IEEE Symposium on Parallel and Large-Data Visualization and Graphics 2003,
pp. 103–110 (2003)

10. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and
its application to transfer function design. Graphical Models 66, 24–49 (2004)

11. Shinagawa, Y., Kunii, T.L.: Constructing a Reeb graph automatically from cross
sections. IEEE Computer Graphics and Applications 11, 44–51 (1991)

12. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, T.L., Ueda, M.: Algorithms for
extracting correct critical points and constructing topological graphs from discrete
geographical elevation data. Computer Graphics Forum 14, 181–192 (1995)

190 I. Fujishiro et al.

13. Fujishiro, I., Takeshima, Y., Takahashi, S., Yamaguchi, Y.: Topologically-
accentuated volume rendering. In: Post, F.H., Nielson, G.M., Bonneau, G.P. (eds.)
Data Visualization: The State of The Art, pp. 95–108. Kluwer Academic Publish-
ers, Dordrecht (2003)

14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3D shapes. In: Fiume, E. (ed.) Proc. ACM SIG-
GRAPH 2001, pp. 203–212 (2001)

15. Takahashi, S., Nielson, G.M., Takeshima, Y., Fujishiro, I.: Topological volume
skeletonization using adaptive tetrahedralization. In: Hu, S.M., Pottmann, H. (eds.)
Proc. Geometric Modeling and Processing 2004, pp. 227–236. IEEE Computer So-
ciety Press, Los Alamitos (2004)

16. Johnson, M.A., Maggiora, G.M. (eds.): Concepts and Applications of Molecular
Similarity. John Wiley & Sons, Chichester (1990)

17. Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research.
Academic Press, London (1976)

18. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C. Cambridge University Press, Cambridge (1988)

19. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applica-
tions. IEEE Transactions on Visualization and Computer Graphics 6, 59–77 (2000)

20. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualiza-
tion: Using Vision to Think. Morgan Kaufmann, San Francisco (1998)

21. Jankun-Kelly, T.J., Ma, K.L.: A study of transfer function generation for time-
varying volume data. In: Mueller, K., Kaufman, A. (eds.) Volume Graphics 2001,
pp. 33–43. Springer, Heidelberg (2001)

22. Farias, R., Silva, C.: Out-of-core rendering of large, unstructured grids. IEEE Com-
puter Graphics and Applications 21, 42–50 (2001)

23. DeCoste, D.: Visualizing massive multivariate time-series data. In: Fayyad, U.,
Grimstein, G.G., Wierse, A. (eds.) Information Visualization in Data Mining and
Knowledge Discovery, pp. 95–97. Morgan Kaufmann, San Francisco (2001)

24. Shneiderman, B.: Designing the User Interface Strategies for Effective Human-
Computer Interaction, 3rd edn., ch. 15. Addison-Wesley, Reading (1998)

Cross-Line — A Globally Adaptive Control

Method of Interconnection Network

Takashi Yokota1, Masashi Nishitani2,
Kanemitsu Ootsu1, Fumihito Furukawa3, and Takanobu Baba1

1 Department of Information Science, Utsunomiya University,
7–1–2 Yoto, Utsunomiya-shi, Tochigi, 321–8585 Japan

{yokota, kim, baba}@is.utsunomiya-u.ac.jp
2 Technology Division, The Japan Research Institute, Ltd.

3 Learning Technology Laboratory, Teikyo University

Abstract. An ordinal interconnection network is composed of many in-
dependent routers that can cooperate as a communication subsystem in
a massively parallel system. Many routing algorithms are proposed in
the past, however, they do scarcely utilize global network information.
In this paper, we propose a new adaptive routing method, Cross-Line,
that makes efficient use of global information over the network. The algo-
rithm achieves global routing control efficiently by collecting just one-bit
information of each virtual channel in the x- and y-directions. Analytical
and simulation results reveal the effectiveness of the algorithm.

1 Introduction

An economical but effective interconnection network is strongly required for
massively parallel systems. After a communication message is generated at a
source node, it is relayed via multiple routers until its destination. Each router
determines the proper direction for the message to go through. Routing function
can only be acquired as a result of co-operative work of individual routers.

Many routing algorithms are presented in the past[1,2]. Many of them improve
the communication performance, although, no one succeeds in globally optimal
routing. This is an essential problem of interconnection networks. Routers are
connected to each other by limited number of links. Thus a router can acquire
quite localized information by itself and it can perform only locally optimal rout-
ing. We can expect performance improvement by introducing globally optimal
control mechanisms.

This paper presents a practical and efficient routing method, called Cross-
Line[3,4]. The method includes an efficient function for collecting global infor-
mation of network status and a routing algorithm that uses the collected infor-
mation. The method can be implemented as a simple extension of the ordinal
adaptive routing method. Evaluation results reveal the effectiveness of the pro-
posed method.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 191–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 T. Yokota et al.

...

......

...

curr.
node

dst
node

non-congested area:
 buffers are ’ready’

congested area:
buffers are ’busy’

y+

x+

packet will be blocked
in this direction

pa
ck

et
 w

ill
 g

o
fr

ee
ly

in
 th

is
 d

ire
ct

io
n

(a) Congested area and buffer status.

...
...

curr.
node

dst
node

0 1...

0
0

...
V

C
in

fo
(N

)

VCinfo(E)

...
...

VCinfo bits:
 0:ready, 1:busy

LSB MSB

LS
B

 M

S
B

0

0

0 1

buffer status is
collected to VCinfo

(b) VCinfo represents congested area.

Fig. 1. Basic idea of global congestion information

2 Basic Design for Global Adaptability

Network performance is extremely degraded in a badly congested situation[1,2].
The source of the problem is a chain reaction of packet blocking. As a blocked
packet is stopped at a packet buffer, the filled buffer blocks other packets. Thus
the chain reaction spreads over the network. Our essential idea is to prevent
chain reactions by introducing a globally optimal routing method. The method
should be not only effective but also practical. We discuss the basic method in
this section.

Here, we assume 2-dimensional torus networks for simplification. We define
congestion as a situation in which packets are blocked among multiple neigh-
boring routers. And we define a congested area as a congested portion of the
network. If a router has global information of congestion, the router can properly
guide packets in a less congested area.

Our basic idea is illustrated in Figure 1. A packet is routed in x- and y-
directions. A router determines whether the packet should go straight or turn.
We use a one-bit information per packet buffer, which represents ready/busy
state of the buffer. The bit is transferred to the straight direction and forms a
global congestion information. As the one-bit information is equivalent to virtual
channel status, we call the collected information VCinfo.

Neighboring router’s status is directly reflected as a flow-control signal in the
corresponding output port. The LSB of VCinfo represents the state. A router
transfers its own VCinfo to the reverse direction. The neighboring router receives
the information and stores it into its own VCinfo after shifting left one bit.
A ready/busy signal in the corresponding output port is set to the LSB of
the VCinfo. Thus i-th bit in VCinfo represents the corresponding buffer status.
A router can determine appropriate routing direction by its own VCinfo. For
example in Figure 1, curr.node has a packet destined for dst.node. VCinfo in
x+ direction shows a congested area, while y+ VCinfo does not include congested
area information. Thus the router can properly select y+ direction.

Cross-Line — A Globally Adaptive Control Method 193

route(int cx, int cy, int dx, int dy){
// (cx, cy) ... address of current router
// (dx, dy) ... destination address
int wx = cx;
int wy = cy;
for(i=0 ; i<MaxHops ; i++){
if(wy==dy || wx==dx)

break;
// compare VCinfo values from LSB
if(VCinfo_x[i]==READY && VCinfo_y[i]==BUSY) Goto_X;
if(VCinfo_x[i]==BUSY && VCinfo_y[i]==READY) Goto_Y;
wx = next_x(wx);
wy = next_y(wy);

}
// not determined
if(wx==dx && wy!=dy) Goto_Y;
else Goto_X;

}

Fig. 2. Routing algorithm of Cross-Line

3 Cross-Line Routing

3.1 Routing Algorithm

Our proposed Cross-Line method is composed of two items; VCinfo mechanism
and routing algorithm. The former offers collection, distribution and sharing
mechanism for global information of congested area. We describe the routing
algorithm here. A router can detect congested area by consulting VCinfo values.
Basically the router determines the smoother direction by comparing two VCinfo
values according to possible directions and virtual channels. The router compares
VCinfo values bit-by-bit from LSB as far as both bits are within the packet’s
traveling distance. When the bit-wise comparison encounters different bit values,
the router detects imbalanced situation and selects ‘0’ bit direction1.

Figure 2 shows the Cross-Line routing algorithm in C-like code. (cx, cy)
is a two-dimensional address expression of the current router, and (dx, dy)
means destination address. Goto X and Goto Y mean selected directions. Func-
tion next x() (next y()) calculates x-axis (y-axis) address of the neighboring
router.

3.2 Appropriateness of the Design

Here, we discuss appropriateness of the Cross-Line method by introducing a
simple mathematical model that represents imbalanced congestion situation. We
introduce an abstract congestion measure C that represents degree of congestion

1 We suppose that 0 means ready and 1 busy in VCinfo.

194 T. Yokota et al.

 0 2 4 6 8 10 12 14 0
 2

 4
 6

 8
 10

 12
 14

 16 0
 0.2
 0.4
 0.6
 0.8

 1

Fig. 3. Example congestion measure

dimension order

random walk

adaptive

cross-line

optimal

5.505e4

5.628e4

5.245e4

4.767e4

3.801e4

Fig. 4. Calculation results of path costs

at each router. A packet buffer is ready when C is under a certain threshold.
Roughly speaking, VCinfo represents gradient of C at the corresponding position.
Thus Cross-Line method is roughly equivalent to choosing the direction with
smaller gradient out of ∂C

∂x and ∂C
∂y .

We define a path cost as a summation of C values along a packet’s trail. If
a packet goes through congested area, the path cost becomes high. An optimal
algorithm minimizes the packet cost. For simplification, we assume that only
one congested area exists at the center of the system as shown in Figure 3. We
calculated sum of path costs for possible combinations of source and destina-
tion nodes. Figure 4 shows results of some routing algorithms. All of them route
shortest path. In ‘random walk,’ a packet goes into randomly selected direction
and the listed value is an average of 100 trials. In ‘adaptive’ routing, a packet
changes its direction only when its nearest-neighbor is in congested area. ‘Op-
timal’ value is the minimum value among possible routes. Cross-Line achieves
about 14% better path cost against dimension order routing, whereas adaptive
routing achieves only 5% improvements. These results reveal the appropriateness
of Cross-Line algorithm — Cross-Line has high potential in avoiding congested
area.

4 Evaluation

4.1 Evaluation Model

We used the following algorithms for comparison. (a) dimension order rout-
ing (dim.order) · · · A packet goes through x-direction first and then y-direction.
(b) deterministic routing (det.) · · · This routing algorithm is equivalent to
Cross-Line algorithm without VCinfo reference, i.e., MaxHops in Figure 2 is zero.
This algorithm is used for comparison purpose to clarify the effectiveness of
Cross-Line (MaxHops > 0). (c) ideal (ideal) · · · This routing algorithm directly
refers packet buffer states, not VCinfo. VCinfo has essential delay by transferring
state information of packet buffers.

We use the following channel selection function for evaluation purpose. At
packet generation, packet direction is determined out of four combinations of x
and y directions (x±, y±). We assign initial virtual channel 0 for (x+, y+) and
(x−, y−) packets and 1 for (x−, y+) and (x+, y−) packets. After that, when a

Cross-Line — A Globally Adaptive Control Method 195

packet goes across ‘date-line,’ its virtual channel number is incremented by two.
Date-lines are placed at x = 0 and y = 0. This channel selection algorithm is
applied for any algorithm in the evaluation.

We built an interconnection network simulator. Cross-Line method and com-
parison algorithms are implemented. We use four-flit length packets and each
packet buffer has three flit capacity. VCinfo is transfered only when no message
data goes through the port. Thus collection and distribution of VCinfo do not
interfere in ordinal message communication[5].

In our simulation, the system is 32 × 32 two-dimensional torus. Uniform ran-
dom traffic and 5% hot-spot traffic patterns are used. In the former pattern,
packet destination is randomly selected. In the latter pattern, 95% of generated
packets go to randomly selected destinations, and remaining 5% of packets go
to a particular destination (a center node (16, 16)). Each node generates packets
at a given clock interval. Latency is measured from the first flit of a packet is in-
jected into the network to the last flit is transfered to the destination processor.
Simulation time was 2,000,000 cycles, but initial 1,000,000 cycles are ignored for
obtaining stable results.

4.2 Performance Comparison

Performance results are shown in Figure 5. In these graphs, normalized accepted
throughput is used in x-axis, which is calculated by P/(T/l ∗ N) where P is the
total number of received packets, T is simulation time (1,000,000 cycles), l is
packet size in flit (4), and N is the number of nodes (1,024). In these graphs,
CrossLn, (ideal), det., and dim.order mean Cross-Line, ideal case, deterministic
routing, and dimension order routing, respectively. Figure 5(b) includes enlarged
plots at critical saturation points.

Comparison between det. and CrossLn clarifies the effect of adaptive routing in
Cross-Line. As we can find in Figure 5(a), Cross-Line achieves about 1.79 times
improvement in peak throughput (0.068 (det.) and 0.122 (CrossLn)). Cross-Line
achieves about 93% peak performance of its ideal case (ideal). This result shows
that VCinfo is effective even it has essential delay. Cross-Line also achieves better
peak performance than that of dimension order routing, but average latency is
larger. The long average latency originates from the baseline routing algorithm.

Hot-spot performance results (in Figure 5(b)) show different natures. In non-
congested situations, average latency curves overlap each other. We can find, in
the enlarged graph, CrossLn and ideal improve peak throughput.

4.3 Sufficient VCinfo Bits

We have also investigated Cross-Line performance under limitation of maximum
VCinfo references. We actually limit the MaxHops value in Figure 2. Figure 6
shows the results. In these graphs, normalized offered traffic is a simple index of
l/v where l is packet size in flits and v is packet generation interval in clocks. In
these graphs, MaxHops values are specified in parentheses. CrossLn(full) shows no
limitation on MaxHops. Especially, MaxHops = 1 is equivalent to ordinal adaptive

196 T. Yokota et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

normalized accepted traffic

CrossLn
(ideal)

det.
dim.order

(a) Random traffic.

 0

 50

 100

 150

 200

 250

 300

 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

normalized accepted traffic

CrossLn
(ideal)

det.
dim.order

0

10

20

30

40

50

60

70

80

90

0.016 0.017 0.018 0.019 0.02

(b) 5% Hot-Spot traffic.

Fig. 5. 32×32 traffic performance

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

normalized accepted traffic

CrossLn (full)
CrossLn (2)
CrossLn (4)

adaptive

(a) Random traffic.

 0

 50

 100

 150

 200

 250

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

normalized offered traffic

CrossLn (full)
CrossLn (2)
CrossLn (4)

adaptive

(b) 5% Hot-Spot traffic.

Fig. 6. Performances under VCinfo reference limitation

routing method that refers only ready/busy information of output port. Thus
we use adaptive as a comparison algorithm. of the Cross-Line method. From the
graphs, we can find that at least four bits of VCinfo is required.

4.4 Cross-Line as an Adaptive Routing

We can compare Cross-Line algorithm with ordinal adaptive one (adaptive) in
the Figure 6 graphs. In uniform random traffic pattern, average latency of Cross-
Line is lower than that of adaptive. For example, at the peak accepted throughput
(around 0.124), Cross-Line achieves 41.72 cycles of average latency and adaptive
achieves 43.65 cycles, improvement factor of Cross-Line is about 4.4%. But no
significant difference is found in peak throughput.

In hot-spot traffic pattern, especially heavily congested case, Cross-Line per-
forms better (shorter latency) than adaptive routing. Cross-Line shows a zigzag
curve in Figure 6 (c), this represents that actual effect of Cross-Line is sensi-
tive to the network situation. But, in many cases, Cross-Line can route packets
appropriately and achieves better average latency than adaptive routing.

Cross-Line — A Globally Adaptive Control Method 197

5 Related Work

Thottethodi et al. proposed a throttling algorithm with a self-tuning function[6].
Their method uses the number of transient packets in the network. While the
count exceeds a self-tuned threshold, packet injection is suppressed. The method
uses a kind of global information, however, the information only shows average
status of the network and thus it cannot represent locality in congestion. Cross-
Line handles global information as a collection of 1-bit local states. Note that
Cross-Line offers routing function whereas Thottethodi’s method provides throt-
tling function. These methods do not conflict with each other.

Speculative Selection Routing (SSR [7]) counts the number of transient pack-
ets in each router, and the counter value is delivered to neighborhood routers.
Each router determines packet’s routing by the counter values. The method is
disadvantageous in distributing the values. Because of multiple bits of counters,
distribution area is limited. Furthermore, SSR’s routing function has high com-
plexity. Since VCinfo represents multiple states of routers at a time, complexity
in routing function of Cross-Line is much less than that of SSR.

Singh et al. claim globally adaptive routing in their proposed algorithms,
GOAL [8] and GAL [9]. They introduced the quadrant idea defined by source
node (sx, sy) and destination (dx, dy) so that global load balancing is enabled.
Their algorithms work well in some classes of problems, however, the algorithms
do not use any global information. Thus their approach is completely different
from ours.

Some routing methods employ adaptive functions for avoiding congested situ-
ations. For example, [10] employs special queues to release blocked packets from
congestion. As another example, [11] prepares dedicated buffers, into which pack-
ets escape from congestion. After congestion situation disappears, escaped pack-
ets are re-injected into the network. These methods are symptomatic, whereas
Cross-Line takes a preventive way by using global information.

6 Conclusions

A large-scale interconnection network, composed of huge number of routers, has
an essential problem, i.e., the lack of globally optimal control. Our basic idea
in this paper is introducing global but decentralized control to avoid routing
toward congested area.

We introduced VCinfo (virtual channel information) as a collection of one-bit
information of a packet buffer in each virtual channel. Each router has VCinfo
for each virtual channel in each output port. Contents of VCinfo are forwarded
in the straight direction. By using VCinfo values, a router can select a proper
direction for a packet to avoid congested area.

By introducing an abstract congestion measure, we show theoretically high
potential of Cross-Line in avoiding congested area. Furthermore, simulation re-
sults reveal Cross-Line’s high efficiency. Cross-Line improves peak throughput in
both uniform random and 5% hot-spot traffic communication patterns. It relaxes
long latency in a heavily congested situation caused by the hot-spot traffic.

198 T. Yokota et al.

Through deep considerations of simulation results, we can guess temporal
behavior of congestion area in various congestion situations. However, we still
need understanding accurate congestion behavior to improve the proposed Cross-
Line mechanism. Congestion behaviors are very complex, so clarifying accurate
behavior of congested area is our future work.

Acknowledgments. This research was supported in part by Grant-in-Aid for Sci-
entific Research ((B) 14380135 and (C)16500023) and Young Scientists ((B)
17700047) of Japan Society for the Promotion of Science (JSPS).

References

1. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann Pub., San Francisco (2003)

2. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Pub., San Francisco (2004)

3. Nishitani, M., Ezura, S., Yokota, T., Furukawa, F., Ootsu, K., Baba, T.: Prelimi-
nary Research of a Novel Routing Algorithm Cross-Line Using Dynamic Informa-
tion. IPSJ SIG-Note 2004(20), 7–12 (2004)

4. Nishitani, M., Ezura, S., Yokota, T., Ootsu, K., Baba, T.: Preliminary Research
of a Novel Routing Algorithm Cross-Line Using Dynamic Information. In: PDCS
2004. Proc. 16th IASTED International Conference on Parallel and Distributed
Computing and Systems, pp. 107–112 (2004)

5. Yokota, T., Matsuoka, H., Okamoto, K., Hirono, H., Sakai, S.: Virtual Control
Channel and its Application to the Massively Parallel Computer RWC-1. In: Proc.
HiPC 1997, pp. 443–448 (1997)

6. Thottethodi, M., Lebeck, A.R., Mukherjee, S.S.: Self-Tuned Congestion Control
for Multiprocessor Networks. In: Proc. HPCA–7, pp. 107–118 (2001)

7. So, T.C., Oyanagi, S., Yamazaki, K.: Speculative Selection in Adaptive Routing
on Interconnection Networks. IPSJ Transactions on Advanced Computing Sys-
tems 44(Sig 11(ACS 3)), 147–156 (2003)

8. Singh, A., Dally, W.J., Gupta, A.K., Towles, B.: Towles: GOAL: A Load-Balanced
Adaptive Routing Algorithm for Torus Networks. In: Proc. ISCA 2003, pp. 194–205
(2003)

9. Singh, A., Dally, W.J., Towles, B., Gupta, A.K.: Globally Adaptive Load-Balanced
Routing on Tori. Computer Architecture Letters 3(1), 6–9 (2004)

10. Duato, J., Johnson, I., Flich, J., Naven, F., Garćıa, P., Nachiondo, T.: A New Scal-
able and Cost-Effective Congestion Management Strategy for Lossless Multistage
Interconnection Networks. In: Proc. HPCA–11, pp. 108–119 (2005)

11. Flich, J., López, P., Malumbres, M.P., Duato, J., Rokicki, T.: Improving Network
Performance by Reducing Network Contention in Source-Based COWs with a Low
Path-Computation Overhead. In: Proc. IPDPS 2001 (2001)

The Bandwidth Expansion Effectiveness of

Cache Levels Block Prefetch

Youngkwan Ju, Bongyong Uh, and Sukil Kim

Dept. of Computer Science, Chungbuk National University
Gashindong 12, Cheongju, Chungbuk, Republic of Korea

{rainbow,uby,ksi}@chungbuk.ac.kr

Abstract. Most cache architectures exploit only a second level cache
prefetch. In this paper, we propose the hierarchical prefetch cache ar-
chitecture which allows prefetch between all levels of caches. We dis-
covered that this architecture has a virtual effect of expanding memory
bus bandwidth. According to an experimental analysis using 10 bench-
mark programs, the proposed architecture that employs all level cache
prefetcher obtained a maximum 11% increased performance when com-
pared to both architecture with expanded bus bandwidth and architec-
ture with employment only a level 2 cache prefetcher. This shows our
proposed architecture has an effectiveness of memory-bus bandwidth ex-
pansion.

Keywords: Prefetch Cache, Memory Hierarchy Architecture, Memory
Bandwidth.

1 Introduction

In the modern computer architecture, the speed gap between central process
unit and main memory is getting greater. Furthermore, the memory reference
ratio of the application whose size is getting bigger occupies about 43% to whole
instruction set [1]. It means whole execution time of an application will be ex-
tended as the CPU stalling time extends due to frequent memory references. In
order to reduce the CPU stalling time, the latency time of memory reference
should be shortened. A number of techniques have been proposed: hierarchical
cache architecture [2, 3, 4] reducing the latency time of average memory refer-
ence with low cost, instruction reordering [5] executing other instructions not
related to memory reference during fetching instruction related to it, and cache
prefetching technique [3] fetching data and loading to cache or register before
the time that data is actually needed by front-end processor. Especially, the
cache prefetching technique is able to reduce cache miss rate greatly by adding
simple prefetch cache controller at the existing hierarchical cache architecture,
thus many researches have been conducted upon this area [2, 3, 6, 7].

The One Block Lookahead (OBL) technique [8] fetches single consecutive
memory block based on memory block address that causes a cache miss, simi-
larly the Multi Block Lookahead (MBL) technique [9] does multiple ones. These

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 199–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 Y. Ju, B. Uh, and S. Kim

techniques have a simple algorithm to determine prefetch block address, however,
if memory block address to be prefetched does not exist in prefetched blocks,
the efficiency of prefetched memory blocks in the cache is decreased or becomes
zero. Consequently, they have a drawback of cache pollution which useful mem-
ory blocks are replaced frequently by loading prefetch block to cache.

In order to reduce the drawback like cache pollution, more accurate prefetch
algorithms were studied. We can raise predicting memory block technique [7,10,
11, 12] as an example that predicts memory block based on previously-referred
memory address blocks. This technique can reduce cache pollution, since it pre-
dicts memory address to be loaded more accurately than OBL and MBL.

Regarding to cache architecture, a prefetch buffer architecture [9] stores
prefetch blocks onto a buffer and moves only the referred block to the cache to
reduce cache pollution. Also a dual cache architecture [10,13] is to store prefetch
blocks onto a prefetch buffer which is added to an ordinary cache architecture.

So far, these techniques and architectures were mainly considered only for
a simple cache architecture, wherein prefetch blocks are stored onto prefetch
buffer located between level 1 cache and main memory. Considering 2 level cache
architecture, no architecture fully exploit effectiveness of prefetch in each level
of caches. In this paper, we propose hierarchical prefetch cache architecture to
fully exploit all levels of cache prefetch.

The rest of this paper is organized as follows. Section 2 analyzes existing hi-
erarchical cache architecture and describes motivation of this research. Section
3 proposes a hierarchical cache architecture employing prefetch technique sug-
gested by this paper. Section 4 describes the cache architecture with expanded
bus bandwidth based on such hierarchical cache architecture. Section 5 performs
a simulation to compare cache architectures and compare their results too. Sec-
tion 6 concludes the paper.

2 Related Work

There has been numerous researches in order to reduce memory access latency
time. The most fundamental and easiest way is to expand bus bandwidth such
as primary cache replication [18], cache compression [18] and multi-port archi-
tectures [19]. However the method of expanding bus bandwidth has a drawback
of increasing the hardware complexity. Therefore, a number of alternative meth-
ods were suggested such as hierarchical memory architecture. It reduces memory
access latency time by employing multi-level cache between main memory and a
processor. Recently, the hierarchical memory architecture that consists of level
2 cache is being applied with wide range from a personal computer to a super
computer.

The size of level 1 (L1) cache is very small, however, latency time of reference
is very low. For instance, the Pentium [14] and the Pentium III [15] of Intel
Cooperation have built-in L1 cache of 16KB size and 8KB size respectively. The
PowerPC 60X [16] of Motorola Cooperation has built-in L1 cache of 32KB size.
Also reference latency time of these L1 caches have 2˜3 cycles.

The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch 201

The level 2 (L2) cache has more capacity than L1 cache but the access latency
of L2 is 12˜45 cycles [7,14,15,16,17]. It is noticeable that the typical latency time
ratio of L2 cache to main memory are 10˜20, while the latency time ratio of L2
cache to L1 cache are 12˜30. The previous researches have focused on reduction
of level 2 cache miss number in order to overcome the speed gap between L1
cache and main memory.

2.1 Prefetch Buffer Architecture

The Prefetch Buffer Architecture [9] stores prefetched block to high-speed buffer
(Bp) located between memory and L1 cache as depicted as Figure 1(a). In this
architecture, the CPU refers L1 cache in parallel with Bp. if a memory block
stored at Bp is referred, then this block is moved from Bp to L1 cache in the
preparation of its reuse. However, it has a shortcoming of cache pollution, since
storing prefetch block into L1 cache still replaces L1 cache block.

Fig. 1. Cache Architectures for Prefetch

2.2 Victim Cache Architecture

The victim cache architecture [20] employs a buffer which stores memory blocks
replaced compulsorily from L1 cache temporarily in order to reduce the number
of cache pollution. This architecture depicted at Figure 1(b) employed victim
buffer(Bv) located between L1 cache and L2 cache. If a block of victim buffer is
referred, this block is transferred to L1 cache from victim buffer via L2 cache.
By employing relatively small buffer-Bv, this architecture has an advantage of
reducing the number of cache pollution caused by prefetching.

2.3 Prefetch Cache Architecture

The prefetch cache architecture [6] employs another level 1 cache only storing
prefetch block. In times of L2 cache miss, demand request blocks are stored to
L1 cache while prefetch memory block is loaded to prefetch cache. Therefore,
this architecture has an advantage of preventing cache pollution, since prefetch
block do not give any influence on L1 cache. Figure 1(c) depicts this prefetch

202 Y. Ju, B. Uh, and S. Kim

architecture, where Lp means prefetch cache. Because processor refers L1 cache
in parallel with Lp cache unlikely 1(a) and 1(b), this architecture has a merit
that any referred block in Lp cache do not need to be moved to L1 cache.

Table 1. Reference Latency Delay Ratio of cache to main memory

Processor Ratio
L2/L1 L2 Cache Size

Alpha 21164 16 / 2 96KB

PowerPC 604 29 / 2 512KB

MPC7400 30 / 2 1024KB

UltraSPARC 38 / 2 512KB

Pentium 12 / 2 256KB

Pentium II 35 / 3 256KB

Pentium III 45 / 3 512KB

Pentium IV 40 / 3 512KB

These three architectures issue prefetch only by L2 cache miss to overcome
the speed gap between main memory and L1 cache. But in the hierarchical
memory architecture, the reference latency time ratio of L1 cache to L2 cache
is much bigger than that of L2 cache to main memory. Table 1 shows reference
latency time ratio of hierarchical memory applied to major processors. Also,
the number of L1 cache miss has 10˜15 times as much as the number of L2
cache miss [17]. This means it is necessary to prefetch memory blocks from main
memory whenever L2 cache miss occurs. As well, it is imperative to prefetch
memory blocks from L2 cache when L1 cache miss occurs.

On the other hand, architectures that employ prefetch algorithm have an
effect of logical expanding bus bandwidth in terms of issuing prefetch order only
when bus bandwidth is not used by demand fetch order. In this paper, based
on these observations, we propose a cache architecture adding on level 1 cache
prefetcher upon traditional prefetch cache architecture and will prove that our
suggested one has an effect of virtually expanding bus bandwidth.

3 Hierarchical Prefetch Memory Architecture

3.1 Target Architecture

Figure 2 depicts the hierarchical memory architecture proposed in this paper.
This architecture employs L1 cache and Lp cache as level 1 cache and stores de-
mand block and prefetch block to L1 cache and Lp cache respectively. Therefore,
the basic architecture is very similar with prefetch cache architecture shown at
Figure 1(c).

In the Figure 3, cache management procedure during referring instructions
is shown. The gray area indicates prefetching function of L1 cache added on
existing cache architecture. It means that L1 cache miss firstly request demand

The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch 203

block from L2 cache, and then determine the block to be prefetched and store
it to Lp cache. This eventually moves two consecutive memory blocks from L2
cache. Thus, the target architecture avoids L1 cache pollution by preventing
inaccurate prediction of prefetcher from replacing existing L1 cache block.

In case that prefetch block does not exist at L2 cache, this block is not re-
quested from main memory. In other words, if prefetch block directed by L1 cache
miss does not exist at L2 cache, no prefetch occurrs. The prefetch algorithms
using by L1 cache and L2 cache will be discussed at Section 3.2.

Fig. 2. Target Architecture

We suppose that the bandwidth between processor and L1 cache is 1 word
(4 byte) and bandwidth between L2 cache and Lp cache as well as L1 cache is
2 word. But the main memory uses 4-way interleaving access, thus 4 words are
referred from every 4 independent memory module and are transferred to L2
cache. All non-memory reference instruction takes only a single cycle. The L1
cache employs write-through replacement policy. The L2 cache is 512KB size
with direct-mapping replacement policy and operates with multi-bank for 4-way
interleaving access. And its line size is 128 byte. This L2 cache uses write-back
replacement policy. The main memory is composed of four-memory banks for
memory accesses of demand on fetch and prefetch. Also the address bus and the
data bus have 4 access latency cycles with external memory and the length of
prefetch request queue has 64 entries.

3.2 Prefetch Algorithm

The proposed architecture requires prefetchers at each cache level. To begin with,
the L1 cache prefetcher directed by L1 cache miss loads demand block from L2
cache and stores it to L1 cache, and then determines next block to be fetched and
stores it to Lp cache. The L2 cache prefetcher has the same architecture as that
of the existing prefetcher, which requests memory block from L2 cache and stores
it to L2 cache and stores corresponding block to L1 cache. Subsequently, this L2

204 Y. Ju, B. Uh, and S. Kim

cache prefetcher determines prefetch block from main memory and then loads
it. In contrast, the procedure of level 1 cache prefetching should be terminated
within two cycles. Therefore the algorithm used for level 1 cache would be faster.
Prefetch algorithm used in this paper employs the OBL(One Block Lookahead)
algorithm, which is able to determine prefetch block with the least latency.

Fig. 3. Flowchart of Memory Reference of Target Architecture

Numerous researches regarding level 2 cache prefetcher technique has been
conducted. For example, the OBL and MBL which prefetch single or multiple
consecutive memory blocks have an advantage of being consisted of simple algo-
rithm, however, if memory address to be prefetched does not exist at prefetched
multiple blocks, the efficiency of prefetch memory block stored to the cache be-
comes very low, thus cache pollution occurs. The Correlation Prediction Table
Prefetching technique [21] predicts next memory block address based on already-
referred memory address blocks. Therefore the efficiency of this technique is very
high in case that the pattern of referring memory block address is constant. So
it can predict next memory block address more accurately, however it has a
drawback of requiring more memory capacity than the OBL. The Filtering Ta-
ble Technique is more complex and advanced than techniques mentioned above.
It keeps the information for all prefetch block whether referred by main proces-
sor or not, and then permit any prefetching issue to be conducted only if the
block address has been referred by main processor. This paper adopted these
techniques of Correlation Prediction Table and Filtering Table Technique as the
second level prefetcher of the proposed architecture.

If OBL is applied as L1 cache prefetcher algorithm, it has the same efficiency as
that of L1 cache when loading two consecutive blocks from L2 cache in pipe-line
manner. This scheme would provide the same efficiency as the architecture with
2 times of bandwidth between L1 cache and L2 cache. This implies that using
two prefetchers in memory controller would virtually improve bus bandwidth of
the memory system. Efficiency of the architecture will be studied in detail in the
next section.

The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch 205

4 Hierarchical Memory Architecture with Expanded
Bandwidth

The systemic design of the cache architecture with expanded bandwidth twice
between L1 cache and L2 cache is shown at Figure 4. L1 cache miss incurs both
demand cache block and next consecutive block from L2 cache and store them
to L1 cache using expanded bandwidth. This cache architecture will be identical
with that of Section 3 unless it has L1 cache prefetcher. In times of L2 cache
miss, the operation with external memory has no difference with architecture of
Section 3 in order to analyze the efficiency of bandwidth expansion.

When it comes to hardware complexity, the hierarchical prefetch architec-
ture described at Section 3 requires only an ADDER, since L1 cache prefetcher
employs OBL algorithm that selects a next block based on missed address. Ap-
parently adding a single ADDER is much more inexpensive methodology than
physically expanding the bandwidth between L1 cache and L2 cache as shown
Figure 4.

Fig. 4. Architecture with Expanded Bandwidth

5 Experiments and Performance Analysis

5.1 Simulation Environment

In order to analyze the efficiency of the proposed hierarchical cache architecture,
we generated traces of instruction of an application running on ALPHA machine.
Then the traces were analyzed by ATOM simulator [22]. We designed a cache
simulator running on multi-thread manner.

We measured cache miss rate of each cache level, coverage and total execution
cycles of 10 different benchmark programs. The benchmarks include SPEC2000,
MediaBench. Table 2 shows the characteristics of each benchmark program used
at this benchmark. We chose 7 programs from MediaBench and 3 programs from
SPEC2000 INT. In the table, f1 and f2 denotes L1 cache miss rate and L2 cache
miss rate in an architecture without prefetch logic, respectively.

206 Y. Ju, B. Uh, and S. Kim

Table 2. Benchmark Applications

Benchmark Description f1 f2

Cjpeg JPEG image Compression .0202 .0121

Djpeg JPEG image Decompression .0173 .0084

Mpegenc MPEG2 Compression .0031 .0014

Mpegdec MPEG2 Decompression .0009 .0006

Epic EPIC image Compression .0201 .0148

Unepic EPIC image Decompression .0345 .0122

Ghostscript An interpreter for the PostScript language .0407 .0232

Gcc C Programming Language Compiler .0160 .0066

Gzip GNU Compression .0367 .0319

Perl PERL Programming Language .0420 .0257

TimberWolfSC Place and Route Simulator .0886 .0555

5.2 Simulation Result and Analysis

In order to compare performance enhancement of the hierarchical cache archi-
tecture, we employ various metrics about benchmarks described at Table 2:
instruction per cycle (IPC), each cache miss rates, coverage. The based cache
architectures are architecture of employing non-prefetch.

We suppose that Correlation Prediction Table Prefetching technique [6,21] and
Filtering Table prefetching [7] was applied to level 2 cache prefetcher and OBL was
applied to level 1 cache prefetcher. Table 3 shows the experimentation results for
7 architectures. The bandwidths between L1 cache and L2 cache on both NC2 and
NF2 are two times compared with those of the existing architectures.

Table 3. Cache Architectures using at Experiment

Legend L1 Prefetcher L2 Prefetcher

TR None None

NC None Correlation Table Algorithm

NF None Filtering Table Algorithm

NC2 None (bandwidth*2) Correlation Table Algorithm

NF2 None (bandwidth*2) Filtering Table Algorithm

OC OBL Correlation Table Algorithm

OF OBL Filtering Table Algorithm

5.2.1 The Number of Instruction Per Cycle
We compare performances of cache architectures by analyzing total numbers of
cycle upon 5 cache architectures shown in Table 3 for the same benchmarks. We
employ IPC as a test basis, since the length of executed instructions of every
benchmark is different.

Figure 5 depicts IPC of all benchmarks. As we can see in Figure 5, OC and OF
architecture that employ both L1 cache prefetcher and L2 cache prefetcher have

The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch 207

much higher IPC than NC and NF that employ only L2 cache prefetcher. This
means that performances of OC and OF are much improved by employing level
1 cache prefetcher consisted of simple algorithm than existing architectures em-
ploying only L2 cache prefetcher. In addition, it showed that these architectures
had an efficiency of expanding bandwidth, for resulting in the higher IPC than
both NC2 and NF2 with expanded bandwidth. Also, regarding level 2 prefetcher,
the architecture of Filtering Table technique resulted in better performance than
that of Correlation Prediction Table technique.

Fig. 5. The number of IPC

5.2.2 Cache Miss Rate Comparison
As the miss rate of L1 cache and L2 cache grows, the average time of memory
access latency increases. Similarly, as the miss rate of L1 cache becomes large,
the number of prefetch from L2 cache increases. Also as the miss rate of L2 cache
becomes large, the number of prefetch from main memory increases. So we test
and analyze each miss rate of L1 cache and L2 cache in order to compare 7 cache
architectures. Figure 6 and Figure 7 show the results of L1 cache miss rate and
L2 cache miss rate respectively.

Figure 6 depicts L1 cache miss rate of 7 cache architectures. As shown at
Figure 6, OC and OF which employing L1 cache prefetcher proposed in this
paper has lower miss rate than other architecture which employs only L2 cache
prefecher. On the architectures, such as NC2 and NF2, loading two consecutive
cache blocks from L2 cache does not reduce miss rate, rather increase that rate
unless the memory reference pattern is sequential. In Figure 6, NC shows better
results than NF in the case of unepic and TimberWolfSC benchmarks, since the
filtering table size of 16 KB is relatively smaller than the Correlation Prediction
Table size of 2 MB. Thus, these tables are not able to accommodate the whole
working set range, and as a result, it shows lower performance.

Figure 7 depicts L2 cache miss rate of 7 cache architectures. The L2 cache miss
rate of OC and OF is lower than that of NC and NF. However, the number of L2
cache miss between OC and OF and between NC and NF showed almost equal,

208 Y. Ju, B. Uh, and S. Kim

Fig. 6. L1 Cache Miss Rate

Fig. 7. L2 Cache Miss Rate

since efficiency of L2 cache prefetcher is dependent of benchmark program’s
characteristic. On the other hand, referring to the architectures of NC2 and
NF2, the very rare use of second block loaded from L2 cache in times of L1
cache miss resulted in increasing L1 cache miss rate and only to increase overall
total latency.

6 Conclusions

In this paper, we proposed a cache architecture that employed L1 cache prefetcher
onto the existing hierarchical cache architecture that has only L2 cache prefetcher.
We compared the performances of the proposed architecture with a physically ex-
panded bus bandwidth architecture. An experiments upon various benchmarks
showed that the architecture employing both L1 cache prefetcher and L2 cache
prefetcher resulted in the fastest execution time on all benchmarks. Also this sim-
ulation proves that employing a simple prefetch algorithm such as OBL draw the

The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch 209

same efficiency as extending bandwidth between L1 cache and L2 cache. The ex-
perimentation among 10 benchmark programs showed that the efficiency of the
hierarchical architecture employing L1 cache prefetcher and L2 cache prefetcher
was achieved up to 11% compared with that of architecture employing only L2
cache prefetcher.

Consequently, the employment a cache prefetcher at each cache level in the
hierarchical memory architecture is expected to improve overall architecture per-
formance.

References

1. Grama, A., Gupta, A., Karapis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Addison Wesley, Reading (2003)

2. Fritts, J.: Multi-Level Memory Prefetching for Media and Streaming Processing.
In: Proceedings International Conference on Multimedia and Expo (2002)

3. Bear, J.L., Wang, W.H.: Architectural Choices for Multi-level Cache Hierarchies.
In: Proceedings 16th international Conference on Parallel Processing, pp. 258–256
(1987)

4. Moon, H.J., Jeon, J.N., Kim, S.: Design of A Media Processor Equipped with Dual
Cache. Journal Korean Institution Science Society 29(9), 573–581 (2002)

5. Gaddis, N.B., Butler, J.R., Kumar, A., Queen, W.J.: A 56-entry instruction reorder
buffer, Solid-State Circuits Conference. In: IEEE International Digest of Technical
Papers. 43rd ISSCC, pp. 212–213 (February 1996)

6. Joseph, D., Grunwald, D.: Prefetching Using Markov Predictors. In: Proceedings
24th Inl. Symp. Computer Architecture, pp. 252–263 (June 1997)

7. Zhang, X., Lee, H.S.: A hardware-based cache pollution filtering mechanism for
aggressive prefetches. In: Proceedings 2003 International Conference on Parallel
Processing, pp. 286–293 (October 6-9, 2003)

8. Smith, A.: Sequential Program Prefetching in Memory Hierarchies. IEEE Com-
puter 11(2), 7–21 (1997)

9. Jouppi, N.P.: Improving Direct-mapped Cache Performance by the Addition of a
Small Fully associative Cache and Prefetch Buffers. In: Proceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 364–373 (May
1990)

10. Horel, T., Lauterbach, G.: UltraSPARC-III: Designing Third-generation 64-bit Per-
formance. IEEE Micro 19(3), 73–85 (1999)

11. Chen, T.F., Baer, J.L.: Effective Hardware-Based Data Prefetching for High Per-
formance Processors. IEEE Transactions on Computers 44(5), 609–623 (1995)

12. Jeon, Y.S., Moon, H.J., Jeon, J.N., Kim, S.: A Hardware Cache Prefetching
Scheme for Multimedia Data with Intermittently Irregular Strides. KIPS Archi-
tecture 31(11), 658–672 (2004)

13. Chan, K.K., Hay, C.C., Keller, J.R., Kurpanek, G.P., Schumacher, F.X., Zheng,
J.: Design of the HP PA 7200 CPU. Hewlett-Packard Journal 47(1), 25–33 (1996)

14. Pentium Processor User’s Manual, Vol.1, Pentium Processor Databook, Intel
(1993)

15. IA-32 Intel Architecture Software Developer s Manual, Vol.1, Basic Architecture,
Intel (2004)

16. Denamn, M.: PowerPC 604. Hot Chips VI, 193–200 (1994)

210 Y. Ju, B. Uh, and S. Kim

17. Mutlu, O., Kim, H.S., Armstrong, D.N., Patt, Y.N.: Cache Filtering Techniques to
Reduce the Negative Impact of Useless Speculative Memory References on Proces-
sor Performance. In: SBAC-PAD 2004. 16th Symposium Computer Architecture
and High Performance Computing, October 27-29, 2004, pp. 2–9 (2004)

18. Lee, J.S., Hong, W.K., Kim, S.D.: Design and Evaluation of On-Chip Cache Com-
pression Technology. In: Proceedings the 17th IEEE International Conference on
Computer Design, pp. 184–191 (1999)

19. Rivers, J.A., Tyson, G.S., Davidson, E.S., Austin, T.M.: On High-Bandwidth Data
Cache Design for Multi-Issue Processors. In: Proceedings of the 30th Annual In-
ternational Symposium on Micro architecture, pp. 46–56 (December 1997)

20. Lee, J.H., et al.: An Intelligent Cache System with Hardware Prefetching for High
Performance. IEEE Transactions on Computers 5(5), 607–617 (2003)

21. Solihin, Y., Lee, J., Torrellas, J.: Correlation prefetching with a user-level memory
thread. IEEE Transactions on Parallel and Distributed Systems 14, 563–580 (2003)

22. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. In: Proceedings ACM SIGPLAN 1994, pp. 196–205 (1994)

Implementation and Evaluation

of the Mechanisms
for Low Latency Communication on DIMMnet-2

Yasuo Miyabe1, Akira Kitamura1, Yoshihiro Hamada2, Tomotaka Miyasiro1,
Tetsu Izawa1, Noboru Tanabe3, Hironori Nakajo2, and Hideharu Amano1

1 Faculty of Science and Technology Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

pdarch@am.ics.keio.ac.jp
2 Tokyo University of Agriculture and Technology

3 Corporate Research and Development Center, Toshiba

Abstract. DIMMnet-2 is a network interface for PC cluster, plugged
into a DIMM slot. Connecting network interface into commonly used
memory bus reduces the cost of building PC cluster compared with us-
ing expensive machines with recent high performance I/O bus like PCI-
X. Moreover, low latency communication from the host CPU can be
achieved. In this paper, implementation of the mechanisms for low la-
tency communication on the DIMMnet-2 prototype board by making the
best use of the memory slot is shown. Its latency for 4 Bytes data trans-
fer is only 1.4 μs which is lower than those of InfiniBand and QsNET II
on condition those host processes are Intel Xeon.

Keywords: DIMMnet-2, Network interface, PC cluster.

1 Introduction

PC clusters have been widely used because of its high degree of performance per
cost. Since both high bandwidth and low latency are required in the networks for
such PC clusters, not only a general purpose network such as Gigabit Ethernet
but also a special low latency network such as Myrinet[1], Quadrics Network
(QsNET)[2] and InfiniBand[3] are used.

The network interfaces of such networks are usually connected to a high per-
formance I/O bus like PCI-X or PCI-Express. However, using such high perfor-
mance I/O buses tends to increase the price of each node of PC cluster systems.
The motherboard with PCI-X slot is mostly for high end servers and more ex-
pensive than that used in commodity PCs. PCI-Express 16X (its bandwidth is
8GBytes/s) slots have been used for graphic devices in commodity PCs. But if
non-graphic devices such as network interfaces are plugged into the slot, the slot
works as PCI-Express 1X (0.5GBytes/s)[4][5] whose bandwidth is not enough
for the networks of PC clusters.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 211–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 Y. Miyabe et al.

Moreover, the latency of a host chipset occupies a large part of the total
latency of communication. For example, the latency on host chipset for 8 Bytes
data transfer on QsNET II[6] is 75% of the whole latency.

We have proposed the network interfaces plugged into memory slots, especially
DIMM slots, to solve these problems. The bandwidth of a memory bus has
improved along with Moore’s law, and will be enough for the future networks
for PC clusters. Additionally, the memory slots can be accessed from the host
with low latency.

In this paper, mechanisms for low latency communication of DIMMnet-2
plugged into DIMM slots are introduced. Our evaluation shows that the pro-
totype of DIMMnet-2 can transfer 4 Bytes data in 1.49 μs.

2 DIMMnet-2

DIMMnet-2 is the second generation of the network interface plugged into a
DIMM slot that we have proposed. The first generation of them are called
DIMMnet-1[7]. DIMMnet-1 was designed for plugged into an SDR SDRAM slot
and connected each other by experimental switches. In contrast, DIMMnet-2 is
designed for plugged into a DDR or DDR2 SDRAM slot and connected using
commercial InfiniBand switches.

Most commodity PCs are not equipped with a high performance I/O bus like a
PCI-X or a PCI-Express X8 that can cope with 10Gbps class network. Although
servers provide such I/O buses, they are expensive as a node of PC clusters.

In contrast, most commodity PCs have memory slots which are equipped a
high bandwidth, and they evolved rapidly to pursuit the performance improve-
ment of CPUs. In addition, memory bus has the important merit that it can be
accessed from host CPUs with low latency. Therefore, by using a memory slot
for connecting a network interface, PC clusters with a high performance per cost
can be built.

2.1 Prototype Board

Theprototype board ofDIMMnet-2 using anFPGAas a controller is nowavailable.
The aim of this prototype is validation of logic functions before making an ASIC.

Fig. 1 shows the photograph of the prototype board. The network controller
is implemented on the Xilinx Virtex-II Pro (XC2VP70) which has high speed
serial interface called RocketIO. This prototype board is connected to InfiniBand
Switches (4X: 10Gbps) by using the RocketIO.

This board has two DDR SO-DIMMs. They are used not only for commu-
nication buffers but also for data memory space for the host CPU. We plan to
provide globally shared memory with larger capacity than that in usual memory
board by installing multiple memory modules on the board.

In this version, with the limitation of FPGA performance, the main operating
frequency is set to be 100MHz, and only PC-1600 DDR SDRAM slot can be used.
By replacing theFPGAwith theASICversion controller or anewgenerationFPGA
such as Xilinx Virtex-4, connection with common memory slots will be available.

Implementation and Evaluation of the Mechanisms 213

Fig. 1. Photograph of DIMMnet-2 prototype board

2.2 Network Interface Controller

Fig. 2 shows the block diagram of DIMMnet-2 network interface controller.
Since it is difficult to handle 64bit DDR signals used with DDR SDRAM,

the controller converts 64bit DDR signals into 128bit SDR signals with DDR
Host Interface and DDR SO-DIMM Interface. These modules also generate and
interpret DDR SDRAM commands.

In DIMMnet-1 using an SDR SDRAM slot, the CPU in the host PC can access
directly the SO-DIMMs on the DIMMnet-1 board. However, we have known that
such direct accessing is difficult when a high speed DDR SDRAM slot is used
from experience of DIMMnet-1.

Thus, the indirect accessing method is adopted in DIMMnet-2. In this method,
the CPU accesses the SO-DIMMs through buffers in the network interface con-
troller. The buffers for the indirect access are Prefetch Window and Write Win-
dow in the CoreLogic which is the main block of the controller. Fig. 3 shows the
block diagram of the CoreLogic.

CoreLogic

DDR SO-DIMM Interface

D
D

R
 H

os
t I

nt
er

fa
ce

D
D

R
-S

D
R

A
M

 M
em

or
y

B
us

DDR SO-DIMM

InfiniB
and S

w
itch

DDR SO-DIMM

DDR SO-DIMM Interface

S
w

itc
h

In
te

rf
ac

e

Fig. 2. Block diagram of network interface

For writing data, the CPU writes data into Write Window, and then writes
“write” command into the Command Register with its address and data size to
write transaction. Window Controller interprets the command and starts Write
Unit. Then, the written data is transferred from Write Window to SO-DIMM
by Write Unit.

214 Y. Miyabe et al.

Switch
Interface

Host
Interface

CoreLogic

Receive
Controller

Register

Prefetch
Window

Write
Window

LLCM

Window
Controller

Prefetch
Unit

Write
Unit

DDR SO-DIMM Interface

DDR SO-DIMM Interface

Fig. 3. Block diagram of CoreLogic

For reading data, the CPU writes “prefetch” command into the command
register with its address, and then Window Controller starts Prefetch Unit for
transferring data from SO-DIMM to Prefetch Window. After a fixed delay or
changing the value of the Status Register, the CPU can read data from Prefetch
Window. If the issue timing of “prefetch” is well scheduled, the latency for data
transfer between SO-DIMM and Prefetch Window is almost hidden.

Sophisticated prefetch access commands including stride vector access are
available. That is, the interface controller collects the only required data words
from two SO-DIMMs, and writes them into Prefetch Window. Since the CPU can
access required words with the sequential access manner, the latency can be dras-
tically reduced. In such a sense, the controller equips a memory control facilities.

CoreLogic has another buffer called by LLCM (Low Latency Common Mem-
ory). This is used for general purpose, for example, for receiving small data or
flags for the communication completion.

These buffers and registers are mapped on individual physical address, and
MTRR (Memory Type Range Register) which can be used on Intel Pentium Pro
or later IA32 processors is suitable for increasing the access speed to them. Write
Window is set as “write combining”. Since writing into the write combining mem-
ory does not pollute cache, the write bandwidth can be enhanced compared with
other types. LLCM and registers is set as “uncachable”. To increase read band-
width, Prefetch Window is set as “write back” which uses burst transfer instead
of uncachable which uses partial transfer. Thus, processes must maintain cache
coherence of Prefetch Window by calling CLFLUSH, which flushes a cache line.

Switch Interface (Fig. 2) and Receive Controller (Fig. 3) are used for commu-
nication and described later.

3 The Mechanisms for Low Latency Communication

3.1 Communication of DIMMnet-2 Overview

In DIMMnet-2 system, a process is identified by a pair of Process Group ID
(PGID) and Process ID (PID). PGID identifies the groups of processes executing

Implementation and Evaluation of the Mechanisms 215

the same parallel processing. PID identifies the processes in the same PGID.
In contrast, in the network of InfiniBand, a DIMMnet-2 board is identified by
Local ID (LID) defined by the InfiniBand Architecture, and processes sharing
the same board are identified by Window ID (WID). Sender processes convert
receiver PID to receiver LID and WID using the table made by the privilege
process, and inform the controller of the LID and WID.

PGID is used to avoid interferences from irrelevance processes. When the
controller constructs the packet, the controller finds the sender PGID using
sender WID as a key in the table set into the DIMMnet-2 by the privilege
process, and then the sender PGID is written into the header of the packet.
When the packet is received, the controller compares receiver PGID and the
PGID of the header. If they are different, the packet is disposed.

The typical communication of DIMMnet-2 involves the following steps.

1. Sender process writes receiver LID and WID to the control register with
other information such as data size.

2. Window Controller reads data from SO-DIMM or Write Window, and then
generates a corresponding packet.

3. Window Controller transfers the packet to Switch Interface. Switch Inter-
face encapsulates the packet into InfiniBand packets and sends them to the
network.

4. When Receiver Controller detects the incoming packet to Switch Interface,
it reads the header of the packet.

5. If the PGID of the packet is correct, the data from Switch Interface are
written into Prefetch Window or LLCM by Receive Controller or into SO-
DIMM by Write Unit.

6. If the specific flag of the header is valid, the statuses such as sender LID etc.
are written to LLCM, and then the status register is updated.

3.2 Block on the Fly (BOTF)

For the low latency communication, DIMMnet-2 supports Block On The Fly
(BOTF)[8] data transfer. In BOTF, user process writes a whole packet data into
Write Window, and then writes the command into the control register to start
packet transfer. Window Controller can send a BOTF packet with a small latency
because it can generate a packet easily from the data in the Write Window.

This method can also reduce the overhead of building request for the con-
troller. All information for sending packet is written into Write Window as the
packet header. When we reuse Write Window, we don’t have to write the same
information as the previous transfer, such as the receiver LID.

User process can send any packet by BOTF. However, the controller always
rewrites the fields of PGID and packet size in the correct value for protection.

4 Evaluation

In this section, we show the latency of the BOTF implemented on the prototype
board of DIMMnet-2.

216 Y. Miyabe et al.

4.1 Method for Measuring the Latency

The latency was evaluated with a ping-pong message transfer between two
DIMMnet-2 boards connected with a two meters InfiniBand cable. Other speci-
fications of the environment are shown in Table 1.

Table 1. Measurement environment

CPU Pentium 4 2.6GHz
Chipset VIA VT8751A
Memory PC-1600 DDR-SDRAM 512MBytes ×1

DIMMnet-2 ×1
OS RedHat8 (Kernel 2.4.27)

We evaluated the following times as measures of the latency. The measures
are started when a user process starts to write data into Write Window.

(a) When a receive process detects that the data have been written in Prefetch
Window by polling the status register.

(b) When a receive process detects that the data have been written in SO-DIMM
by polling the status register.

(c) After (a), when a receive process finishes copying received data from Prefetch
Window to a buffer allocated by the receive process.

(d) When a receive process detects that the data has been written in LLCM by
polling LLCM, and reads out it.

4.2 Result and Discussion

Fig. 4 shows the latency of (a), (b), and (c). (The size that can be received to
LLCM is limited to 8 Bytes in the current implementation.) When 4 Bytes data
were transfered, the latencies of (a) (b) (c) and (d) were 1.74 μs, 1.81 μs, 1.98
μs, and 1.49 μs, respectively.

This shows that the latency of receiving to LLCM was the lowest. Incoming
data to LLCM can be detected by polling where the next data are received,
so detecting and reading data can be done simultaneously. However, this mech-
anism doesn’t work well in case of incoming data to Prefetch Window. Since
the memory type of Prefetch Window is “write back”, polling Prefetch Window
needs to call CLFLUSH at each reading to flush cache lines to increase the over-
head. Thus, detecting incoming data to Prefetch Window is done by polling the
status register whose value changes after completion the reception processing.

The difference between (a) and (b) is caused by the latency for writing data
to SO-DIMM.

Table 2 compares the latency of DIMMnet-2 and other networks. The value
of the table contains the latency of a switch. If DIMMnet-2 connects to an
InfiniBand switch and retransmission is supported, the latency increases by 0.4
μs and becomes 1.89 μs.

Implementation and Evaluation of the Mechanisms 217

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

[u
s]

Data Size [Byte]

(a) Detect data have been written on Prefetch Window
(b) Detect data have been written on SO-DIMM

(c) Read data from Prefetch Window

Fig. 4. Result of the latency evaluation

Table 2. Comparison of latency with other networks

DIMMnet-2 BOTF 1.49 μs (1.89 μs)

InfiniHost RDMA (PCI-Express, Xeon) 3.8 μs [9]
QsNET II RDMA (PCI-X, Opteron, AMD) 0.97 μs [10]

QsNET II RDMA (PCI-X, Xeon, Serverworks GC-LE) 2.68 μs [10]

Table 2 shows the latency of DIMMnet-2 is small as half of the latency of
InfiniHost, which is an interface of InfiniBand provided by Mellanox, though
both DIMMnet-2 and InfiniHost use InfiniBand X4. In addition, the latency of
DIMMnet-2 is lower than that of QsNET II with Xeon processors, but is not
lower than that of QsNET II with Opteron processors. Considering that the
current board is a prototype and motherboards supporting PC-1600 is outdated
and comparatively low performance, the latency of DIMMnet-2 is quite well
compared with QsNET II.

5 Conclusion and Future Work

In this paper, we introduced DIMMnet-2, which is the network interface plugged
into a memory slot, and the latency of BOTF is evaluated. Although the current
board is a prototype, the latency for 4 Bytes data transfer is only 1.48 μs which
is lower than those of InfiniBand and QsNET II when Intel Xeon is used as a
host CPU.

Now, we are connecting multiple DIMMnet-2 nodes with an InfiniBand switch.
Further measurement and performance evaluation are needed with such a parallel
system before the ASIC migration. And, in this implementation, the memory slot

218 Y. Miyabe et al.

can’t work on dual channel mode, so we are investigating the method for solving
this problem.

Acknowledgment

This work is supported by the Ministry of Public Management, Home Affairs,
Posts and Telecommunications.

References

1. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N.,
Su, W.-K.: Myrinet - A gigabit per second local area network. IEEE Micro 15(1),
29–36 (1995)

2. Petrini, F., Fang, W.-c., Hoisie, A., Coll, S., Frachtenberg, E.: The Quadrics Net-
work: High-Performance Clustering Technology. IEEE Micro 22(1), 46–57 (2002)

3. InfiniBand Trade Association. http://www.infinibandta.org/
4. Intel 915G/915GV/910GL/915P Express Chipset Datasheet (Sepember 2004),

http://www.intel.co.jp/
5. Intel 925X/925XE Express Chipset Datasheet (November 2004),

http://www.intel.co.jp/
6. Hewson, D., Beecroft, J., Hewson, D., McLaren, M., Roweth, D.: QsNet II: Perfor-

mance Evaluation (2003), http://www.quadrics.com/
7. Tanabe, N., Hamada, Y., Nakajo, H., Imashiro, H., Yamamoto, J., Kudoh, T.,

Amano, H.: Low latency communication on DIMMnet-1 network interface plugged
into a DIMM slot. In: Parallel Computing in Electrical Engineering 2002, pp. 9–14
(2002)

8. Tanabe, N., Yamamoto, J., Hamada, Y., Nakajo, H., Kudoh, T., Amano, H.:
BOTF:A High Bandwidth Communication Mechanism of DIMMnet-1 Network
Interface Plugged into a DIMM slot. IPSJ Journal (2002)(In Japanese)

9. Liu, J., Mamidala, A., Vishnu, A., Panda, D.K.: Evaluating InfiniBand Perfor-
mance with PCI Express. IEEE Micro 25(1), 20–29 (2005)

10. Beecroft, J., Addison, D., Hewson, D., McLaren, M., Petrini, F., Roweth, D.:
Quadrics QsNetII : Pushing the Limit of the Design of High-Performance Networks
for Supercomputers. IEEE Micro, (accepted for publication), Available from
http://www.c3.lanl.gov/fabrizio/papers/ieeemicro-elan4.pdf

 http://www.infinibandta.org/
 http://www.intel.co.jp/
http://www.intel.co.jp/
http://www.quadrics.com/
http://www.c3.lanl.gov/ fabrizio/papers/ieeemicro-elan4.pdf

Computationally Efficient Parallel

Matrix-Matrix Multiplication on the Torus

Ahmed S. Zekri and Stanislav G. Sedukhin

Graduate School of Computer Science and Engineering, The University of Aizu,
Aizu-Wakamatsu City, Fukushima 965-8580, Japan

{d8062103, sedukhin}@u-aizu.ac.jp

Abstract. In this paper, we represent the computation space of the
(n×n)-matrix multiplication problem C=C+A·B as a 3D torus. All pos-
sible time-minimal scheduling vectors needed to activate the computa-
tions inside the corresponding 3D index points at each step of computing
are determined. Using the projection method to allocate the scheduled
computations to the processing elements, the resulting array processor
that minimizes the computing time is a 2D torus with n×n processing
elements. For each optimal time scheduling function, three optimal array
allocations are obtained from projection. All the resulting allocations of
all the optimal scheduling vectors can be classified into three groups. In
one group, matrix C remains and both matrices A and B are shifted be-
tween neighbor processors. The well-known Cannon’s algorithm belongs
to this group. In another group, matrix A remains and both matrices
B and C are shifted. In the third group, matrix B remains while both
matrices A and C are shifted. The obtained array processor allocations
need n compute-shift steps to multiply n×n dense matrices.

Keywords: matrix-matrix multiplication, 3D torus, array processor,
space-time mapping.

1 Introduction

High performance computing (HPC) is constrained mainly by the processor-
memory gap. Managing the movement of data between memory and processor
is very crucial to enhance the performance. A very naive strategy is to reuse the
loaded data as much as possible by means of blocked algorithms expressed in
terms of level-3 BLAS (Basic Linear Algebra Subroutines). Meanwhile, most of
linear algebra algorithms depend heavily on matrix operations [1]. Hence, the
motivation of this research is to investigate efficient methods to perform parallel
matrix-matrix multiplication on the best array processor with minimum number
of computing steps.

Consider the (n×n)-matrix multiplication problem C=C+A·B. The sequen-
tial way to compute matrix C is through the following process: for each element
c(i, j) where i, j ∈ Ω = {0, 1, ..., n − 1}, on each iteration k ∈ Ω we should com-
pute c(i, j)=c(i, j)+a(i, k)·b(k, j). This process takes n3 multiply-add operations

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 219–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

220 A.S. Zekri and S.G. Sedukhin

to complete matrix-matrix multiplication. The index space of the underlying
problem can be defined by � = {(i, j, k)T : i, j, k ∈ Ω} where for each point
p=(i, j, k)T ∈ �, we should compute c(i, j) such that � is a partial ordered set
of computations. Note that because the summation is associative and commuta-
tive, a notation of k ∈ Ω means that we can correctly accumulate a result in any
order, resulting in n! possible ways of pairing. We repeatedly apply this process
for each element of matrix C. Ultimately we will have n2×n! possible ways of
computing the matrix-matrix multiplication.

Generally, for sequential computing there is almost no difference in what way
we select k under the assumption that all initial and intermediate data are
equally fast accessed from memory. So, for some ordered set of pairs i, j ∈ Ω, the
classical algorithm to compute matrix-matrix multiplication starts with k=0 and
proceeds with an incrementing step until k=n-1. For parallel processing, however,
it is not trivial to choose one way from the exponential solution space. Obvi-
ously, we have to introduce some heuristics to guide the selection (or scheduling)
procedure. One such heuristic is to maximize reusing data in each iteration step
k. To do so we can compute matrix C by using an outer product of two n-
vectors on each iteration step k, i.e., for all elements of matrix C on each k-th
iteration k ∈ Ω, we update matrix C by; C=C+ak·bT

k where, ak and bk are the
k-th column and k-th row of matrices A and B, respectively [2], [3], [4]. In this
case, we can introduce a linear time scheduling function Step(p)=k, p ∈ �, such
that n×n array of processing elements (PEs), where the (i, j)-th PE holds the
initial and intermediate values of c(i, j), can compute the matrix-matrix multi-
plication in n steps. The alignment of the two vectors ak and bk can be done
inside or outside the array processor. Unfortunately, this approach is based on
broadcasting of two n-vectors among an array of PEs to form (n×n)-matrix
of outer products and therefore is not scalable. The data broadcasting can be
transformed to data pipelining (like in systolic array processors) by using a linear
time scheduling function Step(p)=i+j+k which introduces additional n-1 steps
to fill the pipeline and n-1 steps to flush the pipeline resulting totally in 3n-2
steps for matrix-matrix multiplication on n×n array processors [5], [3]. Another
efficient way to reduce broadcasting is proposed by Fox, Otto and Hey [6]. In this
method, data broadcasting through columns is replaced by local circular upward
shifts of the elements of matrix B. The elements of matrix A are still broadcast
along the array rows. The time scheduling in this case can be described by the
modular function Step(p)=[-i+k] mod n [7]. This algorithm calculates matrix
C in n steps on an (n×n) array processor. It is clear that this solution is scalable
in one direction only.

As a natural extension to the above discussion it seems that removing broad-
casts completely is the best way. In this case, it is better to reuse all elements of
matrices A and B to update matrix C on each computational step such that each
step includes n different iteration steps k ∈ Ω for n2 different (i,j) in a predefined
order. The reuse in this case is performed by cyclical rotation of the elements
of matrices A, B and C in three orthogonal directions such that one direction
is assigned to each matrix. What is required is that the elements a(i, k), b(k, j),

Computationally Efficient Parallel Matrix-Matrix Multiplication 221

and c(i, j) should meet with each other in correct place and time. It is clear that
three orthogonal directions for all elements of matrices A, B and C form a 3D
torus where the orbital processing is based on the modular time scheduling func-
tion Step(p)=πT ·p mod n. The optimal values of the scheduling vector π will be
discussed later. If we consider all possible directions of rotations inside the 3D
torus, all optimal time scheduling vectors that lead to equally efficient ways to
solve the matrix-matrix multiplication problem can be determined. To allocate
the computation points to the minimum number of PEs, the projection method
[2]is applied. The resulting number of PEs is n2 (the lower bound) organized in
a 2D torus which is a natural projection of the 3D torus. The number of steps
needed to complete computations in all array allocations is n.

To compute the resulting allocations on the 2D toroidal array processor, some
communication overhead is needed to align data into PEs. For example, in Can-
non’s algorithm [8], [9], which is one of the resulting array allocations, input
matrices are skewed at first. Then, at each step of computing, each PE multi-
plies the current elements of A and B and accumulates the resulting C element
then shifts input data to neighbor PEs. After n steps of compute-shift opera-
tions, C is calculated. The data alignment overhead will not be addressed in this
paper.

In Section 2 we present time-space mapping, modular scheduling and the
projection method. The optimal scheduling vectors of the 3D torus computation
space and the minimum number of PEs to execute the scheduled computations
are presented in Section 3. Section 4 shows all optimal scheduling functions for
the 3D torus computation space and the optimal allocations of the 2D toroidal
array processor. Section 5 concludes the paper.

2 Time-Space Mapping

Given a set of computations inside an index space, time-space transformation is
defined by finding i) a suitable time scheduling function to arrange the compu-
tations at the index points into groups and ii) assigning these groups to PEs in
some logical sequence or simply time-steps assuming that the parallel execution
and the accompanied data movement of each group takes one unit time. In linear
time-space mapping, time scheduling and space allocation are combined into one
mapping T ·p, where p ∈ � and T is a 3×3 non-singular transformation matrix
whose first row is the time scheduling vector and the second and third rows com-
pose a 2×3 space transformation matrix which maps the 3D index space into the
2D array processor space [10], [1]. Our interest in this work is in modular time
scheduling. So, we will use two separate functions for the time-space mapping,
namely Step(p) as a modular scheduling function and Allocation(p) as a linear
allocation function. The latter function determines the coordinates of PEs in
the array processor where the scheduled computations and data movement are
executed. The definitions of the two functions are given below. Some conditions
exist to preserve data dependencies and to prevent allocating more than one
computation to the same PE at the same time (see [11], [12], [10] for details).

222 A.S. Zekri and S.G. Sedukhin

2.1 Time Scheduling

A scheduling function specifies the sequence of computing steps in the array
processor. It is a mapping from the 3D index space to a 1D schedule space.
For details on different scheduling functions proposed in the literature, see for
example [2], [13], [11]. The type of scheduling determines the topology and the
interconnection pattern of the array processor and vice versa. For example, linear
scheduling can be used with broadcast communications. In square mesh array
processors with wrap around connections, modular scheduling is the best al-
ternative. Modular mapping have been used in [7] to derive data distribution
independent programs for matrix-matrix multiplication. In our paper, we use
modular time scheduling functions, which are characterized by a linear schedul-
ing followed by a modulo operation, to schedule computations inside the index
space �,

Step(p) = [α i + β j + γ k] mod n,

where Step(p) : Z3 → Z and π = (α, β, γ)T is a time scheduling vector with
integer components. The mod operation is used to guarantee the generation of
the required sequence of steps and to manipulate the wrap around connections.

2.2 Space Transformation

Different allocation functions exist to map the computation points onto the
physical array processor [11], [2], [10]. In the well-known projection method, the
3D index space is mapped to 2D space to form the array processor. Because the
computation space of the matrix-matrix multiplication problem is a 3D torus,
the array processor resulting from the projection will be a 2D torus. We can
define the space transformation by the following linear map:

Allocation(p) = S · p,

where Allocation(p):Z3→Z2, p ∈ � and S is a 2×3 space transformation matrix.
Generally, the shape and size of the index space determine the directions of

projection. We will call the direction that allows the allocation of exactly one
computation point at a time step to exactly one PE an admissible direction of
projection. Said alternatively, admissibility holds if and only if the scalar product
πT ·v �= 0, where v is the direction of projection [11]. We need to construct the
matrix S such that its rows are orthogonal to the direction of projection which
means that S·v=0. It is also assumed that the rows of S are linearly independent.
The admissible directions of projection that result in the minimal number of PEs
will be discussed next.

3 Optimal Mapping

Optimality here means that the time-space mapping has the minimum comput-
ing time on the minimum number of PEs. The objective now is to determine

Computationally Efficient Parallel Matrix-Matrix Multiplication 223

the values of the coefficients α, β, and γ of the function Step(p) which define
all possible optimal time scheduling vectors used to schedule computations in-
side the 3D torus. We also determine the admissible directions of projections to
assign the scheduled computations to the minimal number of PEs in the array
processor.

The optimal scheduling vectors of the 3D torus computation space can be
easily determined by a simple enumeration. Let r0, r1, ..., rm−1 be ordered objects
connected in a ring. If we start from rl, 0 ≤ l < m then we have two paths to
traverse the ring: rl, rl+1, ..., rm−1, r0, ..., rl−1 and rl, rl−1, ..., r0, rm−1, ..., rl+1.
The subscript of the next object to traverse in the two paths is obtained by the
modular operations [l+1] mod m, and [l−1] mod m, respectively, where l is the
subscript of the current object. We will say that the traverse order of index l in
the first path is increasing while in the second is decreasing. The 3D torus space
comprises from three rings along i, j and k axes where each ring has two degrees
of freedom to rotate. Therefore, eight different combinations of simultaneous
rotations along i, j and k axes are possible. An increasing/decreasing order of
an index will indicate that the corresponding component of the time schedule
vector is assigned a positive/negative sign. The magnitudes of the schedule vector
components must be chosen so that data dependencies are preserved while the
communications are local. In addition, at any step of computing the data is
moved in three directions which mean that none of the components equals to
zero. Therefore, we found that each of the three components α, β, and γ equals
either +1 or -1. By finding all combinations we get eight possible optimal time
scheduling vectors. In fact, they are four vectors with their negatives. This means

Fig. 1. The distributions of A, B and C at Step(p)=0, π=(−1,−1, 1)T . In the three
data allocations resulted from projection, matrix A, C, and B remains in the left,
middle, and right allocations, respectively.

224 A.S. Zekri and S.G. Sedukhin

that we have only four scheduling functions described by four pairs of vectors,
as will be seen in the next section.

Now, we determine the minimum number of PEs to use with the optimally
scheduled computations inside the index space �. In fact, there are many ad-
missible projection directions to allocate the 3D computation points to PEs.
For example, the direction v =(1, 1, 1)T is admissible and there are many valid
constructions of the matrix S so that S·v=0. The resulting array processor in
this case has a hexagonal shape with 3n2-3n+1 PEs. But, we seek directions
that result in the minimum number of PEs in the processor array. It is obvious
that the lower bound of the number of PEs (in planar arrays) associated with
the cubical n×n×n index space � is n2. This means that the best admissible
directions of projections that should be used are the unit vectors e1=(1, 0, 0)T ,
e2=(0, 1, 0)T , and e3=(0, 0, 1)T and their negatives. In the next section, we will
show that using the resulting n×n toroidal array all the array allocations need
n steps of compute-shift operations to solve the (n×n)-matrix multiplication
problem.

4 Optimal Time-Space Allocations

α=-1, β=-1, and γ=1. In this case, the time scheduling function is given
by Step(p) =[k-i-j] mod n. The rings along i and j axes are rotated in reverse
(decreasing) order. The ring along k-axis is rotated in normal (increasing) order.
The distributions of A, B and C elements inside the 3D torus are shown in Fig.
1. We use the circles (ikj) to show the active points at each step of computing.
At each circle, c(i, j)=c(i, j)+a(i, k)·b(k, j) is computed.

Mapping the 3D torus space into the 2D space, we have three different alloca-
tions to start computing as illustrated in Fig.1. The left allocation is obtained by
applying the projection vector -e2. In this allocation, the elements of matrix A
are not moving at each computing step, i.e., i and k indexes are the coordinates
of the PEs. To give correct results the two matrices B and C must be rotated to
the right and to the top, respectively. In the middle allocation, which is Cannon’s
algorithm [8], matrix C remains inside PEs and matrices A and B are circularly
shifted left and up, respectively. In the left allocation, matrix B remains inside
PEs and the two matrices A and C are rotated left and up, respectively.

α=-1, β=1, and γ=-1. The values of the scheduling vector components indi-
cate that the successive values of index j for each computation point are increas-
ing while the values of the two indexes i and k are decreasing. The scheduling
function is given by Step(p)=[j-i-k] mod n. The three optimal array processor
assignments are given in Fig.2. Projecting the 3D computation space parallel to
the j, k and i axes gives the three allocations (a), (b) and (c), respectively.

α=1, β=-1, and γ=-1. The values of α, β and γ indicate that i-index is
increasing from step to the next while j and k indexes are decreasing. The
scheduling function is given by Step(p) = [i-j-k] mod n.

Computationally Efficient Parallel Matrix-Matrix Multiplication 225

Fig. 2. The optimal array processor allocations at Step(p) = 0 for π = (−1, 1, −1)T

α=-1, β=-1, and γ=-1. The scheduling function is given by Step(p)=[-i-j-
k] mod n, where all indexes are rotated in decreasing order.

The remaining four scheduling vectors are the negative of the previously
discussed ones. According to the properties of the modulo operation, for each
scheduling vector πi and its negative -πi, the distribution of A, B and C elements
will be the same at the steps Stepπi(p)=q mod n and Step−πi(p)=[n-q] mod n
where q = 0, 1, ..., n − 1.

When solving the (2×2)-matrix multiplication problem, all the four described
scheduling functions will match resulting in only one 3D scheduling. The reason
behind this special case is that although there are two directions of rotation for
each ring in the 3D torus, they have the same traverse path r0, r1. This means
that the direction of rotation has no effect (in this case) on the distribution of
the data inside the computation space. Therefore, there are only three optimal
2D data allocations to parallelize the (2×2)-matrix multiplication problem on
the 2×2 toroidal array processor.

5 Conclusions

A torus provides high-bandwidth nearest-neighbor connectivity while using local
communications. It is scalable and can be directly applied to many scientific
and data-intensive applications. In this paper, we investigated efficient ways to
multiply two n×n dense matrices on n×n toroidal array processor. We have

226 A.S. Zekri and S.G. Sedukhin

viewed the three dimensional computation space as a 3D torus. Inspired by
Cannon’s algorithm, we have enumerated all possible optimal time scheduling
vectors to schedule the computations inside the 3D index space of the problem.
Then, using the projection method, the index points have been projected parallel
to the i, j and k axes for each scheduling vector to assign the computations to
the array processor. The minimal number of processing elements resulted from
projection into the selected directions is n2 (i.e., the lower bound of this number).
All the resulting array allocations are optimal because they require n compute-
shift steps to find the matrix-matrix multiplication.

References

1. Golub, G.H., Loan, C.F.V.: Matrix Computations. John Hopkins, Baltimore, Mary-
land (1989)

2. Kung, S.: VLSI Array Processors. Prentice-Hall, Englewood Cliffs (1988)
3. van de Geijn, R., Watts, J.: SUMMA: scalable universal matrix multiplication

algorithm. Technical Report TR-95-13, The University of Texas (April 1995)
4. Cappello, P.R.: A processor-time-minimal systolic array for cubical mesh algo-

rithms. IEEE Trans. Parallel Distrib. Syst. 3(1), 4–13 (1992)
5. Quinton, P., Dongen, V.V.: The mapping of linear recurrence equations on regular

arrays. Journal of VLSI. Signal Processing 1
6. Fox, G., Otto, S., Hey, A.: Matrix algorithms on a hypercube I: Matrix multipli-

cation. Parallel Computing 4, 17–31 (1987)
7. Lee, H.J., Fortes, J.A.: Modular mappings and data distribution independent com-

putations. Parallel Processing Letters 7(2), 169–180 (1997)
8. Cannon, L.: A Cellular Computer to Implement the Kalman Filter Algorithm. PhD

thesis, Montana State University (1969)
9. Lee, H.J., Robertson, J.P., Fortes, J.A.B.: Generalized Cannon’s algorithm for

parallel matrix multiplication. In: ICS 1997. Proceedings of the 11th international
conference on Supercomputing, pp. 44–51. ACM Press, New York (1997)

10. Weston, J.H., Zhang, C.N., Y., Y.F.: Some space considerations of space-time map-
pings into systolic arrays. In: Int. Conf. on Parallel and Distributed Processing
Techniques and Apps., Sunnyvale, California (August 1996)

11. Lavenier, D., Quinton, P., Rajopadhye, S.: Advanced systolic design. In: Digital
Signal Processing for Multimedia systems. Signal Processing Series, pp. 657–692.
Marcel Dekker (1999)

12. Alain Darte, M.D., Robert, Y.: A characterization of one-to-one modular mappings.
Parallel Processing Letters 5(1), 145–157 (1996)

13. Darte, A., Robert, Y.: Constructive methods for scheduling uniform loop nests.
IEEE Trans. Parallel Distrib. Syst. 5(8), 814–822 (1994)

A New Dynamic Load Balancing Technique for

Parallel Modified PrefixSpan with Distributed
Worker Paradigm and Its Performance

Evaluation

Makoto Takaki, Keiichi Tamura, Toshihide Sutou, and Hajime Kitakami

Graduate School of Information Sciences, Hiroshima City University,
3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima, 731-3194, Japan

{makoto,ktamura,toshihide,kitakami}@db.its.hiroshima-cu.ac.jp

Abstract. In order to extract the frequent patterns that can become
motif at high speed from amino acid sequences, we are developing the
parallel Modified PrefixSpan with the distributed worker paradigm. This
paper presents a new dynamic load balancing technique for the paral-
lel Modified PrefixSpan with the distributed worker paradigm and its
performance evaluation. The characteristics of the dynamic load balanc-
ing are the small-grain task and the Cache-based Random Steal schema.
This paper explains these characteristics and presents performance eval-
uations with the PC cluster of 100 nodes.

Keywords: data mining, parallel computing.

1 Introduction

In the field of molecular biology, there has been an increased interest in using
the data mining techniques to discover motifs from amino acid sequences. A
motif is a featured sequential pattern in amino acid sequences. It is regarded as
a function that has been conserved in the process of molecular evolution.

In order to extract the motifs effectively, the algorithms which can extract
the frequent sequential patterns with fixed-length wildcard regions and variable-
length wildcard regions are required. A Modified PrefixSpan [7] can extract the
frequent sequential patterns which include fixed-length wildcard regions and
variable-length wildcard regions.

In our previous studies [10] [11], we have developed a parallel Modified Pre-
fixSpan with a master-worker paradigm [13] [4] and its dynamic load balancing
technique. The Modified PrefixSpan has a high parallelism. However, the load
imbalance is very large. We have developed a new dynamic load balancing tech-
nique, a master-task-steal schema, for the master-worker paradigm.

The master-worker paradigm has a performance bottleneck of the master pro-
cess on a large-scale PC cluster. Therefore, we have been developing a parallel
Modified PrefixSpan with a distributed worker paradigm [13]. In the distributed

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 227–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 M. Takaki et al.

worker paradigm, the performance bottleneck of the worker process hardly oc-
curs. However, the most efficient dynamic load balancing technique for the dis-
tributed worker paradigm is not able to be applied to the parallel Modified
PrefixSpan because the load imbalance is very large.

This paper proposes a new dynamic load balancing technique for the paral-
lel Modified PrefixSpan with the distributed worker paradigm. There are two
characteristics of the proposed dynamic load balancing technique.

(1) Cache-based Random Steal Schema
Applications with a distributed worker paradigm always use a Random Steal
(RS) [5] schema as a dynamic load balancing technique. However, there is a
performance bottleneck, if the load is concentrated on a part of the worker
processes. In the Modified PrefixSpan, the load is concentrated on a part of
the worker processes. To address this problem, we propose a Cache-based RS
schema. In the Cache-based RS schema, although the load is concentrated on
a part of the worker processes, the performance bottleneck can be avoided.

(2) Small-Grain Task
A process that extracts frequent (k + 1)-length sequential patterns from a
frequent k-length sequential pattern is called an small-grain task. The small-
grain task is effective for dynamic load balancing. The small-grain task is
adapted as a task in the parallel processing of the Modified PrefixSpan.

We evaluated the Cache-based RS schema on an actual large-scale PC cluster.
In the experiments, three types of datasets that include motifs named Zinc Fin-
ger, Kringle and Leucine were used. Experimental results show that the speed-up
ratios of the Cache-based RS schema are superior to those of the RS schema.

The rest of this paper is organized as follows: Section 2 explains the algorithm
of the Modified PrefixSpan. Section 3 describes the related work. Section 4 shows
the parallelism of the Modified PrefixSpan with the distributed worker paradigm.
Section 5 proposes the Cache-based RS schema. Section 6 shows the experimental
results. Section 7 is the conclusions.

2 Modified PrefixSpan

This section explains problem definition and the basic algorithm of the Modified
PrefixSpan.

2.1 Problem Definition

Let Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y } be
a set of all letter alphabet in amino acid sequences. A sequence s is denoted
as (a1a2 · · · am), where al is a letter, i.e., al ∈ Σ, al = s[l], for 1 ≤ l ≤ m. A
sequence database S is a set of tuples 〈sid, ssid〉, where sid is a sequence id and
ssid is a sequence. Table 1 shows an example of amino acid sequences.

A New Dynamic Load Balancing Technique for PMPS 229

Table 1. Example of Amino Acid Sequences

sequence id sequence

1 FKYAKWL

2 SFVKTA

3 ALR

4 MSKPL

5 FSKFLMAW

A k-length sequential pattern is denoted as:

〈patk〉 = 〈A1 − x(i1, j1) − A2 − x(i2, j2) − · · · − x(ik−1, jk−1) − Ak〉.
A symbol Aj is called a character element. A symbol “-” means that next

element is continued. A symbol x(in, jn) represents wildcard regions. If 0 ≤ in ≤
jn, this region is called a variable-length wildcard region. If in = jn, this region
is called a fixed-length wildcard region, and this region can be represented by
x(in).

For example, the sequence s1 includes a sequential pattern “F**A” which is
denoted as 〈F − x(2) − A〉. The sequence s1, s2, and s5 include the sequential
pattern 〈F −x(2, 5)−A〉. The sequence s1 includes 〈F −x(2)−A〉, the sequence s2
includes 〈F−x(3)−A〉, the sequence s5 includes 〈F −x(2)−A〉 and 〈F −x(5)−A〉.

The support count of a k-length sequential pattern 〈patk〉 is the number of
tuples containing 〈patk〉 in S. Given a positive integer, min sup as the support
count threshold, the k-length sequential pattern is called a frequent k-length
sequential pattern if 〈patk〉 is contained by at least min sup tuples.

Each 〈patk〉 has a projected database that keeps the subsequent positions
of the rightmost characters of 〈patk〉. In order to extract the 〈patk+1〉 from a
〈patk〉, the projected databases of the 〈patk〉 are needed. The projected database
of 〈patk〉 is denoted as PDB(〈patk〉).

There are three user-specified parameters, min sup, the maximum number of
wildcards, the maximum number of errors. The maximum number of wildcards is
represented as wc max. The maximum number of errors is represented as εmax.

The value of wc max is the maximum number of wildcards of which you
may appear continuously in a frequent sequential pattern. The value of εn =
jn − in (1 ≤ n ≤ kmax) is called as a error. The value of εmax indicates the
maximum number of εn.

2.2 Basic Philosophy

The basic philosophy of the Modified PrefixSpan is as follows:

– phase 1:
The algorithm scans a sequence database once to find all frequent 1-length se-
quence patterns in the sequence database. The algorithm creates PDB(〈pat1〉)
for each 〈pat1〉.

230 M. Takaki et al.

– phase 2:
For each 〈patk〉, the algorithm constructs (k + 1)-length sequential patterns
by using the PDB(〈patk〉). If the support count of a (k+1)-length sequential
pattern is more than min sup, the (k + 1)-length sequential pattern is a
〈patk+1〉. If no 〈patk+1〉 is extracted, the algorithm terminates the frequent
sequential pattern extraction. Otherwise, k := k + 1 and go to “phase2”;

3 Related Work

There are many studies on frequent sequential pattern extraction of sequential
database. Most of these studies adopt, an apriori like [3], a candidate generation-
and-test approach. The apriori like approach may still be expensive, especially
when long and numerous patterns are encountered. To overcome this problem,
a new methodology, called tree projection, was developed by Jiawei Han[8]. This
approach mines the frequent sequential patterns without candidate generation.

To the best of our knowledge, there is little work on the parallel processing
of tree-projection-based frequent sequential pattern extraction algorithms. There
are many studies on the parallel processing of the apriori like approach [2] [9]
[12]. However, these parallelisms are not adapted to the tree-projection-based
approach. The main cost of the apriori like approach is candidate generation
and scanning sequence databases. The main cost of the tree-projection-based
approach is the construction of frequent sequential patterns from the postfix
databases and the generation of the projected database of frequent sequential
patterns.

The type of work most related with the present research is the parallel tree-
projection-based sequence mining algorithm proposed by Valerie Guralnik and
George Karypis [6]. Comparisons of our work and Guralnik’s work are as follows:

Guralnik’s work focuses on transaction database. While our work focuses on
amino acid sequences. The number of amino acid sequences is several thousand
at most, however the length of a sequence is over 100 or 1000. The maximum
length of pattern is very large.

Guralnik defines a sub-tree search as a task. The processing time of a task
can be estimated beforehand.We define the small-grain task as a task, because

<patk>:cnt

k-frequent sequential pattern

<pat1k+1>:cnt1 <patnk+1>:cntn

(k+1)-frequent sequential patterns

extraction

(a) Definition

</></>

<A>:4<A>:4 <F>:3<F>:3 <K>:4<K>:4 <L>:4<L>:4 <S>:3<S>:3

task1

task2 task3 task4 task5
</></>

<A>:4<A>:4 <F>:3<F>:3 <K>:4<K>:4 <L>:4<L>:4 <S>:3<S>:3

<F-x(0,3)-A>:3<F-x(0,3)-A>:3

<F-x(1,3)-A>:3<F-x(1,3)-A>:3 <F-x(2,5)-A>:3<F-x(2,5)-A>:3 <F-x(0,3)-K>:3<F-x(0,3)-K>:3

<F-x(1,3)-K>:3<F-x(1,3)-K>:3

task6
task7 task8

task9
task10

task3 task4 task5

(b) Example

task1

Fig. 1. Small-grain task

A New Dynamic Load Balancing Technique for PMPS 231

the load imbalance of Modified PrefixSpan is very large and the processing time
of a task cannot be estimated beforehand.

In Guralnik’s work, the RS schema is adapted. The effective results were ob-
tained, because the bias of work load is small. Moreover, the number of machines
are comparatively few(16 machines, 32CPUs). We evaluated the proposed tech-
nique on the PC cluster of 100 nodes. The RS schema is effective when the
number of sites is comparatively few. However, the performance is decremented
when the number of nodes is about one hundred. Thus, the modification of the
RS schema was needed.

4 Parallel Modified PrefixSpan with Distributed Worker
Paradigm

4.1 Task Definition

A process that extracts (k + 1)-frequent sequential patterns from a k-frequent
sequential pattern is called a small-grain task (Figure 1 (a)). The small-grain
task is adapted as a task in the parallel Modified PrefixSpan, because the load
imbalance of the Modified PrefixSpan is very large. Moreover, the extraction
processing time cannot be estimated beforehand.

Figure 1 (b) shows an example of the small-grain task. There are five 1-
frequent sequential patterns. For each 1-frequent sequential pattern, the pattern
is considered to be one small-grain task. Five 2-frequent sequential patterns are
extracted when task2 is executed, and five small-grain tasks, task6, task7, task8,
task9, task10 are generated newly.

A small-grain task can be executed independently. When (k + 1)-frequent
sequential patterns are extracted from the k-frequent sequential pattern, the
contents of processing that has been needed to extract a k-frequent sequential
pattern, and the information of another frequent sequential patterns are not
needed. This is because the Modified PrefixSpan must examine only the sub-
sequence which follows the rightmost characters of 〈patk〉 when (k + 1)-frequent
sequential pattern is extracted.

4.2 Algorithms

This section shows the processing steps of the parallel Modified PrefixSpan with
the distributed worker paradigm which has the RS schema. One worker process
begins to extract 1-frequent sequential patterns. This worker process is called
a leader worker process. Each worker process has a local task pool that stores
small-grain tasks and a P locali that stores frequent sequential patterns. Each
worker process executes concurrently the Main Function.

Main Function :

(1) If the worker process is the leader worker process, the worker process sends
the parameters to all worker processes. Otherwise, the worker process re-
ceives the parameters from the leader worker process.

232 M. Takaki et al.

(2) If the worker process is the leader worker process, go to the Initialize
Subroutine.

(3) If the local task pool is not empty, go to the next step. Otherwise, go to the
step (6).

(4) The worker process extracts all (k+1)-frequent sequential patterns from the
k-frequent sequential pattern. The extracted (k+1)-frequent sequential pat-
terns are inserted into P locali. Each process, that extracts (k + 2)-frequent
sequential patterns from a (k+1)-frequent sequential pattern is inserted into
local task pool.

(5) Go to the step (3).
(6) Go to the Random Steal Subroutine.
(7) If the local task pool is not empty, go to the step(3). Otherwise, go to the

Finalize Subroutine.

Random Steal Subroutine :

(1) The worker process selects a donor worker process (DWP) randomly. Then
the worker process sends a task request message to the DWP.

(2) The following processes are selected by the reply of the task request message.
(a) If a small-grain task is returned as the reply of the task request message,

the received small-grain task is inserted into the local task pool. Return
to the Main Function.

(b) Otherwise, the worker process selects a donor worker process (DWP)
randomly. However, the worker process that has already sent the task
request message is not selected. Go to the step (1).

Initialize Subroutine :
This subroutine is executed only on the leader worker process.

(1) First of all, the leader worker process extracts 1-frequent sequential patterns
from the sequence databases S. The 1-frequent patters are inserted into
P locall.

(2) The leader worker process inserts the small-grain tasks into the local task
pool. The data structure of a small-grain task consists of a pair of 〈pat1〉 and
PDB(〈pat1〉).

Task Steal Trap Subroutine:
This subroutine is executed on the donor worker process which receives the

task steal message from another worker process.

(1) If the local task pool is not empty, go to the step (2). If the local task pool is
empty and the donor worker process is not executing a small-grain task, go
to the step (3). If the local task pool is empty and the donor worker process
is executing a small-grain task, go to the step (4).

(2) The donor worker process pops a small-grain task from the local task pool.
The donor worker process sends the small-grain task to the requested worker
process as a reply.

A New Dynamic Load Balancing Technique for PMPS 233

(3) The donor worker process sends the null message to the requested worker
process as a reply.

(4) Wait for executing the small-grain task by the donor worker process. If the
execution of small-grain task has finished, return to the step (1).

Finalize Subroutine :
The worker process sends the P locali to the leader worker process. The leader

worker process receives the P locali by all worker processes, and insert the fre-
quent sequential patterns into the P locall.

5 Cache-Based Random Steal Schema

5.1 Key Idea

In the RS schema, if the load is concentrated on a part of the worker processes,
many messages of the task request are generated until a worker process that
holds a task is reached. The load concentrates on a part of the worker processes
in the parallel processing of the Modified PrefixSpan.

To address the performance bottleneck of the RS schema, we propose the
Cache-based RS schema. The key idea of the Cache-based RS schema is to cache
the ID of the donor worker process. The cached ID is denoted as CID.

In the Cache-based RS schema, as a worker process becomes idle, it randomly
selects a donor worker process first. The worker process caches the ID of the
donor worker process (DWP). As a worker process becomes idle again, the worker
process looks up the CID. If the value of CID is valid, the worker process selects
the DWP whose ID is the CID as a donor worker process and sends DWP a
task requests. If the value of CID is invalid, the worker process, selects a donor
worker process randomly.

5.2 Algorithm

The Random Steal Subroutine that is modified by the Cache-based RS
schema is as follows. The worker process has the value CID which stores the ID
of the donor worker process.

Random Steal Subroutine:

(1) If the value of CID is invalid, the worker process randomly selects a donor
worker process (DWP). Otherwise, the worker process selects the donor
worker process (DWP) whose ID is CID.

(2) The worker process sends a task request message to the DWP.
(3) The following processes are selected by the reply of the task request message.

(a) If a small-grain task is returned as a reply of the task request message,
the received small-grain task is inserted into the local task pool. The ID
of the DWP sets on the CID. Return to the Main Function.

(b) Otherwise, the worker process randomly selects a donor worker pro-
cess (DWP). However, the worker process that has already sent the task
request message is not selected. Go to the step (1).

234 M. Takaki et al.

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

task request message

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

CID=3

local task
pool

small-grain task

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

task request message

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

CID=3

Fig. 2. Example of Cache-based RS Schema

5.3 Example

Figure 2 shows an example of the Cache-based RS schema. There are five worker
processes.

First, as the worker process 1 becomes idle, the worker process 1 selects ran-
domly the donor worker process. Supposing that the donor worker process is
worker process 3, the worker process sends task request message to worker pro-
cess 3.

Second, as the local task pool of worker process 3 is not empty, the worker
process 3 sends a small-grain task to the worker process 1. The worker process
1 receives the small-grain task from worker process 3 and the worker process 1
substitutes the ID of worker process 3 for CID in worker process 1.

Third, as the worker process 1 becomes idle again, the worker process 1 does
not select the donor worker process randomly. The worker process 1 selects the
worker process whose ID is equal to CID. Therefore worker process 3 is selected as
the donor worker process. The worker process 1 sends the task request message
to worker process 3. In the RS schema, as the worker process 1 becomes idle
again, the worker process 1 select the donor worker process randomly.

6 Experimental Results

6.1 Environments

There are one hundred personal computers, each configured with a 2.8GHz Pen-
tium4 processor, 1.0GB memory, and 40GB disk. The personal computers were
connected to a 1,000 Mbit/sec Ethernet. Fedora Core 2.0 was used as the oper-
ating system. MPICH version 1.2.6 was used as the MPI library.

6.2 Speed-Up

The datasets used in this evaluation were provided by PROSITE [1]. This ex-
periment, each parameter was as follows: Kringle dataset, min sup=59 (85%),

A New Dynamic Load Balancing Technique for PMPS 235

Kringle 85 9 3

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Number of Sites

Sp
ee

d-
U

p

RS CRS

Fig. 3. Speed-Up (Kringle)

Zinc_Finger 65 9 3

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Number of Sites

Sp
ee

d-
U

p

RS CRS

Fig. 4. Speed-Up (Zinc Finger)

Leucine 28 9 3

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Number of Sites

Sp
ee

d-
U

p

RS CRS

Fig. 5. Speed-Up (Leucine)

Kringle 85 9 3

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

10 20 30 40 50 60 70 80 90 100
Number of Sites

N
um

be
r o

f M
es

sa
ge

s

RS CRS

Fig. 6. # of Task Request (Kringle)

Zinc_Finger 65 9 3

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

10 20 30 40 50 60 70 80 90 100
Number of Sites

N
um

be
r o

f M
es

sa
ge

s

RS CRS

Fig. 7. # of Task Request (Zinc Finger)

Leucine 28 9 3

0

1000000

2000000

3000000

4000000

5000000

6000000

10 20 30 40 50 60 70 80 90 100
Number of Sites

N
um

be
r o

f M
es

sa
ge

s

RS CRS

Fig. 8. # of Task Request (Leucine)

236 M. Takaki et al.

wc max=9, εmax = 3; Zinc Finger dataset, min sup=303 (65%), wc max=9,
εmax = 3; Leucine dataset, min sup=103 (28%), wc max=9, εmax = 3.

Figure 3 shows the speed-up ratios of Kringle dataset. The “RS” indicates
the result of the RS schema. The “CRS” indicates the result of the Cache-based
RS schema. The horizontal axis is the number of sites. The vertical axis is the
speed-up ratio.

The speed-up ratio of the Cache-based RS schema is approximately 95 times
when the number of sites is 100. The speed-up ratio of the RS schema is approx-
imately 83 times when the number of sites is 100. The results of the Cache-based
RS schema and RS schema show good speed-up ratios. The speed-up ratios of
the Cache-based RS schema are superior to those of the RS schema.

Figure 4 shows the speed-up ratios of Zinc Finger dataset. Figure 5 shows the
speed-up ratios of Leucine dataset.

6.3 Number of Task Request Messages

The number of task request messages is measured for the comparison between
the Cache-based RS schema and the RS schema. Figure 6 shows the number of
task request messages of Kringle dataset. The “RS” indicates the result of the
RS schema. The “CRS” indicates the result of the Cache-based RS schema. The
horizontal axis is the number of sites. The vertical axis is the number of task
request messages.

Figure 6 shows the number of task request messages of the RS schema is
larger than that of the Cache-based RS schema. In the RS schema, if the load
is concentrated on a part of the worker processes, many task request messages
are generated until a worker process that holds a task is reached. Therefore the
speed-up ratios of the RS schema are inferior to those of the Cache-based RS
schema.

Figure 7 shows the speed-up ratios of Zinc Finger dataset. Figure 8 shows the
speed-up ratios of Leucine dataset.

7 Conclusion

This paper has presented the new dynamic load balancing for the parallel pro-
cessing of the Modified PrefixSpan with the distributed worker paradigm. There
are two characteristics of the parallel processing. The first is the Cache-based
Random Steal schema. The second is the small-grain task. This paper has ex-
plained the above-mentioned characteristics and presented the performance eval-
uations with a 100-scale PC cluster.

In the future work, we are planning the performance evaluation by various
parameters. Moreover, we are planning to develop this paradigm with grid com-
puting.

A New Dynamic Load Balancing Technique for PMPS 237

Acknowledgements

This work was supported in part by a Hiroshima City University Grant for
Special Academic Research (General Studies, No.3106), Grand-in-Aid for Yong
Research (B) (No.16700114) from the Ministry of Education, Culture, Sports,
Science and Technology in Japan and a Grant-in-Aid for Scientific Research (C)
(No.17500097) from the Japanese Society for the Promotion of Science.

References

1. http://kr.expasy.org/prosite/
2. Agrawal, R., Shafer, J.C.: Parallel mining of association rules. IEEE Trans. Knowl.

Data Eng. 8(6), 962–969 (1996)
3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the

Eleventh International Conference on Data Engineering, pp. 3–14. IEEE Computer
Society Press, Los Alamitos (1995)

4. Carriero, N., Gelernter, D.: How to write parallel programs: a guide to the per-
plexed. ACM Computing Surveys 21(3), 323–357 (1989)

5. Eager, D.L., Lazowska, E.D., Zahorjan, J.: A comparison of receiver-initiated and
sender-initiated adaptive load sharing (extended abstract). In: Proceedings of the
1985 ACM SIGMETRICS conference on Measurement and modeling of computer
systems, pp. 1–3. ACM Press, New York (1985)

6. Guralnik, V., Karypis, G.: Parallel tree-projection-based sequence mining algo-
rithms. Parallel Comput. 30(4), 443–472 (2004)

7. Kitakami, H., Kanbara, T., Mori, Y., Kuroki, S., Yamazaki, Y.: Modified prefixspan
method for motif discovery in sequence databases. In: Ishizuka, M., Sattar, A. (eds.)
PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 482–491. Springer, Heidelberg (2002)

8. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.-C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (2004)

9. Shintani, T., Kitsuregawa, M.: Parallel mining algorithms for generalized associa-
tion rules with classification hierarchy. In: SIGMOD 1998. Proceedings ACM SIG-
MOD International Conference on Management of Data, pp. 25–36. ACM Press,
New York (1998)

10. Sutou, T., Tamura, K., Mori, Y., Kitakami, H.: Design and implementation of
parallel modified prefixspan method. In: Veidenbaum, A., Joe, K., Amano, H.,
Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 412–422. Springer, Heidelberg
(2003)

11. Takaki, M., Tamura, K., Sutou, T., Kitakami, H.: Dynamic load balancing for par-
allel modified prefixspan. In: PDPTA 2004. Proceedings of The 2004 International
Conference on Parallel and Distributed Processing Techniques and Applications,
pp. 352–358. CSREA Press (2004)

12. Tamura, M., Kitsuregawa, M.: Dynamic load balancing for parallel association rule
mining on heterogenous pc cluster systems. In: Proceedings of 25th International
Conference on Very Large Data Bases, pp. 162–173. Morgan Kaufmann, San Fran-
cisco (1999)

13. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall, Englewood Cliffs
(1999)

http://kr.expasy.org/prosite/

Performance-Based Loop Scheduling on Grid

Environments

Wen-Chung Shih1, Chao-Tung Yang2, and Shian-Shyong Tseng1,3

1 Department of Computer and Information Science
National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

{gis90805,sstseng}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University

Taichung 407, Taiwan, R.O.C.
ctyang@thu.edu.tw

3 Department of Information Science and Applications
Asia University

Taichung 413, Taiwan, R.O.C.
sstseng@asia.edu.tw

Abstract. Loop scheduling and load balancing on parallel and dis-
tributed systems are critical problems, but it is difficult to cope with
these ones, especially on the emerging grid environments. Previous re-
searchers proposed some useful self-scheduling schemes, which were ap-
plicable to PC-based cluster and grid computing environments. In this
paper, we generalized this concept and proposed a general approach,
named PLS (Performance-Based Loop Scheduling). To verify our ap-
proach, a grid platform was built, and two application programs, matrix
multiplication and Mandelbrot, were implemented with MPI to be ex-
ecuted in this testbed. Experimental results showed that our approach
was efficient and robust, in terms of the range of α value.

Keywords: Parallel loops, Self-scheduling, Grid computing, Heteroge-
neous, Performance estimation.

1 Introduction

One objective of grid computing is to virtualize various computing and data
resources dispersed in the world, and the resulting single system image enables
users to easily access to every type of resources [6].

Recently, the emerging standardization of sharing resources and the avail-
ability of higher network bandwidth result in the realization of grid computing
[8].

Loop scheduling and load balancing on parallel and distributed systems are
critical problems, but it is difficult to cope with these problems, especially on the

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 238–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance-Based Loop Scheduling on Grid Environments 239

emerging grid environments. Previous researchers have proposed some useful self-
scheduling schemes, which are applicable to PC-based cluster and grid computing
environments [8, 19, 20]. These two-phased schemes collect system configuration
information, and distribute some portion of the work load among slave nodes
according to their CPU clock speed ratio. After that, the remaining work load
is scheduled by some well-known self-scheduling scheme.

Traditionally, self-scheduling schemes partition the size of loop iterations ac-
cording to a formula instead of node performance, so additional slave nodes
may not get good performance. Intuitively, we may want to partition problem
sizes according to CPU clock speed. However, the CPU clock is not the only
factor which affects node performance. Many other factors also have dramatic
influences in this respect, such as the amount of memory available, the cost of
memory accesses, and the communication medium between nodes, etc.

In this paper, we generalize this concept and propose a general approach,
named PLS (Performance-based Loop Scheduling). This approach estimates the
performance ratio of the clusters, and determines the performance ratio of each
node accordingly. To verify our approach, a grid platform is built, and two appli-
cation programs, matrix multiplication and Mandelbrot, have been implemented
with MPI to be executed in this testbed.

The rest of this paper is organized as follows. In section 2, the background
about parallel loop self-scheduling and grid computing is reviewed. In section 3,
we define our model and describe our approach. Next, our system configuration is
specified and experimental results on two application programs are also presented
in section 4. Finally, the concluding remarks are given in the last section.

2 Background

In this section, a prerequisite for our research is described. First, we review pre-
vious work about self-scheduling schemes. Next, the evolution of grid computing
is outlined.

2.1 Self-scheduling Schemes

In general, parallelizing compilers make parallel loop scheduling decisions either
statically at compile time or dynamically at run time [15]. Self-scheduling is a
large class of dynamic loop scheduling schemes, and [8] provides a good related
review about them. In this subsection, we restate self-scheduling schemes briefly.
Basically, a self-scheduling scheme uses a function to calculate the chunk-size at
each step. At each scheduling step, the master computes the chunk-size and as-
signs this amount of workload to an idle slave. Different methods to compute the
chunk-size have resulted in different scheduling schemes. The well-known schemes
include Pure Self-Scheduling (PSS), Chunk Self-Scheduling (CSS), Guided Self-
Scheduling (GSS), Factoring Self-Scheduling (FSS) and Trapezoid Self-Scheduling
(TSS). The different chunk sizes for a problem with the number of iterations N =
1024 and the number of processors p = 4 are shown in Table 1.

240 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

Table 1. Sample partition size

Scheme Sample partition size

PSS 1, 1, 1, 1, 1, 1, 1, 1, 1,· · ·
CSS(128) 128, 128, 128, 128, 128, 128, 128, 128, 128, · · ·
FSS 128, 128, 128, 128, 64, 64, 64, 64, 32, · · ·
GSS 256, 192, 144, 108, 81, 61, 46, 34, 26, · · ·
TSS 128, 120, 112, 104, 96, 88, 80, 72, 64, · · ·

In [19], the authors have revised known loop self-scheduling schemes to fit
extremely heterogeneous PC cluster environments. An approach was proposed
to partition loop iterations by two phases and it achieved good performance in
any heterogeneous environment.

2.2 Grid Computing

Since the term “metacomputing” was presented by Larry Smarr [17], this concept
has evolved from a “Seamless Web” to a global grid environment. Basically, grid
computing is intended to partition a job and distribute the sub-jobs to computers
all over the world, maybe several thousand computers. Grid computing can be
seen as one sort of specialization of traditional parallel processing. However,
several driving forces make grid computing a promising trend.

Grid computing has a lot of various applications, and can be implemented
in different ways. Nevertheless, the building, administration, and operation of
a global grid environment require new technology, which involves grid architec-
tures, software protocols and middleware [1, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14].

3 Our Approach: PLS (Performance-Based Loop
Scheduling)

In this section, the concept of performance ratio is described first. Then, we
present the algorithm of our scheme.

3.1 Performance Ratio

We propose to partition α% of workload according to the performance ratio
of all nodes, and the remaining workload is dispatched by some well-known
self-scheduling scheme. Using this approach, we do not need to know the real
computer performance. However, a good performance ratio is desired to estimate
performance of nodes accurately.

To estimate the performance of each slave node, we define a performance
function (PF) for a slave node S as follows:

PFS(V1, V2, · · · , VM) (1)

Performance-Based Loop Scheduling on Grid Environments 241

where
– S represents a slave node S.
– Vi (1 < i < M) is a parameter of the performance function.

In this paper, we do not formulate our performance function explicitly. In-
stead, execution time is utilized to estimate the value of PF’s for all nodes. The
PF obtained by simulation execution can estimate performance of computing
nodes rather accurately. The calculation of performance ratio (PR) is presented
as follows. First, the PF of all nodes are estimated by experimental simulation.
Execution time of the target program on all computing nodes is recorded, and
their reciprocals are taken to form the performance function values. Performance
ratio (PR) is defined as the ratio of these PF’s. For instance, assume the PF of 2
nodes are 1/2 and 1/3. Then, the PR is 1/2 : 1/3; i.e., the PR of the two nodes
are 3:2. In other words, if there are 5 loop iterations, 3 will be assigned to the
former and 2 will be assigned to the latter.

3.2 Our Algorithm

Our algorithm is also a two-phased scheme. In phase one, the performance ratio
of slave nodes is estimated by experimental simulation. Then, we partition α%
of workload according to the performance ratio of all slave nodes, and the re-
maining workload is dispatched by some well-known self-scheduling scheme. The
algorithm of our approach is modified from [19], and is described as follows.

Algorithms MASTER and SLAVE in pseudo code:
Module MASTER
/* perform task scheduling and load balancing */

Initialization
Gather performance ratio of all slave nodes
r = 0;
for (i = 1; i < number_of_slaves; i++) {

partition % of loop iterations according to the
performance ratio;
send data to slave nodes;
r++;

}
Partition (100-)% of loop iterations into the task
queue using some known self-scheduling scheme
Probe for returned results
Do {

Distinguish source and receive returned data
If the task queue is not empty then

Send another data to the idle slave
r -- ;

else
send TAG = 0 to the idle slave

242 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

} while (r > 0)
Finalization
END MASTER

Module SLAVE /* worker */

Initialization
Probe if some data in
While (TAG > 0) {

Receive initial solution and size of subtask work
and compute to fine solution

Send the result to the master
Probe if some data in

}
Finalization
END SLAVE

4 Experimental Results

The grid environment includes three clusters which are located in three univer-
sities respectively. Cluster 1, located in Providence University, has five nodes.
Cluster 2, located in Hsiuping Institute of Technology, has four nodes. Cluster
3, located in Tunghai University, has four nodes. We use the following tools to
build the grid.

– Globus Toolkit 3.0.2
– MPICH library 1.2.6

We have implemented two application programs in the C language, with mes-
sage passing interface (MPI) directives for parallelizing code segments to be
processed by multiple CPU’s. For readability of experimental results, the de-
scription of our implementation for all programs is listed in Table 2.

Table 2. Description of our implementation for all programs

AP Name Description Reference

Matrix GSS Dynamic scheduling(GSS) [16]

Multiplication NGSS Fixed α scheduling + GSS [19]

Mandelbrot PGSS Our scheduling + GSS

4.1 Application 1: Matrix Multiplication

The matrix multiplication is a fundamental linear algebra operation in many
numerical applications. Therefore, its efficient implementation on parallel pro-
cessing systems is an important issue. In this section, we study implementa-
tions for matrix multiplication on a grid environment. The performance ratio is

Performance-Based Loop Scheduling on Grid Environments 243

Fig. 1. Matrix multiplication with GSS (a) performance ratio (b) execution time

determined by simulation of input size 512×512. The resulting simulated per-
formance of our grid nodes are illustrated in Fig.1(a).

This experiment consists of three scenarios: GSS, NGSS and our PGSS. With
respect to each algorithm, three types of input sizes are taken: 512, 1024 and
2048. Empirical results are illustrated in Fig.1(b), showing NGSS and PGSS get
better performance than GSS does.

4.2 Application 2: Mandelbrot

The Mandelbrot set is a problem which does the same computing job on dif-
ferent data points [2]. However, these same jobs on different points might take
different time to converge. In this section we study implementations for the Man-
delbrot set on a grid environment and develop a performance prediction model
for these implementations. The performance ratio is determined by simulation
of input size 128*128. The resulting simulated performance of our grid nodes are
illustrated in Fig.2(a).

This experiment consists of three scenarios: GSS, NGSS and our PGSS. With
respect to each algorithm, three types of input sizes are taken: 128, 512, and
1024. Empirical results are illustrated in Fig.2(b), showing NGSS and PGSS get
better performance than GSS does.

Fig. 2. Mandelbrot with GSS (a) performance ratio (b) execution time

244 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

4.3 Alpha Values vs. Precision of Performance Estimation

In previous experiments, we find NGSS has almost the same good performance
as PGSS. However, by means of investigating the influence of α value on the
performance, we can identify the advantages of PGSS. In other words, PGSS is
more robust than NGSS in terms of the range of α value.

Fig.3 illustrates our performance-based algorithm behaves well in lager range
of α values than NGSS does. The reason is PGSS uses more accurate measure-
ment to estimate the performance of slave nodes. Therefore, PGSS can get good
performance at higher α values. However, with a heuristic of α value 80, NGSS
only gets good performance at smaller α range.

Fig. 3. Execution time vs. α values (a) Matrix Multiplication (b) the Mandelbrot set

5 Conclusions and Future Work

On grid environments, performance of known self-scheduling schemes has not
been investigated well. In this paper, we have proposed a performance-based
approach, and compared it with previous algorithms by experiments on two ap-
plication programs. In both case, our approach could obtain obvious performance
improvement over GSS. Besides, our approach could work with larger range of α
values. In our future work, we will implement more types of application programs
to verify our approach. Furthermore, we hope to find better ways of modeling
the performance function, not just by empirical simulation.

References

1. Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks/
2. Introduction To The Mandelbrot Set, http://www.ddewey.net/mandelbrot/
3. KISTI Grid Testbed, http://gridtest.hpcnet.ne.kr/
4. LHC - The Large Hadron Collider Home Page,

http://lhc-new-homepage.web.cern.ch/
5. The Globus Project, http://www.globus.org/
6. What Is Grid Computing,

http://www-1.ibm.com/grid/about grid/what is.shtml/
7. Baker, M.A., Fox, G.C.: Metacomputing: Harnessing Informal Supercomputers. In:

High Performance Cluster Computing, Prentice-Hall, Englewood Cliffs (1999)

 http://www.ibm.com/redbooks/
http://www.ddewey.net/mandelbrot/
http://gridtest.hpcnet.ne.kr/
http://lhc-new-homepage.web.cern.ch/
http://www.globus.org/
http://www-1.ibm.com/grid/about_grid/what_is.shtml/

Performance-Based Loop Scheduling on Grid Environments 245

8. Cheng, K.-W., Yang, C.-T., Lai, C.-L., Chang, S.-C.: A Parallel Loop Self-
Scheduling on Grid Computing Environments. In: Proceedings of the 2004 IEEE
International Symposium on Parallel Architectures, Algorithms and Networks, KH,
China, pp. 409–414 (May 2004)

9. Chronopoulos, A.T., Andonie, R., Benche, M., Grosu, D.: A Class of Loop Self-
Scheduling for Heterogeneous Clusters. In: Proceedings of the 2001 IEEE Interna-
tional Conference on Cluster Computing, pp. 282–291 (2001)

10. Czajkowski, K., Foster, I., Kesselman, C.: Resource Co-Allocation in Computa-
tional Grids. In: HPDC-8. Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing, pp. 219–228 (1999)

11. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services
for Distributed Resource Sharing. In: HPDC-10. Proceedings of the 10th IEEE
International Symposium on High-Performance Distributed Computing, pp. 181–
194 (August 2001)

12. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications and High Performance Comput-
ing 11(2), 115–128 (1997)

13. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputer Applications and
High Performance Computing 15(3), 200–222 (2001)

14. Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics To-
day 55(2), 42–47 (2002)

15. Li, H., Tandri, S., Stumm, M., Sevcik, K.C.: Locality and Loop Scheduling on
NUMA Multiprocessors. In: Proceedings of the 1993 International Conference on
Parallel Processing, vol. II, pp. 140–147 (1993)

16. Polychronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: a Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36(12), 1425–1439
(1987)

17. Smarr, L., Catlett, C.: Metacomputing. Communications of the ACM 35(6), 44–52
(1992)

18. Tang, P., Yew, P.C.: Processor self-scheduling for multiple-nested parallel loops.
In: Proceedings of the 1986 International Conference on Parallel Processing, pp.
528–535 (1986)

19. Yang, C.-T., Chang, S.-C.: A Parallel Loop Self-Scheduling on Extremely Heteroge-
neous PC Clusters. Journal of Information Science and Engineering 20(2), 263–273
(2004)

20. Yang, C.-T., Cheng, K.-W., Li, K.-C.: An Efficient Parallel Loop Self-Scheduling
on Grid Environments. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004.
LNCS, vol. 3222, pp. 92–100. Springer, Heidelberg (2004)

Reconfigurable Middleware for Grid

Environment

Sungju Kwon1, Jaeyoung Choi1, and Jysoo Lee2

1 School of Computing, Soongsil University,
1-1 Sangdo-5Dong, Dongjak-Gu, Seoul, 156-743, Korea

{lithlife,choi}@ssu.ac.kr
2 Supercomputing center, KISTI,

Daejon, Korea

Abstract. A component in application is a functional unit with well-
defined interfaces. It encapsulates its internal states and provides services
to other components or applications. By modularizing required functions
into components, a component-based system can easily reuse those com-
ponents and provide a flexible application structure with dynamic re-
configuration. In this paper, we propose a component-based middleware,
called MAGE, which uses a service-oriented interface to provide trans-
parency of platform, implementation language, and location. MAGE can
dynamically reconfigure its architecture to adapt to Grid environments.

1 Introduction

A component is a unit of composition with well-defined interfaces [1]. Like an ob-
ject, a component encapsulates its internal states and provides services to other
components or applications. Components are distinguished from objects in that
they are explicitly required interfaces and conformance to a binary standard. All
interfaces are managed by a component framework. A component framework is
defined by Szyperski as ”collections of rules and interfaces that govern the inter-
action of a set of components plugged into them” [1]. A component framework is
a concept of reusable architecture, which provides means of enforcing architec-
tural properties and a component interface for communicating with each other
in the binary format. Also, the framework manages the lifecycle of the com-
ponent. A component hides its internal states and implementation details from
clients and allows itself to be accessed only through published interfaces. There-
fore, it is possible to hide implementation dependency among components. A
component-based system has the ability to change its internal structure dynam-
ically without disturbing users. An application based on component-architecture
can be dynamically configure itself by adding, removing, and modifying compo-
nents.

Dynamic reconfiguration [2,3,4] is a mechanism that can replace a functional
unit of an application with another without stopping the application. Dynamic
reconfiguration is very useful for adaptable and highly available systems [5]. An
adaptable system actively deals with environmental changes. A highly available

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 246–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reconfigurable Middleware for Grid Environment 247

system provides continuous services without interruption of the application even
though there is a fault. Adaptive systems and high availability systems are useful
for Grid [6], ubiquitous [7], and mobile environments. Currently this dynamic re-
configuration technology is an active research topic in several areas with their own
specific formats. These applications have their own reconfiguration technologies,
which have difficulties in adapting to a new application. In order to provide a more
generalized technology and platform-independent format, a framework is required
which manage its components and provide service interfaces among components.
Therefore, a component-based architecture is more useful and flexible.

In this paper, we propose a dynamically reconfigurable middleware for Grid
environments called MAGE (Modular and Adaptive Grid Environment). MAGE
is a reconfigurable framework, which is a base architecture to provide adaptabil-
ity, high availability, and scalability. MAGE can replace components easily and
minimize physical dependency among components. MAGE is a service-oriented
architecture to support transparency for platform, language, and communication
protocol. Based on this framework, application developers can build Grid appli-
cations much simple way.

This paper is organized as follows: Section 2 describes related works including
a service-oriented architecture and a component-based middleware. We explain
MAGE architecture in Section 3, and a service-oriented flow of MAGE in Section
4. Finally, Section 5 includes the conclusion and future works.

2 Related Works

Grid systems should be adaptable and highly available. Grid middleware systems
such as Globus toolkit and GridLab have been studied for more efficient resource
usage.

Globus toolkit [8] is an open source software toolkit which provides resource
sharing on Grid environments. The Globus toolkit provides services and libraries
for resource monitoring, resource management, security, and file management.
GGF (Global Grid Forum) defines OGSA (Open Grid Services Architecture) as a
service-oriented architecture for distributed computing which provides Grid ser-
vices to support distributed interaction of services and computing infrastructure.
OGSA manages a lifecycle of services through service naming, creation, discovery,
and destruction. OGSA extends Web services to manage not only permanent ser-
vices but also temporary services. However, the OGSA has three problems. First,
it is difficult to achieve high speed network performance. The current Web ser-
vices mainly use SOAP protocol which is not suitable for scientific applications
that generate and handle massive data to compute complicated problems. Second,
compared with the component-based middleware, OGSA has more constraints on
fault tolerance, continuous state management, automated logging, load balancing,
and event distribution. Third, it does not support system reconfiguration accord-
ing to the change of its state.

GridLab [9] project, which was developed in the EU, provides a unified access
to Grid middleware through service-oriented interfaces. GridLab consists of user

248 S. Kwon, J. Choi, and J. Lee

space and capability space for hierarchical structure. These two spaces are inte-
grated by GAT (Grid Application Toolkit). GAT abstracts services that are re-
quired by applications. Therefore, GAT can act as an interface between applica-
tion programs and Grid middleware environments. The GAT provides GAT API
for application developers to access different Grid environments in a unified way.
The service-oriented architecture of GridLab provides scalability and adaptabil-
ity for environmental changes. On the other hand, services in an application-level
are provided on a large scale and have problems of reusability and adaptability,
compared with services in a component-level. Also, GridLab’s service interface is
statically linked at compile time. This means that it cannot changes the configu-
ration of middleware at the runtime.

GRIDKIT[10] is a component-based middleware framework for configurable
and reconfigurable Grid computing. It particularly focuses on lightweight
component-based technology to construct an extensible family of open and pro-
grammable overlay networks. GRIDKIT provides four main domains: Service
Binding, Resource Discovery, Resource Management, and Grid Security. These
four domains of middleware functionality are implemented in GRIDKIT as inde-
pendently and horizontally. Each domain implemented as a framework, which is
highly reconfigurable. MAGE provides functionality similar to GRIDKIT.
MAGE, however, is more focused on a network transparency with easily customiz-
able components. APIs in MAGE provide a rich set of information for compo-
nent control and installation. MAGE automatically install dependent components
based on component dependency and version information.

Fig. 1. Relationship between MAGE and Globus

3 MAGE Architecture

MAGE acts as a component management framework. MAGE does not provide
application specific functions. MAGE can be executed as a standalone application
or with a legacy grid middleware through interface components. Fig. 1 shows the
relationship between MAGE and legacy Grid middleware.

Reconfigurable Middleware for Grid Environment 249

Fig. 2. Reflective MAGE Architecture

MAGE architecture consists of four parts as shown in Fig. 2: Request-Broker,
Component-Manager, Service-Manager, and Reconfiguration-Manager. By using
this architecture, MAGE provides transparency of the running platform, program-
ming language, and communication protocol. Each element of the architecture has
the ability to be located at any location, implemented with any language, and exe-
cuted on any platform. It is because each element is executed independently from
others and communicates with others using internal protocols. Each element can
not only exist as a 1:1 relationship but also as M:N relationship. This relation-
ship can be arranged by the system administrator. These separations of elements
provide flexibility for the application architecture.

3.1 Request-Broker

The Request-Broker accepts requests from clients and translates into an in-
ternal message format. The actual communication is performed by a protocol-
component inside the Request-Broker. MAGE provides message translation
APIs for protocol-components. A system administrator can dynamically install
protocol-components. Change of a client protocol only replaces a correspondent
protocol-component. Request-Broker searches for matching Component-Manager
and delivers user requests to Component-Manager. Fig. 3 shows a request flow in-
side Request-Broker.

3.2 Service-Manager

Service-Manager manages registered service information such as service loca-
tion, dependency information, or supported operations. Request-Broker and
Component-Manager use this information to find matching services. Service-
Manager provides dependency information of a service to Component-Manager
for automatic installation of components.

250 S. Kwon, J. Choi, and J. Lee

Fig. 3. Request Flow inside Request-Broker

3.3 Component-Manager

Component-Manager maintains the lifecycle of components. A component can be
installed using descriptor file. The descriptor file contains the service list and de-
pendent information of component. Component-Manager registers component in-
formation with Service-Manager after completing the installation process. Clients
and other services use the information when they search appropriate services. A
component developer does not need to know about the communication method
with clients. A component developer only needs to implement predefined inter-
faces of the MAGE. Actual communications are performed behind MAGE.

3.4 Reconfiguration-Manager

Reconfiguration-Manager controls component arrangement inside Component-
Manager. It includes several reflection algorithms that are dynamically loadable.
A client can install reflection algorithm packages at runtime. The reflection al-
gorithm package consists of one reflection algorithm component and several en-
vironment monitoring components. Environment monitoring components collect
system information and provide this information to a reflection algorithm com-
ponent. Using this information, the reflection algorithm component changes the
installed component list on Component-Manager. A user can install several reflec-
tion algorithms at the same time with priority value.

4 Service-Oriented Interface

MAGE is a service-oriented architecture based on dynamically loadable compo-
nents. A client does not need to know any physical information about components.
A client only needs to know names and operations of services. The service informa-
tion does not contain any physical information such as component location, im-
plementation language, and communication method. Even though physical com-
ponents are moved to other node, an application can be executed without notice

Reconfigurable Middleware for Grid Environment 251

it. MAGE provides common component interfaces to developers. MAGE only in-
teracts with components using this interface.

MAGE provides component interfaces as shown in Table 1. The component in-
terfaces consists of control operations and service operations.

Table 1. MAGE Component Interface

Operation Description

Component Control Operations

initProvider called after loading component

startupProvider called after service starts

stopProvider called before service stops

destroyProvider called before unloading component

Service Operations

executeMethod entry point of method invocation

setProperty entry point of property set

getProperty entry point of property get

Fig. 4. Process Flow of Service

Component-Manager delivers a message to matching components through
MAGE interface. Each interface can implement actual jobs based on the delivered
request message. The service results go back to the client through MAGE. This
approach provides network neutrality to component developers. MAGE hides its
internal processing for the requested message from both clients and components.
The client’s request message is delivered to the service component through the
following steps.

First, a client sends a request message through the network. Then, MAGE ac-
cepts the client request by one of the protocol-components. A protocol-component
translates the request message into internal format using MAGE translation APIs.
Request-Manager searches for a service wanted by the request through Service-
Manager.Request-Manager delivers the request message to Component-Manager,

252 S. Kwon, J. Choi, and J. Lee

which contains the appropriate service component. Component-Manager acti-
vates the target component and delivers messages. Component-Manager also col-
lects results from the component and sends them back to Request-Broker. The
protocol-component in Request-Broker sends results back to the client.

5 Conclusion

In this paper, we introduced a service-oriented architecture based on component
technology. This architecture provides transparency for running platform, imple-
mentation languages, and communication protocols. It is also easy to reconfigure
application architecture without stopping an application.

MAGE has the following characteristics for the Grid environment. First,
MAGE is a component-based architecture. An application composed using a
functional unit called a component. Every component works together on MAGE
framework while does not know about physical relationships among components.
Independency among components provides a convenient way for application de-
velopers and system administrators. Second, MAGE provides transparency of lan-
guages, platforms, and communication protocols. A component does not show any
physical information to clients and provides abstracted services. Third, it is an eas-
ily reconfigurable architecture. A component-based architecture can reconfigure
itself at any time or can be reconfigured by a system administrator or by the re-
lationship among components. Fourth, MAGE is a service-oriented architecture,
which reveals all functions as services. It hides implementation details from clients
and shows functions as a service with object-oriented interfaces. MAGE controls
the lifecycle of a service such as service creation, find, execution, or terminations.

In the near future, we will focus on communication transparency for client ap-
plications. MAGE will provide a communication component for clients and it must
be downloadable at runtime before the actual communication starts.

Acknowledgements

This work was supported by the National e-Science Project, funded by the Korean
Ministry of Science and Technology (MOST).

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1998)

2. Chen, X., Simmons, M.: Extending RMI to support dynamic reconfiguration of
distributed systems. In: ICDC 2002. 22nd International conference on Distributed
Computing Systems (2002)

3. Goudarzi, K.M.: Consistency Preserving Dynamic Reconfiguration of Distributed
Systems, Ph.D. Thesis, Imperial College (1999)

4. Hillman, J., Warren, I.: Quantative analysis of dynamic reconfiguration algorithms.
Design Analysis and Simulation of Distributed Systems (DASD) (2004)

Reconfigurable Middleware for Grid Environment 253

5. Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N.: An efficient component model
for the construction of adaptive middleware. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (2001)

6. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco (1998)

7. Weiser, M.: Some Computer Science Problems in Ubiquitous Computing. Commu-
nications of the ACM (July 1993)

8. Globus Toolkit, http://www.globus.org/
9. GridLab, http://www.gridlab.org/

10. Cai, W., Coulson, G., Grace, P., Blair, G.S., Mathy, L., Yeung, W.K.: The Gridkit
Distributed Resource Management Framework. In: Proceedings of the European
Grid Conference, Amsterdam, The Netherlands (February 2005)

http://www.globus.org/
http://www.gridlab.org/

Netfiles: An Enhanced Stream-Based

Communication Mechanism

Philip Chan and David Abramson

Caulfield School of Information Technology
Monash University

900 Dandenong Road, Caulfield East
Victoria 3145, Australia

{pchan, davida}@csse.monash.edu.au

Abstract. Netfiles is an alternative API for message passing on dis-
tributed memory machines. Based on the communication stream model,
Netfiles provides enhanced functionality such as broadcasts and gather
operations. Netfiles overload conventional file I/O primitives enabling
parallel programs to be developed and tested on a file system before ex-
ecution on a parallel machine. Netfiles is part of a parallel programming
system called FAbrIC. This paper also presents the design and implemen-
tation of the FAbrIC architecture and demonstrate the effectiveness of
this approach by means of two parallel applications: a parallel shallow
water model application and parallel Jacobi method.

Keywords: Pipes, Stream Communication, File I/O, Message Passing,
Parallel Programming.

1 Introduction

The stream communication model dates back to the early days of Unix. It en-
compasses mechanisms such as pipes, named pipes and sockets with TCP/IP.
This model is simple, well-understood and has been successfully employed in
many parallel programming systems.

This paper presents an enhanced stream communication mechanism called
Netfiles. The Netfile abstraction overloads file I/O primitives with message pass-
ing functionality specifically for parallel programming, with minimal deviation
from semantics of conventional file I/O. Netfiles support point-to-point and col-
lective communication. We have built an implementation of this abstraction and
present an evaluation with two parallel applications.

2 Netfiles: Enhanced Pipes for IPC

In our proposed mechanism, communication is achieved through the reading
and writing of a common Netfile, identified by a filename. This filename is a
user-specified string that is task/node independent, allowing dynamic binding

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 254–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Netfiles: An Enhanced Stream-Based Communication Mechanism 255

Fig. 1. System architecture of FAbrIC

of process end-points. The sender opens the Netfile in WRITE mode, while the
receiver opens in READ mode. When both ends are open, the Netfile effectively
becomes a uni-directional communication channel. A write() behaves like a
send(), and a read() behaves like a receive(). Non-blocking Netfile seman-
tics is also possible, allowing communication to overlap with computation and
potentially improving performance.

No implicit type information is encoded within the stream. Thus, the data
written through a Netfile do not have message boundaries, enhancing program-
ming flexibility. For example, data sent via a write() may actually be read by
several consecutive “small” read() operations.

Collective operations are also supported in Netfiles. A single-writer, multiple-
reader Netfile behaves as a broadcast, closely resembling multiple reads on a
single file. However, when readers share a single logical Netfile pointer, this
operation behaves as a scatter. Similarly, a gather operation is represented as a
single-reader Netfile with multiple writers appending data.

Netfiles form part of a proposed parallel programming system called FAbrIC.
A parallel program is first written to use files and file I/O for communication. No
explicit send() or receive() are used in the program. Once tested, the program
may be relinked with our Netfile-library for parallel execution on a distributed
memory machine.

3 FAbrIC System Architecture and Implementation

Fig. 1 presents the key components of FAbrIC. User programs are relinked with
the Netfile library to create FAbrIC-ready applications. Execution is specified
via an external run script written in the FAbrIC coordination language. The
FAbrIC Coordinator interprets this and starts tasks through the FAbrIC Runtime

256 P. Chan and D. Abramson

task sm1 (nslaves)
program "exe/shallow-master" args "$(nslaves) 0"

endtask
task sm2 (nslaves, maxiters)

program "exe/shallow-worker" args "-1 $(maxiters) $(nslaves)"
endtask
task sw (slave id, maxiters)

program "exe/shallow-worker" args "$(slave id) $(maxiters)"
endtask
par do

execute sm1 (16)
par i from 1 to 16 do

execute sw (i, 100)
enddo
execute sm2 (16, 100)

enddo

Fig. 2. Sample run script in the FAbrIC coordination language

System. The Communication and Data FAbrIC implements the FAbrIC Space,
a collective abstraction for both stream-like and persistent Netfiles . We discuss
some implementation details of our prototype.

3.1 Communication FAbrIC: Netfile Lookup Service

The Netfile lookup service matches the reader and the writer of each Netfile.
Each unmatched open() is recorded in a hash table and marked as pending.
When the matching open() arrives, this pending request is used to match the
pair. Once matched, communication takes place via a TCP/IP connection. For
efficiency, connections are reused for different transmissions between the same
task pair.

Collective operations are implemented on top of the point-to-point Netfiles .
For efficiency, broadcasts are performed by establishing tree-structured network
of Netfile connections between tasks. A gather uses this tree network with the
leaf tasks initiating the sending, with all data coalesced at the root task.

3.2 FAbrIC Coordinator and Runtime System

We designed a coordination language with constructs for sequential (seq) and
parallel (par) execution. These two constructs may be arbitrarily nested to cre-
ated complex execution patterns. Fig. 2 is a script that specifies parallel exe-
cution of two masters (scatter and gather) and 16 workers. The task-endtask
pair specifies details of the task, i.e., the program executable name and how ar-
guments are translated into command-line parameters. The execute statement
causes a task to be started with a specified set of arguments.

Execution of a FAbrIC application involves running the FAbrIC Coordinator
with two input files: (a) the run script; and (b) the machine configuration, a list
of host names. This coordinator starts tasks via the FAbrIC Runtime System,
implemented as a set of execution daemons, one on each host.

Netfiles: An Enhanced Stream-Based Communication Mechanism 257

main (i n t argc , char ∗argv [])
{

wno = get worker number from argv
read init data from master
foreach iteration do {

compute lattitudes
exchange results: cu, cv, z, h
compute time tendencies
exchange results: dv, dt
apply time filter
i f (not last iteration)

exchange results: p, u, v
}
send results back to master

}

Fig. 3. Data distribution and data exchanges in parallel shallow water application

When a task has to be initiated, the coordinator sends a task start request
to the daemon on a selected host. This request contains the logical task ID
(TID) used for Netfile-lookup for matching tasks. The daemon starts the task
and passes the logical TID to the task via an environment variable.

Upon task startup, the daemon replies with the process ID (pid). The pair
(process ID, host logical ID) is used by the coordinator to uniquely identify
a task in the parallel application. When the task completes, its corresponding
execution daemon notifies the coordinator by a task complete message. The
coordinator terminates when all application tasks have completed and no new
ones are to be created according to the script.

4 Case Study 1: Parallel Shallow Water Equations

To evaluate our prototype, we selected a numerical model involving shallow water
equations [10,12]. It employs both master-worker and worker-worker communi-
cation where data along the boundaries (Fig. 3) are exchanged between adjacent
workers during each iteration. At the end of the iterations, workers send their
results to the master. We used the MPI code of Abramson, Dix & Whiting [1].

4.1 Netfiles Version of Parallel Shallow

With the FAbrIC approach, we first built a parallel shallow application using
standard file I/O for interprocess communication. To be descriptive of what
the files represented, the variable names of the data structures were used as
filenames. For data exchanges involving neighboring elements, we used the row
number of the data elements in the filename.

This version was first tested on a local file system using background task
execution. Wrapper functions for open() and close() which provided synchro-
nisation were used. After testing, we relinked the code with our Netfile library.

258 P. Chan and D. Abramson

2 4 6 8 10 12 14 16
Number of Workers

2

4

6

8

10

12

Sp
ee

du
p

Parallel Shallow Water (1024 1024)

Netfiles
Opt

Netfiles
MPICH

Exec. Times (secs.)/Speedup
MPICH Netfiles NetfilesOpt

2 67.5 1.88 67.4 1.90 64.0 1.99
4 37.5 3.41 37.3 3.43 34.0 3.76
8 24.9 5.14 24.6 5.19 19.9 6.43

16 20.9 6.13 20.6 6.20 14.6 8.77

Problem size: 1024 × 1024
Sequential program took 128 seconds

2 4 6 8 10 12 14 16
Number of Workers

2

4

6

8

10

12

Sp
ee

du
p

Parallel Shallow Water (2048 2048)

Netfiles
Opt

Netfiles
MPICH

Exec. Times (secs.)/Speedup
MPICH Netfiles NetfilesOpt

2 297 1.87 287 1.93 287 1.93
4 159 3.48 152 3.64 151 3.66
8 96 5.77 87 6.37 84 6.59

16 80 6.92 68 8.15 59 9.39

Problem size: 2048 × 2048
Sequential program took 554 seconds

Fig. 4. Parallel shallow water model execution times and speedups

The Netfile program is essentially identical to the MPI code in the manner of
data and task decomposition and distribution of data between tasks.

4.2 Experimental Results

We considered two grid size configurations: 1024×1024 and 2048×2048. For each
run, we executed the model for 100 iterations. And the speedups were based on
the execution time of the MPI program with 1 worker. Results from two versions
of the Netfile applications are presented in Fig. 4. In the first one, Netfiles were
opened and closed for each message. For small problem sizes, the overhead of
requests-replies with the Netfile-lookup service dominated the communication
cost. In the second version (identified as NetfilesOpt), we fine-tuned the program
code so that open Netfiles for worker-to-worker communications are not closed
but are kept open and reused. This minor optimisation resulted in the best
performance since it reduced the number of lookups.

These results demonstrate that with our prototype, Netfiles applications can
perform as well as their MPI equivalents. And in large problem sizes, our Netfiles
program outperformed its MPI equivalent. We suspect that performance gain is
due to our method of reusing the TCP connections between tasks.

Experiments were conducted on a Linux cluster of Intel Xeon processors (each
with 3 GHz and 1GB RAM) connected by a Gigabit Ethernet switch. All pro-

Netfiles: An Enhanced Stream-Based Communication Mechanism 259

2 4 6 8 10 12 14 16
Number of Processes

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
p

Parallel Jacobi Method (6400 variables)

Netfiles
MPICH # Exec. Times (secs.)/Speedup

MPICH Netfiles

2 296.82 2.58 298.28 2.57

4 150.15 5.11 151.06 5.08

8 76.70 10.01 78.58 9.77

16 39.81 19.29 46.57 16.49

Problem size: 6400 × 6400 matrix

Sequential program took 768 seconds

Fig. 5. Parallel Jacobi execution times and speedups

grams were compiled using gcc (version 3.3.4). For MPI, we used MPICH (ver-
sion 1.2.6) from Argonne National Laboratories and Mississippi State University.

5 Case Study 2: Parallel Jacobi Method

We also built a parallel Jacobi iterative method for solving linear equations. This
code is characterized by collective communication at the end of each iteration.
At the start of the application, the matrix that represents the coefficients of the
linear equations is distributed to all other tasks. During each iteration, all tasks
perform the Jacobi method and obtain its segment of the solution vector. This
solution vector is gathered and broadcast to the other tasks.

Fig. 5 shows the results on a problem size of 6400 variables. The linear equa-
tions are stored in a 64002 matrix of doubles and convergence was at 960 it-
erations. The superlinear speedup is most likely due to the cache and virtual
memory issues with the reference sequential program. Further optimisation in
our implementation of collective communication is necessary to match the per-
formance of the MPI version.

We used an IBM POWER5 cluster (4 cpus/node, minimum of 8 GB RAM,
Suse Linux) connected via Myrinet. All programs were compiled using IBM xlc
64-bit compiler and MPICH (version 1.2.6).

6 Related Work

The idea of using files as a proxy for message passing was inspired from the
Nimrod project [2]. Nimrod is a middleware for the execution of parametric
modelling applications over a wide-area environment. During an experiment,
data files needed by jobs are supplied via file transfers, effectively a form of

260 P. Chan and D. Abramson

interprocess communication. Socket programming with TCP connections may be
used to couple the application components but the programming complexity can
be discouraging. The Netfile programming interface is simpler since it abstracts
connection details (IP addresses/ports) and uses user-specified names to couple
communication endpoints.

The idea of extending standard file I/O for channel communication was prob-
ably first proposed by Seevers et al. [11] for Dataparallel C. We were unable
to find any subsequent works describing its development and implementation.
FAbrIC/Netfiles, on the other hand, is an implementation and supports collective
communication like broadcast and gather operations.

Similarly, Virtual Shared Files [8] was also proposed to employ a file space
model for IPC. The key difference with Netfiles is that we overload standard
file I/O primitives instead of introducing new ones. In addition, a Netfile can
behave in two modes: point-to-point stream and a distributed shared object.
This shared object semantics for Netfiles is currently being investigated.

Message passing libraries (PVM [4] and MPI [9] implementations) are pop-
ularly used for parallel programming on a distributed memory system like a
network of workstations. FAbrIC/Netfiles is essentially message passing within
file I/O primitives. This has the benefit that allows applications to be built and
tested on a conventional file system, prior to parallel execution.

The channel/pipe abstraction has its early beginnings in the Communicating
Sequential Processes (CSP) [5] and Occam [7]. Subsequently, this model has been
used in many coordination languages. Recently, this mechanism is also employed
in DP [6]. Netfiles differs from regular pipe mechanisms by supporting collective
operations. Our collective operations employ the file as a metaphor, for example,
gather operation is performed using a multiple-writer, single-reader Netfile.

Our earlier Netfiles paper [3] focused on master-worker parallel programming
with no inter-worker communication. And that library and runtime system was
implemented on top of PVM. In this paper, we present the FAbrIC system archi-
tecture, a coordination language, and its implementation on top of sockets. We
also demonstrate the effectiveness of FAbrIC/Netfiles for inter-worker communi-
cation.

7 Conclusions

We have presented the FAbrIC parallel programming approach using an abstrac-
tion called the Netfile. While a basic Netfile is essentially a pipe that allows IPC
across machines on a network, its enhanced form includes multicast capability.
FAbrIC provides a coordination language and is implemented using an interpreter
and runtime system. Parallel applications may be written in two phases: (a) write
and test on a familiar sequential environment using files and file I/O as a means
for inter-task communication; and (b) obtain the parallel version by relinking
with the Netfile library.

FAbrIC is evaluated using a parallel shallow water model and parallel Jacobi
method. Results show that with some minor fine-tuning, the FAbrIC parallel shal-

Netfiles: An Enhanced Stream-Based Communication Mechanism 261

low water application consistently performed better than the equivalent MPICH
program. However, our implementation of collective communications require fur-
ther optimisation as evident from results in the parallel Jacobi iteration. Overall,
this demonstrates viability of this approach and encourages further investigation.

Acknowledgements

We thank the Victorian Partnership for Advanced Computing for the use of their
IBM POWER5 cluster.

References

1. Abramson, D., Dix, M., Whiting, P.: A Study of the Shallow Water Equations on
Various Parallel Architectures. In: 14th Australian Computer Science Conference,
Sydney, Australia, pp. 6:1–6:12 (1991)

2. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A Tool for Performing Pa-
rameterised Simulations using Distributed Workstations. In: 4th IEEE Symposium
on High Performance Distributed Computing, IEEE Press, Virginia (1995)

3. Chan, P., Abramson, D.: NetFiles: A Novel Approach to Parallel Programming of
Master/Worker Applications. In: 5th International Conference and Exhibition on
High-Performance Computing in the Asia-Pacific Region, Queensland, Australia
(2001)

4. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.:
PVM Parallel Virtual Machine: A User’s Guide and Tutorial for Network Parallel
Computing. MIT Press, Cambridge (1994)

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

6. Johnson, B.K., Ram, D.J.: DP: A Paradigm for Anonymous Remote Computa-
tion and Communication for Cluster Computing. IEEE Trans. on Parallel and
Distributed Systems 12(10), 1052–1065 (2001)

7. Jones, G.A., Goldsmith, M.: Programming in OCCAM 2. Prentice Hall Professional
Technical Reference, Englewood Cliffs (1989)

8. Konovalov, A., Samofalov, V., Scharf, S.: Virtual Shared Files: Towards User-
Friendly Inter-Process Communications. In: 5th International Conference on Par-
allel Computing Technologies, St. Petersburg, Russia (1999)

9. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
(1994)

10. Sadourny, R.: The Dynamics of Finite-Difference Models of the Shallow Water
Equations. J of Atmospheric Sciences 32(4), 680–689 (1975)

11. Seevers, B.K., Quinn, M.J., Hatcher, P.J.: A Parallel Programming Environment
Supporting Multiple Data-Parallel Modules. In: SIGPLAN Workshop on Lan-
guages, Compilers, and Run-Time Environments for Distributed Memory Mul-
tiprocessors, Boulder, Colorado, pp. 44–47 (1992)

12. Washington, W.M., Parkinson, C.L.: An Introduction to Three-Dimensional Cli-
mate Modeling. Oxford University Press, Oxford (1986)

Performance of Coupled Parallel Finite Element

Analysis in Grid Computing Environment

Tomoya Niho and Tomoyoshi Horie

Department of Mechanical Information Science and Technology
Kyushu Institute of Technology

680–4 Kawazu, Iizuka, Fukuoka 820–8502, Japan
{niho, hoire}@mse.kyutech.ac.jp

Abstract. Since coupled problem should be solved for multiphenom-
ena, large computational resources are needed for the large scale coupled
analysis. In this paper, we propose a coupled parallel finite element anal-
ysis method using wide-area distributed computational resources on the
Internet. In order for PC clusters located in different places to carry out
a coupled parallel finite element analysis, a PC cluster receives the data
needed for the coupled analysis from the other through the Internet. To
perform the computing efficiently, processes for coupled parallel analysis
are allocated based on the estimation of the coupled parallel analysis
time taking account of available computer resources and network perfor-
mance. Parallel finite element analysis of electromagnetic and structural
coupled problem was carried out using two PC clusters to discuss the
validity of this analysis method and computing environment.

1 Introduction

A target problem of finite element analysis has been extended to coupled problem
such as fluid-structure coupled problem and electromagnetic-structural coupled
problem. Since large computational resources are required for the coupled anal-
ysis which solve multiphenomena, parallel processing techniques are needed for
the large scale coupled analysis.

On the other hand, research and development of grid computing [1], which
aims to provide seamless and scalable access to wide-area distributed compu-
tational resources on the Internet, has become active recently. Since security
and computational resource management are required for the grid computing,
the Globus Toolkit [2], which offers these services, is developed as grid middle-
ware. MPICH-G2 [3], which is a grid-enabled implementation of MPI, is also
developed. Ninf-G [4] and GridSolve [5] are proposed as remote procedure call
mechanism for the grid computing. Since available network performance is im-
portant to the grid computing, the Network Weather Service[6] which collect
the information of network, is developed. The AppLeS system [7] focuses on the
development of scheduling agents for parallel metacomputing applications. To
determine schedules, agents use the services offered by the Network Weather
Service to monitor the varying performance of available resources.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 262–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance of Coupled Parallel Finite Element Analysis in Grid 263

Structural analysis Fluid analysis

Electromagnetic field analysis

Internet

User

Coupled analysis

Fig. 1. Coupled parallel analysis method in grid computing environment

In this study, we propose a coupled parallel finite element analysis method
in the grid computing environment. In order for PC clusters located in differ-
ent places to carry out a coupled parallel finite element analysis, a PC cluster
receives the data needed for the coupled analysis from the other through the
Internet. In order to perform the analysis using wide area distributed computa-
tional resources, process allocation, that considered available CPU performance
and network speed, is important. In this study, we also propose a process al-
location method with estimation of the coupled parallel analysis time taking
account of these computer and network information obtained by the Globus
Toolkit and the Network Weather Service. The validity of this method is dis-
cussed with respect to the total execution time of the coupled analysis for the
Internet environment and the LAN environment.

2 Coupled Parallel Finite Element Analysis System in
Grid Computing Environment

2.1 Coupled Parallel Analysis in Grid

Since computational granularity is often fine for conventional parallel finite el-
ement analysis, high performance network is required to perform the parallel
finite element analysis using distributed computational resources on the Inter-
net. However, the coupled analysis by staggered analysis method may be suitable
for the grid computing environment because the computational granularity of
the coupled analysis is coarse.

In this study, a coupled parallel finite element analysis method in grid com-
puting environment is proposed, which is illustrated in Fig.1. In order for PC
clusters located in different places to carry out a coupled parallel finite element
analysis, a PC cluster receives the data needed for the coupled analysis from the
other through the Internet. By constructing the grid computing environment
for the coupled analysis, it may be realized to perform a large scale coupled
analysis using large computational resources on the Internet. And various cou-
pled analysis utilizing the existing analysis codes which are developed by various
organizations may also be realized.

264 T. Niho and T. Horie

2.2 Coupled Parallel Analysis Method for Electromagnetic and
Structural Coupled Problem

In fusion reactors and magnetically levitated vehicles, large Lorenz force, which
is generated by the interaction of eddy current and magnetic field, is applied to
conductive thin shell structures. When the structures deform in the magnetic
field, the electromotive force, which is produced by deformation velocity and
magnetic field, reduces the eddy current. Therefore, the electromagnetic and
structural coupled analysis is needed for the design of these components.

In the electromagnetic and structural coupled problem, the matrix equation
of the structure [8] is expressed using the normal component T of the current
vector potential and the displacement u as

Mü + Ku = F ex + CsT (1)

where matrices M, K, Cs and F ex are the mass matrix, the stiffness matrix, the
coupling sub-matrix by the electromagnetic force and the external mechanical
force, respectively. The matrix equation of the eddy current is expressed as

UṪ + RT = Ḃ
ex

+ Ceu̇ (2)

where matrices U, R, Ce and Ḃ
ex

are the inductance matrix, the resistance
matrix, the coupling sub-matrix by the electromotive force and the change of
the external magnetic field, respectively.

In the staggered coupled analysis method, both matrix Eqs.(1) and (2) are
solved alternately. To solve Eq.(2), u̇ obtained by the structural analysis is used
to evaluate Ceu̇. The solution T of Eq.(2) is substituted into CsT to solve
Eq.(1). In this study, Newmark’s β method and Crank-Nicolson method are
applied to Eqs.(1) and (2) as the time integration, respectively.

Domain Decomposition Method (DDM) [9] are applied to the eddy current
analysis and the structural analysis to carry out the parallel processing. Coupled
parallel finite element analysis of the electromagnetic and structural coupled
problem is performed using PC clusters on the Internet as shown in Fig.2. One
of the PC of the PC cluster for the parallel structural analysis receives the
current potential T from one of the PC of the PC cluster for the parallel eddy
current analysis to make a vector of the electromagnetic force. In order to analyze
the eddy current considering the electromotive force, one PC for the parallel
structural analysis sends the velocity vector u̇ of the structure to the one PC for
the parallel eddy current analysis. MPI is used to perform the communication
in the coupled parallel analysis.

2.3 Process Allocation Considering CPU and Network Performance

In order to perform the computing efficiently by wide–area distributed com-
puters, process allocation according to available CPU performance and network
speed is important. In this study, a process allocation method with estimation
of the coupled parallel analysis time taking account of computer and network

Performance of Coupled Parallel Finite Element Analysis in Grid 265

Fig. 2. Coupled parallel finite element
analysis method of electromagnetic and
structural coupled problem

Resource information collection
Estimation of analysis time
Process allocation

BretsulcCPAretsulcCP Super Computer

PC cluster C

User
Req

ue
st

G
ri

dF
T

P

GridFTP

GRAM, MPICH
GRAM, MPICH

MDS, NWS

M
D

S, N
W

S
Coupling effect

Result
Result

MDS, NWS

M
D

S,
N

W
S

Agent

CPU speed
Load, Memory
Network speed

Fig. 3. Coupled parallel analysis system on
Grid computing environment

information is proposed. These computational resource information are collected
by MDS of the Globus Toolkit and the Network Weather Service.

Coupled parallel analysis system in grid computing environment using the
proposed method is shown in Fig.3. In this system, the agent collects the in-
formation of computers and network by the MDS and the Network Weather
Service. Agent estimates the coupled parallel analysis time under various pro-
cess allocation cases, and select the optimum process allocation according to the
estimated analysis times. Next, the computers that selected by agent are receive
the analysis data, and these computer perform the coupled parallel analysis.
When the coupled analysis is finished, the result is sent back to the user.

Estimation method of the coupled parallel analysis time is shown in Fig.4.
Calculation time of the matrix generation and the matrix vector product of CG
method are estimated using CPU speed and load obtained by the MDS. Com-
munication time of the parallel analysis and the coupled analysis are estimated
using network bandwidth and latency obtained by the Network Weather Service.

3 Coupled Parallel Finite Element Analysis

3.1 Analysis Models and Conditions

The electromagnetic and structural coupled problem of bending motion [10] is
analyzed. A copper rectangular plate rigidly clamped at one end is placed in a
transient magnetic field Bz and a steady magnetic field Bx as shown in Fig.5.
The interaction between the eddy current, which is produced by the transient
magnetic field Bz, and the steady magnetic field Bx causes bending deformation
of the plate. While the plate is vibrating, the electromotive force by the defor-
mation velocity and the steady magnetic field Bx influences the eddy current.

The conditions of the analysis as follows: time increment Δt is 0.1msec and
number of total time steps is 50.

266 T. Niho and T. Horie

Parallel structural analysis

Parallel eddy current analysis

Generate F.E. matrix

Parallel CG

Parallel CG

(Matrix size)ÇCsg ÇCmachinetype
(CPU Speed)Ç (CPU Load)

(Matrix size)ÇCsg ÇCmachinetype
(CPU Speed)Ç (CPU Load)

(Matrix size of domain)ÇCpe ÇCmachinetype
(CPU Speed)Ç (CPU Load)

(Matrix size of domain)ÇCps ÇCmachinetype
(CPU Speed)Ç (CPU Load)

2Ç 103 Ç (Latnecy) +
64Ç (d:o:f: for structure)

(Bandwidth)

2Ç 103 Ç (Latnecy) +
64Ç (d:o:f: for eddy current)

(Bandwidth)

2Ç 103 Ç (Latnecy) +
64Ç (d:o:f: for domain of structure)

(Bandwidth)

2Ç 103 Ç (Latnecy) +
64Ç (d:o:f: for domain of eddy current)

(Bandwidth)

Matrix vector productGenerate F.E. matrix

Matrix vector product

Fig. 4. Estimation of coupled parallel analysis time

z

y

x

487
411

3.175

100
Bz

Bx=0.5[T]

Fig. 5. Schematic diagram of a plate placed in electromagnetic field

3.2 Coupled Parallel Analysis in Grid

Computing Environment. Two PC clusters are used in the coupled analysis.
The distance between these PC clusters is about 30km. One PC cluster is Pen-
tium III 850MHz and 866MHz cluster, and the other is Pentium III 1GHz cluster.
The communication rate between these PC clusters for each data size is shown
in Fig.6. The communication rate in the LAN environment (100Base-TX Ether-
net) is also shown in this figure. Although the maximum communication rate of
the LAN is about 80Mbps, the maximum rate between PC clusters through the
Internet is low, about 8Mbps.

The coupled parallel analyses are carried out in three types of computing
environment shown in Fig.7 to examine the effect of the communication rate on
the efficiency of the coupled parallel analysis. In Fig.7(a), all processes are carried
out by one PC cluster. Although the data of only coupled effect is communicated
through the Internet in Fig.7(b), the communications of the parallel eddy current
analysis are performed through the Internet in Fig.7(c).

Results and Discussions. The total execution time of the analysis performed
in three type computing environment are compared in Fig.8. These analyses

Performance of Coupled Parallel Finite Element Analysis in Grid 267

102 104 106

10−1

100

101

102

Data size [byte]

C
om

m
un

ic
at

io
n

ra
te

 [M
bp

s]

LAN
Internet

Fig. 6. Communication rate for
Internet and LAN

Structural analysis

Parallel eddy current analysis
Local area network

Structural analysis Parallel eddy current analysis
Local area network

Internet

Structural analysis Parallel eddy current analysis
Local area network

Internet

Parallel eddy cuurrent analysis

Fig. 7. Composition of computers for cou-
pled parallel analysis

are carried out with the analysis model divided into 4 domains. The difference
in total execution time between the coupled analysis in the LAN environment
(a) and that in the Internet (b) is only a few percent because the time for
communication consumed for the coupled effect is much smaller than that for
other processes such as matrix-vector product, communication for the parallel
eddy current analysis and so on. Since large data transmissions are frequently
carried out in the parallel eddy current analysis, the total execution time may be
increase in the coupled analysis if parallel analysis data is transmitted through
the Internet (c). However, although the communication rate for the parallel
eddy current analysis becomes about 10% of the LAN, the difference in total
execution time between the line in Fig.8 for parallel analysis in the Internet
and other lines is small. The reason may be that the quantity of communication
data is not large for the analysis with 4 domains, and so the coupled analyses
are performed increasing the number of domains.

The total execution time of the coupled analysis with 8 domains is shown in
Fig.9. By only increasing the number of machine for the eddy current analysis,
which requires many operations more than the structural analysis, the total
execution time becomes about a half compared to Fig.8 for the case of 4 domains.
According to Fig.9, the line for parallel analysis in the Internet differs from
other lines. The reason is that the computational granularity becomes small by
increasing the number of machines. However, large difference is not observed
in the total execution time between two lines such as the coupled analysis in
the Internet and the coupled analysis in the LAN environment. Therefore, the
coupled parallel analysis by communicating coupled effect through the Internet
is suitable for grid computing environment.

268 T. Niho and T. Horie

10000 20000 30000
0

2000

4000

6000

Total degrees of freedomT
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

] Coupled analysis in the Internet
Coupled analysis in the LAN
Parallel analysis in the Internet

Fig. 8. Analysis time for 4 domains

10000 20000 30000
0

2000

4000

6000

Total degrees of freedomT
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

] Coupled analysis in the Internet
Coupled analysis in the LAN
Parallel analysis in the Internet

Fig. 9. Analysis time for 8 domains

10Base-TX
100Base-TX
1000Base-T

100Base-TX
1000Base-T

Parallel Structural Analysis Parallel Eddy Current Analysis

100Base-TX
1000Base-T

Fig. 10. Analysis environment

100 102 104 106

10−1

100

101

102

103

Data size [byte]C
om

m
un

ic
at

io
n

ra
te

 [M
bp

s]

1000Base−T

100Base−TX

10Base−T

Fig. 11. Network performance ob-
tained by NWS

3.3 Verification of Process Allocation

Computing Environment. To discuss the coupled parallel analysis system
with the process allocation, the coupled analyses are performed using Pentium IV
2.8GHz cluster. PCs of the PC cluster are connected by 10Base-T, 100Base-TX
or 1000Base-T ethernet as shown in Fig.10. The communication rate obtained
by the Network Weather Service is shown in Fig.11. The communication time of
the coupled analysis is estimated using these communication rate.

Results and Discussions. The change of estimated and executed analysis
time of the coupled analysis with number of total degrees of freedom is shown
in Fig.12 using 8 domains for the eddy current analysis and 4 domains for the
structural analysis. Since difference between estimated time and executed time
is very small, the estimation method of the coupled parallel analysis time can
be used for optimum process allocation. The details of estimated and executed
analysis time are shown in Fig.13. It is confirm that the communication time for
the coupled analysis is small compared to the total analysis time.

The change of analysis time with the number of CPU for the parallel eddy
current analysis is shown in Fig.14 using 4 CPU for the parallel structural
analysis. The total number of degrees of freedom is 24893. It is also confirm
that estimated analysis time and executed analysis time show similar tendency.
Therefore, the optimum process allocation becomes possible by the proposed
estimation method.

Performance of Coupled Parallel Finite Element Analysis in Grid 269

0 10000 20000 30000
0

500

1000

1500

Total degrees of freedom

T
im

e
[s

ec
]

10Base−T
100Base−TX

Estimation Execution Coupled analysis
1000Base−T

Parallel analysis 1000Base−T

Fig. 12. Estimation and execution analy-
sis time of coupled parallel analysis

0

500

1000

1500

T
im

e
[s

ec
]

es
tim

at
io

n

es
tim

at
io

n

es
tim

at
io

n

ex
ec

ut
io

n

ex
ec

ut
io

n

ex
ec

ut
io

n

1000Base−T 100Base−TX 10Base−T

Generate F.E. matrix
Solve eddy current equation
Solve structural equation
Communication of coupled analysis

Others

0.
22

0.
88

10
.6

5

Fig. 13. Details of analysis time (24893
d.o.f.)

0 3 6 9 12
0

500

1000

1500

Number of domains

T
im

e
[s

ec
]

10Base−T
100Base−TX

Estimation Execution Coupled analysis
1000Base−T

Parallel analysis 1000Base−T

Fig. 14. Estimation and Execution analysis time (24893 d.o.f.)

4 Conclusions

Coupled parallel finite element analysis method especially for grid computing
environment is proposed. In this method, PC clusters located in different places
perform the parallel finite element analyses, and communicate with the other
PC cluster through the Internet to analyze the coupled problem. The electro-
magnetic and structural coupled analysis was carried out using two PC clusters
on the Internet. The difference in the total execution time was only a few per-
cent compared to the coupled analysis in the LAN environment for the coupled
problem with a few ten thousand degrees of freedom. The execution time, how-
ever, increased for the coupled analysis by performing the parallel analysis in
the Internet compared to that by the proposed method. Therefore, the proposed
method is suitable for the grid computing environment. It is also confirmed that
the analysis time is minimized by using the proposed process allocation method.

References

1. Foster, I., Kesselman, C.: The GRID: Blueprint for a new computing infrastructure.
Morgan Kaufmann, San Francisco (1998)

2. http://www.globus.org/

270 T. Niho and T. Horie

3. http://www.niu.edu/mpi/
4. http://ninf.apgrid.org/
5. http://icl.cs.utk.edu/netsolve/
6. http://nws.cs.ucsb.edu/
7. Berman, F., et al.: Adaptive computing on the Grid using AppLeS. IEEE Trans-

actions on Parallel and Distributed Systems 14, 369–382 (2003)
8. Horie, T., Niho, T.: Electromagnetic and mechanical interaction analysis of a thin

shell structure vibrating in an electromagnetic field. Int. J. of Applied Electromag-
netics in Materials 4, 363–368 (1994)

9. Glowinski, R., Dinh, Q.V.: Domain decomposition methods for nonlinear problems
in fluid dynamics. Computer Methods in Applied Mechanics and Engineering 40,
27–109 (1983)

10. Turner, L.R., Hua, T.Q.: Results for the cantilever beam moving in crossed mag-
netic fields. COMPEL 9, 205–216 (1990)

Photo-Realistic Visualization for the Blast Wave

of TNT Explosion by Grid-Based Rendering

Kaori Kato1, Takayuki Aoki1, Tei Saburi2, and Masatake Yoshida2

1 Global Scientific Information and Computing Center, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8550, Japan

2 Research Center for Explosion Safety, National Institute of Advanced Industrial
Science and Technology, 1-1-1 Azuma central 5, Tsukuba-shi, Ibaraki, 305-8565,

Japan

Abstract. After the detonation of a solid high explosive, the mate-
rial has extremely high pressure keeping the solid density and expands
rapidly driving strong shock wave. In order to investigate the blast wave
propagation driven by the 32-kg TNT explosion of the underground mag-
azine a three-dimensional simulation is performed with a stable and ac-
curate numerical scheme without a special modeling for the expansion
process of detonation product gas. The compressible fluid equations are
solved by a fractional step procedure which consists of the advection
phase and non-advection phase. The former employs the Rational func-
tion CIP scheme in order to preserve monotone signals and the latter
is solved by IDO (Interpolated Differential Operator) scheme for achiev-
ing the accurate calculation. For this simulation results, photo-realistic
visualization is achieved with combination of volume rendering with iso-
surface rendering on grid computer.

1 Introduction

Explosives are very dangerous materials because enormous energy is released at
the moment through detonation process. When the detonation process termi-
nated in solid explosives, the pressure reaches tens of thousands times the air
and the solid density still remains. The detonation product becomes the gas and
expands rapidly driving strong shock wave. They are called blast waves. From
the viewpoint of safety study, it is very important to estimate of damages by
blast waves. For many years, the numerical schemes and the basic research on
blast waves [1] ∼ [13] have been developed. However, few schemes can give quan-
titative estimation for the wide calculation scale. In the early stage of blast wave
propagation, the large density jump between the detonation product gas and
the air makes the numerical simulation difficult. A negligible numerical error for
high-density detonation product gas has serious effect on the air and degrades
the shock waves propagation. In order to study such blast waves, a stable and
accurate numerical scheme have to be developed.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 271–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 K. Kato et al.

2 Governing Equations

The inviscid compressible fluid equations are employed for the blast waves of
the detonation product gas expanding rapidly and the strong shock wave prop-
agating into the air. For the detonation product gas, the JWL equation of state
PJWL(ρ, e) [15] is applied, and the ideal gas equation of state Pair = (γ − 1)ρe
is used for the air with the ratio of specific heats for the gas γ = 1.4. In the
following equations, the notation ρ is the density, e is the internal energy and u
is the velocity, where u, v and w are the components of u in the x-, y- and z-
direction, respectively. In order to identify the region of the detonation product
gas, we introduce a volume fraction α which is taking a value 0 ≤ α ≤ 1. The
region occupied by only the detonation product gas is indicated by α = 1 and
the region for only the air is α = 0. The pressure of the mixed region is simply
determined by p = αPJWL + (1 − α)Pair .

∂ρ

∂t
+ (u · ∇)ρ = −ρ∇ · u, (1)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p, (2)

∂e

∂t
+ (u · ∇)e = −p

ρ
∇ · u, (3)

∂α

∂t
+ (u · ∇)α = 0. (4)

3 Numerical Method

We develop a stable and accurate Eulerian scheme for propagation of strong blast
waves. The governing equations (1)-(4) are spilt into the advection phase and
the non-advection phase in the same way as the original CIP scheme [14]. The
fractional step procedure is introduced for the stability of the scheme. The time
advance from the n-th step to the n+1-th step consists of the following procedure.
The dependent variables of the n-th time step is integrated to the intermediate
step by solving the advection equation. Then the variables are advanced to the
n+1-th step by solving the non-advection equation. In the scheme, not only the
values on the grids but also the profiles between the grids satisfy the governing
equations because the values propagate together with the spatial gradients of
them. Because we need better coupling between the pressure and the velocity
for the phenomena with a steep gradient profile in the non-advection phase, we
adapt staggered grid.

4 Three-Dimensional Simulation for the Blast Wave
Driven by the Explosion in the Magazine

The three-dimensional blast wave simulation is performed on the same condition
with the open-air mock experiment of the 32-kg TNT explosion of the under-
ground magazine which was done in the exercises field of Japan Ground Self

Photo-Realistic Visualization for the Blast Wave of TNT Explosion 273

y (m)

θ

θ=160,R=22m

θ=120,R=36m

θ=60,R=36m

θ=0,R=36m
θ=0,R=22m

θ=60,R=22m

θ=120,R=22m

x (m)
z (m)

5

y
(m

)

x (m)

0 0 2.7

1.
3

4.
4

ϕ=1.8

y
(m

)

z (m)
-505

4.
4

-2.72.7

2.
2

0.
4

L=5.0

(a)

z
x

y

(b)

Fig. 1. Configuration of the computational domain for three-dimensional simulation:
(a) a schematic of magazine and measurement point; and (b) a schematic of mesh
covering the computational domain

zz

y

x

y

z
x

40

40

45

-15

(a) (b)

Fig. 2. Blast wave propagation driven by 32-kg TNT explosion at the magazine at
t=51.28ms: (a)density contour on z-x and z-y plane with the range of 0.5∼1.35kg/m3

and the interval of Δρ=0.01kg/m3; and (b)iso-surface for the volume fraction of α=0.1
and the pressure of p=1.05HPa in the range of 63.2∼115.6kPa

Defense Force in 2003 [16]. The heap with an earth was constructed and the
magazine was horizontally embedded. The pyramid shape has the base area of
10m × 10m and the height of 4.4m and the magazine size is 5.0m in length and
1.8m in diameter. The schematic of them is shown in Fig.1(a). We set the x-z
plane on the ground and the y-axis in the vertical direction and the origin of
the coordinate system is located at the magazine outlet. It is assumed that the
phenomena are symmetric due to the symmetric geometries of all the objects,
so that we calculate only a half of the computational domain in the x-direction.
The grid number of Nx × Ny × Nz = 180 × 180 × 450 is assigned to the domain
0m ≤ x ≤ 40m, −20m ≤ z ≤ 45m, 0m ≤ y ≤ 60m in the Cartesian grid with
non-uniform intervals. Fine meshes of Δx = Δy = Δz = 0.1m are arranged
inside the magazine and around the outlet, and distant meshes have larger size
to Δx = Δy = Δz = 0.4m as shown in Fig.1(b).

274 K. Kato et al.

The simulation was executed on the PC-Cluster of Intel Xeon 2.2GHz×40
with Myrinet2000 interconnection at Research Center for Explosion Safety, Na-
tional Institute of Advanced Industrial Science and Technology (AIST). It makes
parallel computation possible that our numerical scheme is easily implemented
to domain decomposition. The mesh resolution of Δx = Δy = Δz = 0.1m inside
the magazine is too large for the size of 32-kg TNT, so that we calculate the
propagation of the blast wave by using two-dimensional cylindrical simulation.
When the front of the blast wave reaches the outlet, the two-dimensional result
is planted in the three-dimensional Cartesian grid as the initial condition. The
rigid bodies are assumed for the heap with the magazine and the ground.

The density contour and the pressure iso-surface of the simulation result at
the time of 51.28ms are displayed in Fig.2(a) and (b). Almost spherical shock
wave is described also in the three-dimensional simulation and it is qualitatively
understood that the shock is stronger in the forward direction. The distribution
of the detonation product gas is found in front of the magazine outlet and the
interface to the air evolves unstably. In the three-dimensional simulation, the
geometrical shape of the heap is accurately taken into consideration and un-
stable behavior of the detonation product gas is different from two-dimensional
simulation.

5 Visualization for the Blast Wave of TNT Explosion by
Ray Tracing Method

It is important to estimate not only the strong shock propagation but also the
expansion speed of detonation product gas and the distribution because the gas
expanding has strong effect to the outside shock propagation in early stage. For
evaluation of the gas expanding process, three-dimensional simulation is required
due to the importance of fluid instability growing on the gas surface. In order
to understand the phenomena from huge data obtained by the simulation us-
ing large memory, visualization is one of the must fundamental approaches. The

Fig. 3. The sample frame of flame visualized Povray3.5: (a) using only volume ren-
dering; and (b) using volume rendering with iso-surface rendering

Photo-Realistic Visualization for the Blast Wave of TNT Explosion 275

Fig. 4. Photo-realistic visualization of the flame expanding in front of the magazine
at 5 msec

Fig. 5. Photo-realistic visualization of the flame expanding in front of the magazine
at 20 msec

276 K. Kato et al.

Fig. 6. Photo-realistic visualization of the flame expanding in front of the magazine
at 50 msec

Fig. 7. The farming for pov-ray rendering of blast wave on Titech Grid system

detonation product gas expands with complex-shaped surface by fluid instability
and intense luminescence based on black body radiation. This luminous body
(flame) has not strict material boundary therefore volume rendering is suitable.
In simple volume rendering, the flame is expressed transparent because the ab-

Photo-Realistic Visualization for the Blast Wave of TNT Explosion 277

sorption factor for the incidence light from outside cannot be taken enough, even
though it is not actually transparent. It is difficult to observe the expanding pro-
cess of flame by simple volume rendering. We present an efficient visualization
of flame and the key idea is combination of volume rendering with iso-surface
rendering by Povray3.5, which employ ray-tracing method.

Povray [17] is a free ray-tracing software to generate high quality frame and
the volume rendering function has been added from the version 3.5. The data in
df3 format is needed to use this function. The df3 data has the header part of 6
byte and the part of three-dimensional data. To the header part, each number
(nx, ny, nz) of three-dimensional data elements in x, y, and z direction must
be given. Each element of three-dimensional data is 1 byte variable normalized
within the range from 0 to 255 and they must be stored in order of x, y and z.
The data pattern of df3 format occupies a unit cube of < 0, 0, 0 >< 1, 1, 1 >
regardless of the three-dimensional data size. The sample frame of flame visu-
alized by simple volume rendering is shown in Fig.3(a) and the sample frame
visualized by volume rendering with iso-surface rendering in Fig.3(b).

From Fig.3, it is found that the frame of expanding flame with complex sur-
face and intense luminescence becomes more realistic by the combination of
volume rendering with iso-surface rendering. Next, the frames composite with a
background are shown in Fig.4, Fig.5 and Fig.6. In these figures, photo-realistic
visualization for the expanding process of flame which is observed by the field
experiment is achieved. The consuming CPU resource more than 30 minutes is
needed for a frame. For one animation making, hundreds of frames are required
and the efficient job management for rendering is necessary. We use the Titech
Grid system shown in Fig.7 as the render farm.

6 Conclusions

For the simulation of strong blast waves, a high-accurate numerical scheme was
presented. In order to investigate the expanding process of flame by the 32-kg
TNT explosion of the underground magazine, a detailed simulation is performed
without a special modeling[18] for the expansion process of flame. It is concluded
that the scheme proposed in this paper is quit available to solve the compressible
fluid equation and applicable to the simulation of strong blast waves. The photo-
realistic visualization is achieved with combination of volume rendering with
iso-surface rendering on grid computer.

References

1. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport
algorithm that works. J. Comp. Phys. 11, 38–69 (1973)

2. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comp. Phys. 43, 357–372 (1981)

3. Osher, S., Chakravarthy, S.: High Resolution Schemes and the Entropy Condition.
SIAM J. Num. Anal. 21, 984–995 (1984)

278 K. Kato et al.

4. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comp.
Phys. 49, 357–393 (1983)

5. Yang, H.: An artificial compression method for ENO schemes: The slope modifica-
tion method. J. Comp. Phys. 89, 125–160 (1990)

6. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order
accurate essentially non-oscillatory schemes, III. J. Comp. Phys. 71, 231–303 (1987)

7. Harten, A.: ENO schemes with subcell resolution. J. Comp. Phys. 83, 148–184
(1987)

8. Shu, C.W., Oshert, S.: Efficient implementation of essentially non-oscillatory shock-
capturing schemes, II. J. Comp. Phys. 83, 32–78 (1989)

9. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow
with strong shocks. J. Comp. Phys. 54, 115–173 (1984)

10. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-
dynamical simulations. J. Comp. Phys. 54, 174–201 (1984)

11. Brode, H.L.: Numerical Solution of spherical Blast waves. Journal of Applied
physics 26, 766–775 (1955)

12. Brode, H.L.: Blast wave from a spherical charge. Phisics Of Fluid 2, 217–229 (1959)
13. Kury, J.W., Hornig, H.C., Lee, E.L., McDonnel, J.W., Ornellas, D.L., Finger,

M., Starnge, F.M., Wilkins, M.L.: Metal Acceleration by Chemical explosives. In:
Fourth Symposium on detonation, pp. 3–13 (1965)

14. Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial
interpolation I. One-dimensional solver. Computer Physics Communications 66,
219–232 (1991)

15. Dobratz, B.M.: Properties of Chemical Explosives and Explosive Simulants LLNL
Explosives Handbook UCRL-52997, Distribution Category UC-45

16. Bakuhatsu-eikyou-hyouka-iinkai-houkoku-sho, All Japan Association for security
of explosives (2003)

17. http://www.povray.org
18. Rasmussen, N., Nguyen, D.Q., Geiger, W., Fedkiw, R.: Smoke Simulation for Large

Scale Phenomena. SIGGRAPH 22, 793 (2003)

http://www.povray.org

Development of an Interactive Visual Data

Mining System for Atmospheric Science

Chiemi Watanabe�, Eriko Touma, Kazuko Yamauchi, Katsuyuki Noguchi,
Sachiko Hayashida, and Kazuki Joe

Department of Information and Computer Science, Faculty of Science,
Nara women’s University,

Kitauoyanishi-machi, Nara-city, 630-8506, Nara, Japan
{chiemi,shuro,kazuko,nogu,sachiko,joe}@ics.nara-wu.ac.jp

Abstract. In atmospheric science, 3D visualization techniques have been
mainly used to create impressive presentation in recent decades. However,
from the viewpoint of utilize for visual data mining, 3D visualization
methodology has difficulties in becoming wide spread because most con-
ventional and established way is to make 2D diagrams consisting of two
dimensions of a temporal transitional 3D grid. From these observations,
we have been developing a quick look tool of atmospheric science data for
3d visual data mining. We expect that scientists can utilize this tool for
finding out 2D diagrams from the data by using various 2D or 3D visual-
ization methods, and become accustomed themselves to 3D visualization
methods.

Keywords: We would like to encourage you to list your keywords within
the abstract section.

1 Introduction

Visualization techniques have been gaining much attention in a broad range of
application such as science, medical and finance. In particular, 3D visualization
is used in various application fields because users can observe objects of interest
from arbitrary viewpoints for obtaining intuitive understanding. Besides being
effective presentation tools, visualization techniques are also expected as visual
data mining tools that make it possible to explore implicit knowledge from mas-
sive data. Among processes in visual data mining, interactive analysis process is
considered to be the key because new knowledge is explored by human vision and
intuition. More concretely, in an interactive analysis, a user tries to discover new
knowledge from 3D visualized simulation and/or real data by changing his/her
viewpoints and applying various visualization methods.

In the atmospheric science, 3D visualization techniques have been mainly
used to create impressive presentations in recent decades, and many useful vi-
sualization tools, such as AVS[1], IDL[2],Vis5D[3] and VisAD[4], are distributed

� Present affiliation: Department of Information Sciences, Ochanomizu University.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 279–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 C. Watanabe et al.

for this field’s scientists. In fact, atmospheric science data has 3d special scales
and 1d time scale (we name the data as ”spatio-temporal 4D grid data”) that
turn out to be applicable to 3d visualization with animation. However, from the
viewpoint of visual data mining, only a few scientists have been used 3d visual-
ization techniques to analyze the phenomenon. We consider the there are several
reasons:

(1) It is difficult to completely represent all of spatio-temporal 4D grid data
in 2D media, such as paper and 2D monitor. Reseachers usually make 2D
graphs and print them out for further analysis. But it is quite difficult to
represent all contents of a spatio-temporal 4D grid data in a paper or a
2D monitor because projecting the data incurs lossy compression, and some
data will be lost as a consequence. To analyze the grid data, therefore they
should try to observe it from various viewpoints and try to visualize it by
applying multiple methods by changing various parameters.

(2) The usage of visualization tools are complicated in many cases. Most visual-
ization tools provide many functionalities to meet users various requirements,
but such versatility makes the system complex. The consequence is that a
user is required to have high knowledge about both visualization techniques
and programming, although learning such skills is usually time consuming.

(3) Scientists are not familiar with 3D visualization methods. 3D visualization
methods, such as 3D contour and volume visualization, is not so popular
in the research area as mentioned above. Most conventional and established
way is to make 2D diagrams consisting of two dimensions of a temporal
transitional 3D grid, and for this reason, 3D visualization methodology has
difficulties in becoming wide spread.

From these observations, we have been developing a quick look tool of atmo-
spheric science data for 3d visual data mining. In fact, we attempt to provide
only basic visualization methods in the tool for analyzing 4d grid spatio-temporal
data. The user interface is designed to be as simple as possible so that one can
operate with only a few instructions. The tool will make a user possible to cre-
ate a 2D diagrams that he/she would like to obtain by condensing other two
dimensions from a temporal transitional 3D grid. More concretely, we attempt
to provide a tool that can facilitate the conventional visualization analysis for
creating 2D diagrams, consisting of ”Overview”, ”Detail” and ”Temporal transi-
tion”, by providing appropriate methods for each step. As a result, we expect that
scientists can utilize this tool for finding out 2D diagrams from the data by using
various 2D or 3D visualization methods, and become accustomed themselves to
3D visualization methods. In Section 2, we survey on the visual data mining
activities for atmospheric science data. Traditional visual analysis method by
condensing dimension of the data is developed in Section 3. In Section 4 we
introduce the prototype system and its user interaction flow, and finally Section
5 concludes this paper.

Development of an Interactive Visual Data Mining System 281

2 Visual Data Mining Activities for Atmospheric Science
Data

Atmosphere is the gaseous body which blankets the earth. It consists of four
layers, namely, convection sphere, stratosphere, mesosphere and thermosphere.
Various astronomical phenomena, such as rain, snow, cloud, typhoon and ascen-
sion or dissension of temperature, are caused by various physical phenomena,
such as convection, atmospheric constituent, rotation and motion of earth. At-
mospheric scientists make analysis of atmospheric science data, captured by
radar and satellite, to reveal the mechanism of those phenomena. In recent years
NASA[5], ECMWF[6] and NCEP[7] provides atmospheric science data archive
center, where user can acquire the data by using web browser. For example,
NASA Goddard DAAC[8] archives more than 20 kinds sensor data that cover
from 1978 to resent data, and ECMWF provides re-modeled weather monitor-
ing data. Data mining [9] has been widely used to mine important information
and/or implicit rules from numerous data. In atmospheric science, explosive data
have already been archived in data archiving infrastructure as mentioned above,
and even small laboratories or individual scientists are therefore ready for uti-
lizing data mining. Various methods, such as statistical methods and machine
learning algorithms, has been proposed as data mining technologies, and we
believe that ”visual data mining”[10] plays the important role to extract valu-
able knowledge from underlying data. In fact, visual data mining are methods
which promote human visual sense and intuition to discover new knowledge by
using visualization techniques. In atmospheric science, visual analysis has been
established in several decades and effective visualization and analyzation meth-
ods have been confirmed as empirical knowledge. However, in these methods,
spacio-temporal 4D grid data have to be projected to 1D or 2D grid data, and
scientists then have to pay considerable effort to find appropriate combinations of
dimensions and parameters by try-and-select based on their background knowl-
edge. Actually, 3D visualization and animation are attractive to represent 4D
spacio-temporal grid data and many scientists are using the 3D visualization sys-
tems, their purposes are not for data analysis but just for creation of impressive
presentation.

3 Dimensionally Reduction of Atmospheric Science Data

An atmospheric science data can be represented by function whose attributes are
3-dimensional space with time X = X(x, y, z, t), and the data is then projected
1D or 2D surface for further analysis. Consequently, there are 4 patterns of
1D projection such as X(x; y0, z0, t0), X(y : x0, z0, t0), X(z : x0, y0, t0)andX(t :
x0, y0, z0), by fixing one of four axis values, Likewise, there are 6 patterns of 2D
projection as follows:

(1) Space section diagram: X(x,y; z0, t0), X(x,z: y0,t0), X(y,z: x0, t0)
(2) Time section diagram: X(x,t: y0,z0), X(y,t: x0,z0), X(z,t: x0,y0)

282 C. Watanabe et al.

Space section diagram is a surface diagram in that time and one of longitude,
latitude or altitude are fixed. The problem is that it is difficult to select fixed
values for representing persuasive diagram and the way to select them is ef-
fected their purpose of analyze and their background knowledge on the data.
Besides, the diagram X(x, y; z0, t0) may be used for not only altitude value but
also potential temperature and pressure. For example, Fig. 1(a) shows potential
vorticity diagram of X(x, y; z0, t0) where z0 = 850K of potential temperature
and t0 = 4th.Dec.1981. The potential temperature of a parcel of air at pressure
P is the temperature that the parcel would acquire if adiabatically brought to
the standard level (1000hPa)[11]. Because air parcels are following on the sur-
face of constant potential temperature, the surface on which z-value is fixed by
a potential temperature would be appropriate. When users make a space sec-
tion diagram, they should select an appropriate map projection. Fig. 1(a) shows
equidistant projection for analyzing the stratosphere around the North Pole.
Time section diagram is effective for representing motion of atmosphere and it is
typically used in the area of atmospheric dynamics. The diagram X(x, t; y0, z0),
which fixes latitude and altitude, is suitable for representing east-west air motion.
Fig. 1(b) shows the time evolution of the ensemble mean anomaly of geopoten-
tial height at 500 hPa, averaged over the latitude band 35N-55N during 30 days
in Nov. 1945[12]. In this figure, the area marked by transverse lines shows high-
pressure area, and the area marked by vertical lines show low-pressure area. You
can observe that 5 or 6 piece of high and low pressure areas lies side-by-side
and they declines, that turns out to be eastward propagation of atmospheric
high and low. From this figure Hovmoeller discovered the feature of traveling
anticyclone. Be X(x, t|y0, z0) diagram is named as Hovmoeller diagram for this
reason.

4 Prototype System

We have been developing a quick look tool for 3d visual data mining of atmo-
spheric science data. This tool is implemented by using JDK1.4.2 powered by
Visualization Tool Kit as the visualization API. The tool attempt to provide
only basic visualization methods for analyzing 4d grid spatio-temporal data. On
the top of calculation engine, we put a simple user interface so that a user can
operate with only a few instructions. In the system a scientist makes desired
2D diagrams, like above-mentioned examples, by dimensionally reduction from
a temporal transitional 3D grid. We suspect that the following three steps are
generally take place for making an desired 2D diagrams from a temporal transi-
tional 3D grid.

Step1: Overview. A user try to observe the overview of temporal transition
of 3D grid data to find any clues about the area of interest, such as scalar value
and time when some characteristic phenomenon occurred. In this step, we apply
volume rendering by applying ray-casting algorithm.

Development of an Interactive Visual Data Mining System 283

Fig. 1. Dimensionally Reduced Diagrams. (a) Temperature diagram which is expressed
X(x, y; z0, t0) where z0 = 850K of potential temperature and t0 = 4nd.Dec.1981. (b)
The time evolution of the ensemble mean anomaly of geopotential height at 500 hPa.

Step2: Detail. Based on the clues found in Step1, the user make further anal-
ysis on the data when and where the characteristic phenomena appeared. In this
step, we apply the following two visualization methods.

1. cross section by three planes paralleled with x, y or z axes respectively.
2. contour by a scalar value

Step3: Analyze the temporal transition. When the user obtains the most
appropriate cross section diagram in step2, he/she proceeds this step to examine
the temporal transition of the diagram. This tool reconstructs the 3D grid by
using the user selection diagram and their transition. For example, suppose one
specifies a diagram X(x, z; y0, t0) in step2, the 3D grid X(x, z, t; y0) are then
constructed. In this step, this tool uses the same methods as the previous step,
and user can generate persuasive time section diagrams.

Fig.2 shows the image capture of this tool. Visualized data in Fig.2 is tem-
perature at 26th September 2002 from European Center for Medium range
Weather Forecasting (ECMWF) forecast model. In this month, sudden strato-
spheric warming phenomena were observed around the North Pole. A sudden
stratospheric warming is an event where the polar vortex of westerly winds in
the Northern winter hemisphere abruptly (i.e. in a few days time) slows down
or even reverses direction, accompanied by a rise of stratospheric temperature
by several tens of degrees Celsius. We attempt to explain this systems user in-
teraction with analyzing these phenomena as a running example.

Fig. 2(a) shows the initial state. When a user tries to open files that are
going to be analyzed, this tool shows the list of file name in the left of pane,
and visualizes the first file by volume rendering. When the user clicks another

284 C. Watanabe et al.

item on the list panel, the selected file is then visualized. ”Next”(or ”Previous”)
button selects the next (or previous) file. If the ”Animation” checkbox is selected,
the selected file will be animated at regular showing the temporal-transition of
the data. This tool has three grid geometries for map the (longitude, latitude)
point to other coordinates by using three kinds of map projection methods; they
are ”cube” by using stereographic cylindrical projection, ”cylinder” by using
orthographic projection and ”sphere” which is like a globe. A user can switch
the grid geometry by the buttons ((*1) in Fig. 2.) The ”capture” button captures
the display and saves it as image file. If the user selects multiple items in file
list, selected files are displayed and captured as image files in order.

We provide two kinds of transfer function for color and opacity (Fig. 3(a)(b)).
The former (Fig. 3(a)) shows all data by constant opacity, the latter (Fig. 3(b))
shows only values in the range which is specified by the user. When the check-
box ”specify the range” is checked, the transfer function is changed to the latter
(Fig. 3(b)) and user can specify the range using the slider ((*2) in Fig. 2). Al-
though such transfer function can be also customized intricately, we just provide
these two transfer functions for the sake of simplicity. In Fig. 3(a) and (b), the
user applies cylinder grid structure to observe the sudden warming phenomena
around the South Pole. Actually, we may be not able to find any feature of the
image due to the fact that it is static snapshot, but we can have further inves-
tigation by looking into sight the motion of the atmosphere if it is displayed by
animation. Fig. 3(b) visualized the temperature between 180k and 200k. The
left image is on 16th. Sep, and the right image is on 25th Sep. We can observe
that the atmosphere, whose temperature ranges between 180k and 200k, is in
the stratosphere above the Antarctica on 16th Sep, and it is then divided two
regions and gets out of the Antarctica on 25th.

Let us have a look at Detail mode. It can be switched by the ”Detail” button
((*3) in Fig. 2(a)). Then the tool proceeds the analyze mode of Step2 (Fig. 2(b)).
In this step, there are three planes each of which is parallel according to one of
X,Y and Z axes. There is also a polygon contoured by a scalar value. There
are four slider volumes to specify the value x0 on the plane X(y,z;x0,t0) ((*3)
in Fig. 2), y0 on the plane X(x, z; y0, t0) ((*4) in Fig. 2), z0 on the plane
X(x, y; z0, t0) ((*5) in Fig. 2)and a scalar value ((*6) in Fig. 2). When the check-
box on the left of each slider is off, the corresponding plane (or the polygon) will
be disappeared. One can capture one of planes and polygon by selecting the ra-
dio button. Fig. 3(c) shows the plane X(x,y ; z0, t0) where z0=20hPa, t0=16th
Sep.(left image) or t0=25th Sep. (right image.) The area with air pressure of
20hPa is about 25km height, and it is in the under part of stratosphere. Since
sudden warming phenomena are generally observed in northern hemisphere, the
case, which is observed in southern hemisphere, is rare and this phenomenon
affected unusual behavior of the Antarctic ozone hole [13].

To proceed to Step 3, a user should select one of the planes and a polygon by
radio button, select several files in the file list, and click the button ”Timesec-
tion”. If the user selects the plane (x, y; z0, t0) where z=20hPa and the 30 files
from 1st. Sep to 30th Sep., the tool reconstructs the 3D grid X(x, y, t; 20hPa)

Development of an Interactive Visual Data Mining System 285

Fig. 2. Captured Image of the prototype tool. (a) The user interface in Step 1, (b) The
user interface in Step 2.

Fig. 3. Visualized ECMWF Temperature Data by Various Methods

by using selected 30 planes. The user interface in this step is almost the same
as in the step 2 except that 3rd slider ((*6) in Fig. 2) specifies t0 on the plane
X(x, y; z0, t0). In this step, one can interactively make two kinds of time-section
diagram, which are X(x, t; y0, z0)andX(y, t; x0, z0). The former is the hovmoeller
diagram described in Section 3. When the user moves the time slider ((*6) in
Fig. 2), the plane X(x, y; z0, t0) is changed and the transition of the plane in
30 days as pseudo-animation. Fig. 3(d) shows contoured polygons by 245K. The
contoured polygons can represent the transition regarding a specified value. We
can observe three sudden worming phenomena are appearing. The two out of
them are small, and the last big one pushes away the low temperature area.

286 C. Watanabe et al.

5 Constructions and Future Works

In this paper we describe the tool for analysis of atmospheric science data using
3D visualization methods with animation. We expect that scientists can utilize
this tool for finding out 2D diagrams from the data by using various 2D or 3D
visualization methods, and become accustomed themselves to 3D visualization
methods. Now we have been released the tool [14]. However please note that
current release is still alpha version and it has still the following limitations:
(1) It covers only scalar value of spatio-temporal 3D grid data. (2) It doesn’t
load enough kinds of file formats. (3) It doesn’t provide enough parameters for
configuration of visualization methods.

As the future works, we are going to gather users feedback to verify the
usability of this system.

References

1. AVS. Co.: AVS: Advanced Visualization Systems,
http://www.avs.com/index wf.html

2. RSI. Co.: IDL The Data Visualization and Analysis Platform,
http://rsinc.com/idl

3. Hibbard, W.: Vis5D, http://www.ssec.wisc.edu/∼billh/vis5d.html
4. Hibbard, W.: VisAD, http://www.ssec.wisc.edu/∼billh/visad.html
5. NASA : Distributed Active Archive Centers (DAACs),

http://nasadaacs.eos.nasa.gov/
6. European Centre for Medium-Range Weather Forecasts(ECMWF),

http://www.ecmwf.int/
7. National Centers for Environmental Prediction(NCEP),

http://www.ncep.noaa.gov/
8. NASA, Goddard DAAC, http://daac.gsfc.nasa.gov/
9. Fayyad, U., Shapiro, P., Smyth, P., Uthurusamy, R.: Advances in Knowledge Dis-

covery and Data Mining, p. 251. MIT Press, Cambridge (1996)
10. Daniel, A.K.: Indormation Visualization and Visual Data Mining. IEEE Transac-

tions on Visualization and Computer Graphics(TVCG) 1, 1–8 (2002)
11. Clouth, S.A., Grahame, N.S., O Neill, A.: Potential vorticity in the stratosphere

devided using date from satellites. Quart. J. Roy. Meteor. Soc. 11, 335–358 (1985)
12. Hovmoeller, E.: The trough-and-ridge diagram. Tellus 1, 62–66 (1949)
13. Baldwin, M.A., Hirooka, T., O Neill, A., Yoden, S.: Major Stratospheric Warming

in the Southern Hemisphere in 2002: Dynamical Aspects of the Ozone Hole Split.
SPARC Newsletter No.20 (2003)

14. http://hpcl.ics.nara-wu.ac.jp/gateau

http://www.avs.com/index_wf.html
http://rsinc.com/idl
 http://www.ssec.wisc.edu/~billh/vis5d.html
http://www.ssec.wisc.edu/~billh/visad.html
http://nasadaacs.eos.nasa.gov/
http://www.ecmwf.int/
http://www.ncep.noaa.gov/
http://daac.gsfc.nasa.gov/
http://hpcl.ics.nara-wu.ac.jp/gateau

A Calculus Effectively Performing Event

Formation with Visualization

Susumu Yamasaki and Mariko Sasakura

Department of Computer Science, Okayama University, Japan
{yamasaki,sasakura}@momo.it.okayama-u.ac.jp

Abstract. As a programming technique, we formulate a calculus of il-
lustrating event formation which is effectively performed. An event is
visualized as a sequence of abstract charts denoting processes. The cal-
culus contains a set of charts related to basic processes, a set of situations,
a semantic function assigning a situation transition to each chart, a logic
program with negation-as-failure, and the integrity constraint on the set
of situations.

1 Introduction

Even in programming methodologies, techniques containing actions ([14]), or
events to cause situations ([11]) are required so that formal methods should be
constructed. This comes primarily from programming in distributed environ-
ments and procedure construction needs in distributed systems.

Such backgrounds cause us have an aim at an event which is a well-ordered
sequence of basic processes, where each basic process consists of some primi-
tive step(s). Each process is supposed to make some situation transition, where
the situation transition(s) must satisfy some condition or constraint of (dis-
tributed) environments. As event formations, we can design procedures of use
in distributed environments by which action, learning, planning and intelligent
behaviour are implemented. For the event formation, we formulate a formal cal-
culus of illustrating it as follows.

(1) The calculus supposedly contains the charts each of which contains a process
of primitives.

(2) The ordering of charts is required to make an event performance.
(3) The chart causes a situation transition, where predecessor and/or successor

feasibility of charts is described by some logical relations of propositions.
(4) An event performance is requested to satisfy some constraint of environ-

ments, which is semi-decidable.

In this paper, the event formation is to have a well-ordered sequence of charts
so that it is requested for visualization.

The paper is organized as follows. Section 2 describes a formal calculus of
illustrating an event formation. Section 3 is concerned with soundness of the
procedure for the calculus. An event formation procedure is also given. In Sect.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 287–294, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 S. Yamasaki and M. Sasakura

4, the event formation procedure is analysed for the visualization technique of
events. The event formation is implemented and an event is visualized. Section
5 suggests related topics and future works.

2 A Calculus Forming Events

In this section, we have a calculus for event formation. The calculus is a pro-
gramming model to effectively perform an event of template charts for processes
in order, with the visualization of events.

A calculus of illustrating event formation is a quintuplet

� = (C, Σ, Sem, P, I),

where:

(i) C is a set of action charts, and Cnot = {not x | x ∈ C}.
(ii) Σ is a set of situations.
(iii) Sem: C → Σ → Σ is a semantic injective function.
(iv) P ⊆ C × (C ∪ Cnot)∗ is a propositional logic program with negation-as-

failure.
(v) I ⊆ Σ×Σ is an integrity constraint relation which is recursively enumerable.

We adopt the following notations.

(a) A clause of the program set P is written as

x ← x1, . . . , xl, not y1, . . . , not ym.

(b) A goal set Goal ⊆ (C ∪ Cnot)∗ is needed, where its member (that is, a goal)
is expressed as ← y1, . . . , ym, not z1, . . . , not zn.

(c) A function Sem−1 : C → Σ → Σ is defined for the function Sem such that

Sem[[x]]σ1 = σ2 ⇔ Sem−1[[x]]σ2 = σ1.

(d) The relation I is represented in infix notation like:

σ1 ⇒I σ2 to denote (σ1, σ2) ∈ I.

Procedure for the program P :
Extending the notion in [10], we define the procedure as the least set closure satis-
fying the following rules, on the assumption that a calculus � = (C, Σ, Sem, P, I)
is given.

(1)
moveP (�; σ; σ)

(2) (A ← G) ∈ P moveP (← G; σ1; Sem−1[[A]]σ2) Sem−1[[A]]σ2 ⇒I σ2
moveP (← A; σ1; σ2)

(3) failureP (← A)
moveP (← not A; σ; σ)

(4) No clause A ← G with A head is in P
failureP (← A)

A Calculus Effectively Performing Event Formation with Visualization 289

(5) For all A ← G failureP (← G)
failureP (← A)

(6) moveP (← A; σ1; σ2)
failureP (← not A)

(I) moveP (← G1; σ1; σ2) moveP (← G2; σ2; σ3)
moveP (← G1, G2; σ1; σ3)

(II) failureP (← G)
failureP (← G1, G, G2)

3 Soundness of Event Formation

Semantics of an event is defined by the following definition.

Definition 1. The semantic function Sem is extended to be Sem : C∗ → Σ →
Σ by

(1) Sem[[ε]]σ = σ.
(2) sem[[γx]]σ = Sem[[x]](Sem[[γ]]σ) (x ∈ C, γ ∈ C∗).

The procedure for the program P in a calculus � is consistent in the sense as
follows. This is in accordance with model theory in logic programs with negation-
as-failure ([5,23,24,26]).

Theorem 1. Assume that moveP (← A; σ1; σ2) for some σ1, σ2 ∈ Σ. Then there
is no case that failureP (← A).

Proof. (1) Assume that we have both moveP (← A; σ1; σ2) and failP (← A).
By the rules (2) and (5), there exists a clause A ← G in P such that moveP (←
G; σ1; Sem−1[[A]]σ2) and failureP (← G). For the relation failureP (← G), there
is either some atom B included in the sequence G, or a negation not B such that

(i) failureP (← B), or
(ii) failureP (← not B), that is, moveP (← B; σ3; σ4).

Note that moveP (← G; σ1; Sem−1[[A]]σ2). In accordance with case of (i), moveP

(← B; σ′
1; σ

′
2) for some σ′

1, σ′
2. In accordance with case of (ii), moveP (← not B;

σ′
3; σ′

3). That is, failureP (← B). Therefore there is some atom B such that we
have both moveP (← B; ρ1; ρ2) for some ρ1, ρ2, and failureP (← B).
(2) By the same discussion of (1), if we assume that we have both moveP (←
C; ξ1; ξ2) and failureP (← C) for some atom C, then there is some atom D such
that we have both moveP (← D; η1; η2) and failureP (← D).
(3) By the reasons (1) and (2), we finally find a sequence of atoms which contains
more than one occurrence of the atom A, or an infinite sequence. However, this
contradicts the first assumption of the relation moveP (← A; σ1; σ2), because
the relation cannot be reduced to the form moveP (�; σ; σ) by any way. This
contradiction comes from the first assumption, so that the theorem holds.

290 S. Yamasaki and M. Sasakura

Assume a calculus � = (C, Σ, Sem, P, I). We need the procedure to form an
event, which is defined as a nondeterministic method.

Event formation with respect to the integrity constraint I:

EventI(← G; σ1; σ2)
⇐ if ← G = �

then
if σ1 = σ2 then ε (empty sequence)

else
if G = G′, A such that A ← G′′ is in P
then

if Sem−1[[A]]σ2 ⇒I σ2
then EventI(← G′, G′′; σ1; Sem−1[[A]]σ2)A

else EventI(← G′; σ1; σ2)

By means of the above procedure EventI , we can have an event formation for
the relation moveP (← A; σ1; σ2).

Theorem 2. Assume that moveP (← G; σ1; σ2) for some σ1, σ2 ∈ Σ. Then
∃β ∈ Σ∗.[Sem[[β]]σ1 = σ2].

Proof. Assume that moveP (← G; σ1; σ2) for some σ1, σ2 ∈ Σ. Take the proce-
dure for events. By structural induction on the goal, we see that if EventI(←
G; σ1; σ2) = γ, then Sem[[γ]]σ1 = σ2.
(1) If ← G = �, then σ1 = σ2 so that Sem[[ε]]σ1 = σ1.
(2) If ← G =← G′, A for some atom A and moveP (← G′, A; σ1; σ2), then we
must assume that for some G′′

moveP (← G′, G′′; σ1; Sem−1[[A]]σ2).

Assume that EventI(← G′, G′′; σ1; Sem−1[[A]]σ2) = γ′, and that

Sem[[γ′]]σ1 = Sem−1[[A]]σ2.

By the procedure, EventI(← G; σ1; σ2) = γ′A. It follows that

Sem[[γ′A]]σ1 = Sem[[A]](Sem−1[[A]]σ2) = σ2.

(3) If ← G =← G′, not A for some atom A and moveP (← G′, not A; σ1; σ2),
then we must assume that failureP (← A) and moveP (← G′; σ1; σ2). Assume as
induction hypothesis that EventI(← G′; σ1; σ2) = γ′, and that Sem[[γ′]]σ1 = σ2.
In this case, EventI(← G; σ1; σ2) = γ′. It concludes this case.

4 Event Formation and Visualization

We are now supposed to have the calculus � = (C, Σ, Sem, P, I). To visualize
the event (the sequence of charts) by means of the event formation EventI , we
recursively implement two derivations each of which includes each other.

A Calculus Effectively Performing Event Formation with Visualization 291

(1) The event formation derivation caused by the relation moveP :
(a) When EventI(← G; σ1; σ2) is replaced by

EventI(← G′, G′′; σ1; Sem−1[[A]]σ2)A,
the concentric circle for the goal ← G′, G′′ is described inside the con-
centric circle for the goal ← G. The chart A is stored into the pushdown
stack to denote a (partially completed) event.

(b) When EventI(← G; σ1; σ2) is, for the equivalent goal ← G′, not A, re-
placed by EventI(← G′; σ1; σ2) after the negation-as-failure derivation
caused by the relation failureP (← A), the formation derivation is re-
cursively adopted for EventI(← G′).

(c) After EventI(�; σ; σ) is finally implemented, the pushdown stack de-
notes the event.

(2) The negation-as-failure derivation caused by the relation failureP :
(a) The derivation is implementable by means of the procedure rules (4) and

(5).
(b) The derivation is implementable by means of the procedure rule (6)

such that the event formation derivation backs the negation-as-failure
derivation.

Example 1. Take a calculus

� = ({w, x, y, z}, {σ1, σ2, σ3}, Sem, P, I),

where:

(i) The program P contains:
x ← not w
y ←
z ← x, y

(ii) The function Sem assigns the transition of situations to each chart:

Sem[[w]]σ1 = σ3
Sem[[x]]σ1 = σ2
Sem[[y]]σ2 = σ2
Sem[[z]]σ2 = σ3

(iii) σ1 ⇒I σ2, σ2 ⇒I σ2, and σ2 ⇒I σ3.

We see that EventI(← z; σ1; σ2) = xyz for:

moveP (�; σ1; σ1)
moveP (← not w; σ1; σ1) (by failureP (← w))
moveP (← x; σ1; σ2)
moveP (�; σ1; σ2)
moveP (← y; σ2; σ2)
moveP (← x, y; σ1; σ2)
moveP (← z; σ1; σ3)

The implementation to form an event xyz is supported as in [20,21] (involving
some ideas of [1,8]), such that it is shown in Fig. 1, where the situation transition
is omitted.

292 S. Yamasaki and M. Sasakura

(1) The left-hand side (concentric) circle denotes the goal ← z, where the already
formed event is regarded as the empty. There is no demonstration of its
emptiness.

(2) By the right-hand side concentric circles with the innermost circle for the
goal �, we denote the transitions of the goals

← z; ← x, y; ← x; ← not w; �,

where the negation-as-failure “not” is expressed by the symbol “∼”. The
event formed by the goal transitions is a sequence xyz of charts, which is
demonstrated by “XYZ”.

To visualize a concentric circle with an event, we take some hierarchical struc-
ture caused by the mutual recursion of event formation and negation-as-failure
derivations, where such hierarchical structures are implicit and not displayed.
See [6,17,21,22] for hierarchical structures. As regards the Web-interface in man-
agement task domain, another way of visualization is taken in [9]. The way is
feasible for the present event formation.

Fig. 1. Event formation evoked by the goal ← z

5 Concluding Remarks

As programming techniques, the calculus is formulated to illustrate and effec-
tively perform event formation for abstraction of action, learning, planning and
intelligent behaviour. For the presented calculus, the situation calculus as in [18]
may be relevant.

The calculus is itself a way for distributed environments. To be more com-
plex, a concurrent system containing calculi of this paper may be formulated so
that the chart or its name can be transferred among communicating calculi. In
the context of its extension, the calculus needs to involve distributed program-
ming by means of chart communication. Apart from the established agent and

A Calculus Effectively Performing Event Formation with Visualization 293

distributed systems as in [3,4,13,15,16], the concurrent system of calculi may
contain problems to be solved. A technique for distributed programming as in
[19] may be denoted to one of the solutions.

We are now examining whether the present calculus could be a basis frame-
work for specification designs. The logical approaches to the specification are
made with reference to the Z language, as in [2,7,12]. In the present calculus, we
must design

(1) the process or the procedure assigned to each chart
(2) the logical relation among the charts
(3) the situation transition which a chart causes
(4) the integrity constraint on the situation set

On the basis of the design, we can effectively form an event for the specified goal
with the situation transition, as long as the event must exist.

If we prefer to a more expressive system, the logical relation among the charts
may be defined in the first-order logic, so that the event formation must need
higher-order computing.

As an application, we can consider some managing scheme of event forming,
which differs from the producer-consumer adjustment as in [25]. As another
application, the event formation is regarded as a process of learning and training
so that it may be means for e-learning:

(a) It is needed to learn the chart by assigned basic process of primitive steps
(b) Formation of a sequence of charts is just an event for a requirement under

the integrity constraint on the situations.

References

1. Battista, G.D., Eades, P., Tamassi, R., Tollis, I.G.: Graph Drawing. Prentice Hall,
Englewood Cliffs (1999)

2. Burke, E., Foxley, E.: Logic and Its Application. Prentice-Hall, Englewood Cliffs
(1996)

3. Bruns, G.: Distributed Systems Analysis with CCS. Prentice-Hall, Englewood Cliffs
(1996)

4. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and com-
petition in ALIAS: a logical framework for agents that negotiate. Annals of Math-
ematics and Artificial Intelligence 37, 65–91 (2003)

5. Dung, P.M.: An argumentation-theoretic foundation for logic programming. J. of
Logic Programming 22, 151–177 (1995)

6. Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S.C.
(ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)

7. Galloway, A.J., Stoddart, W.J.: An operational semantics for ZCCS. In: Proc.
of IEEE International Conference on Formal Engineering Methods, pp. 272–282
(1997)

8. Harel, D.: On visual formalisms. CACM 31(5), 514–530 (1988)
9. Iwata, K., Sasakura, M., Yamasaki, S.: Visualization for management of electronics

product composition. In: Proc. of 9th International Conference on Information
Visualization IV 2005, pp. 194–199 (2005)

294 S. Yamasaki and M. Sasakura

10. Kunen, K.: Signed data dependencies in logic programs. J. of Logic Programming 7,
231–245 (1989)

11. Kowalski, R.A.: Database updates in the event calculus. J. of Logic Program-
ming 12, 121–146 (1992)

12. Mahony, B., Dong, J.S.: Timed communicating object Z. IEEE Trans. on Software
Engineering 26(2), 150–177 (2000)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Mosses, P.M.: Action Semantics. Cambridge University (1992)
15. Nielson, F. (ed.): ML with Concurrency, Monograph in Computer Science.

Springer, Heidelberg (1996)
16. Pereira, P.M., Nasr, R.: DELTA–PROLOG: A distributed logic programming lan-

guage. In: Proceedings of the International Conference on Fifth Generation Com-
puter Systems, pp. 283–291 (1984)

17. Raitner, M.: HGV: A library for hierarchies, graphs and views. In: Goodrich, M.T.,
Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 236–243. Springer, Heidel-
berg (2002)

18. Reiter, R.: Knowledge in Action. The MIT Press, Cambridge (2001)
19. Sasakura, M., Yamasaki, S.: An application of Nara View to reasonings for dis-

tributed logic programs. In: Proc. of 2003 International Conference on Distributed
Processing Techniques and Applications, Las Vegas, vol. 3, pp. 1099–1105 (2003)

20. Sasakura, M., Yamasaki, S.: An explanation reasoning procedure applicable to loop
transformation in compiler. In: Proc. of ACM ESEC/FSE International Workshop
on Intelligent Technologies for Software Engineering (WITSE 2003), Helsinki, pp.
34–39 (2003)

21. Sasakura, M., Yamasaki, S.: Visualization with hierarchically structured trees for
an explanation reasoning system. In: Proc. of 8th International Conference on
Information Visualization IV 2004, London, pp. 893–898 (2004)

22. Teoh, S.T., Ma, K.-L.: RINGS: A technique for visualizing large hierarchies. In:
Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 268–275.
Springer, Heidelberg (2002)

23. Van Gelder, A.: The alternating fixpoint of logic programs with negation. J. of
Computer and System Sciences 47, 185–221 (1993)

24. Yamasaki, S., Kurose, Y.: A sound and complete proof procedure for a general logic
program in no-floundering derivations with respect to the 3-valued stable model
semantics. Theoretical Computer Science 266, 489–512 (2001)

25. Yamasaki, S., Iwata, K., Sasakura, M.: Reasoning procedure and implementation
for logic programs as managing schemes to extract demand. IPSI Trans. on Ad-
vanced Research 1(1), 83–90 (2005)

26. You, J.-H., Yuan, L.Y.: On the equivalence of semantics for normal logic programs.
J. of Logic Programming 22, 211–222 (1995)

A Similarity Evaluation Method for Volume

Data Sets by Using Critical Point Graph

Tomoki Minami, Koji Sakai, and Koji Koyamada

Kyoto University Graduate School of Engineering, Department of Electrical
Engineering, Yoshidanihonmatsutyo, Sakyo-ku, Kyoto city, Kyoto, Japan

{sakai,koyamada}@mbox.kudpc.kyoto-u.ac.jp

Abstract. The ever increasing use of computer simulation has propor-
tionately increased the demands for an efficient method for classification
of a large amount of computational results or for searching an arbitrary
data set in a given database. In order to classify or to search for a com-
putational simulation result, it is necessary to evaluate the similarity
between a given data in respect to the reference data in a database.
A similarity estimation method which employs ”Critical Point Graph
(CPG)” as an index has proven effective, however this method does not
support transformation operations such as rotation or scaling. In this pa-
per, we propose a CPG-based similarity estimation method supporting
both rotation and scaling transformations for two and three dimensional
scalar data sets (volume data sets). We could confirm its effectiveness,
and also proved superior to the traditional Contour Tree (CT) based
matching technique which uses affine-invariant metrics. Some discussion
about the proper use of these matching techniques is also presented to
clarify the advantages and disadvantages.

1 Introduction

Advances in computational power of commodity computers have enabled com-
puter simulations to employ high accuracy models, making computer simulation
use wide-spread in a variety of fields. Additionally, numerical data generated
from these simula-tions has become proportionately larger and more complex.
In order to handle this ever increasing size and quantity of numerical simula-
tion results, an effective method-ology for classification in a database or for on
demand searching is now required. Such a methodology needs a technique for
evaluating the similarity between a requested volume data and a given reference
data. Over the past years, a considerable number of studies have been conducted
on the database systems which are intended for handling three dimensional ob-
jects in Virtual Reality (VR) environment[1]. However, in gen-eral, the size of
volume data is larger than that of 3D surface objects. Therefore, when a system
evaluates the similarity between two given volume data sets, its computa-tional
cost tends to be very high.

To overcome this problem, classification and searching methods which use
”Critical Point Graphs (CPGs)” as classification or searching index have re-
ceived increasing attention. CPGs are generated by connecting critical points

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 295–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

296 T. Minami, K. Sakai, and K. Koyamada

through the gradient fields[2]. The size of a CPG is considerably small when
compared with the original volume data size, and is thus effective as a classi-
fication index of volume data. In this paper, we propose a CPG-based method
for evaluating the similarity between two volume data sets. Our algorithm uses
the ”Passed Cell Matching” technique. Passed cell refers to the cells which are
passed through the streamlines which connect critical points. We enhanced the
original algorithm in order to handle affine transformations. We have confirmed
its effectiveness also by comparing with the traditional Counter Tree (CT)[3]
based matching technique which uses affine-invariant metrics. Advantages and
disadvantages when using these matching techniques are also verified.

In Section 2, we present some related similarity estimation techniques for
volume data sets. In Section 3, we will explain our proposed method which
enables rotational transformation and scaling of volume data. Section 4 describes
the experiment of simi-larity evaluation and a comparison with the CT-based
method. Section 5 discusses the experimental results and finally we summarize
showing some future directions in Sec-tion 6.

2 Background

In this section, we present some of the similarity evaluation methods for scalar
data sets in both two and three dimensions which have been proposed so far. The
Contour Tree (CT) based method was firstly introduced by Boyell and Ruston[4].
They sum-marized the evolution of contours on a map. Freeman and Morse also
used CT-based technique to find terrain profiles in a contour map[5]. The basic
algorithm of CT was detailed by Carr et al. in [3]. CT is a graph that tracks
contours of the level set as they split, join, appear, and disappear. The similarity
evaluation method is based on com-parison between CTs generated from data
sets.

Another method which uses Reeb Graph as an index was proposed by Hilaga
et al. [6]. In this technique, the similarity between polyhedral models is quickly,
accurately, and automatically calculated by comparing Multi-resolutional Reeb
Graphs (MRG). Because this method premises on the Morse function, a per-
turbation on the data value is needed, and therefore changes the original data
slightly. In addition, this method connects the critical points (CPs) by lines, thus
the information between CPs is not preserved, and is therefore not reflected in
the calculation of the similarity.

In the field of fingerprint recognition, there is a Minutia-based method which
is de-tailed in [7,8]. This method estimates the characteristic points (Minutia)
inside fin-gerprint images. The similarity between two fingerprint images is esti-
mated by compar-ing the minutias. This technique can only handle two dimen-
sional images, therefore an enhancement is required for handling three dimen-
sional data sets.

A Similarity Evaluation Method for Volume Data Sets 297

3 Proposed Method Using CPG

Our proposed method uses critical point graph (CPG). In this section, we de-
scribe the CPG generation, transformation (rotation and scaling), and the CPG-
based simi-larity estimation processes.

3.1 Critical Point Graph (CPG)

In this paper, we briefly describe CPG, and more detailed information can be
found in [2]. CPG is composed of critical points (CPs) and streamlines which
are drawn from points close to CPs in a given field. CPG has been widely used
as a method to describe topology of a given field.

Streamlines are tangent to the vectors defined in each given point. In a scalar
field, vector can be defined as the gradient of each point. In a tensor field, vector
can be defined as the principle direction of the eigenvalue vector of each point.
The stream-lines are drawn from points close to CPs. An example of CPG is
depicted in Figure 1.

Fig. 1. An example of Critical Point Graph (CPG)

3.2 Proposed Algorithm

Our proposed method enables rotation and scaling transformation of input vol-
ume data sets. In order to achieve this, we used normalization for input volume
data. The simplified flowchart of the proposed algorithm is described in Figure 2.

Because of the inherent difficulty in illustrating and explaining the behavior of
our proposed similarity evaluation method in 3D, we will explain our algorithm
applied to a 2D field. The extension to 3D is straightforward.

(1) Read Data
Our method assumes input data as scalar volume data sets defined on rect-
angular grid.

(2) Calculate Critical Points
This stage calculates the CPs from the input scalar volume data. CPs have
coordi-nate information which are used for normalization.

298 T. Minami, K. Sakai, and K. Koyamada

Fig. 2. Flowchart of the Proposed Algorithm

(3) Transformation and Normalization of the input data
This stage transforms and normalizes a given input volume data based on
the CPs calculated in (2). Our technique handles transformations such as
rotation and scaling. In this version, we are not concerned about symmetrical
data such as mirror images. Normalization step consists of three stages which
are described as follows:
(a) Parallel translation of the input data

In order to handle rotation, our algorithm normalizes the rotation angle
of input data by setting a center of rotation. Our algorithm uses the
center of gravity of CPs as the center of rotation. In addition, a parallel
translation of input data is also carried out, thus the center of gravity
may be set to the origin of the world coordinate system.

(b) Normalization by using rotation
This stage calculates the rotation angle necessary for normalizing the
input volume data. A rotation angle is derived by using the principal
component analysis. The vector of the largest principal component is cal-
culated from CP coordinates. After that, it calculates the angle between
the vector of the largest principal component and the horizontal axis of
world coordinate system. Finally, the angle of rotational transforma-tion
is calculated and the input volume data is transformed using this angle.
In three dimensions, this stage requires the use of three orthogonal axes
for rotation.
In (a) and (b), the input data is normalized by using rotational trans-
formation.

(c) Normalization in scale
This stage normalizes the input data in scale. The farthest distance R
from the origin of the world coordinate system is obtained from CP
coordinates. After that, the scaling ratio is defined as 1/R. Based on
this ratio, the input volume data is normalized.

A Similarity Evaluation Method for Volume Data Sets 299

(4) Calculate starting points of streamlines
It is defined that streamlines are tangent to vector in each point. However,
CPs has zero length vectors as definition. As a consequence, a CP can not
be the starting point of streamline calculation. Thus, the starting points are
defined as points slightly moved from CPs in the direction of the eigenvector
of the CPs. In 3D, six different starting points are taken into account for
starting the streamline generation.

(5) Calculate streamlines
The streamlines are traced along the vector of the input field from starting
point to the point at boundary of data space. Streamlines are drawn until the
size of vector becomes near zero or the lines come sufficiently close enough
to another CP. From this, we can say that the streamlines represent vaguely
the topology of a given input volume data.

(6) Calculate Similarity
In the previous steps, CPG is generated from a given input volume data. In
this step, we calculate a similarity between two volume data using CPG as
an index for similarity evaluation. CPG will be distributed in the normalized
range of each axis in the world coordinate system due to the normalization
of input data. The resolution of each axis can be decided by the user. After
that, this step calculates streamlines wherever they pass.

Finally, we calculate the similarity by comparing the cells passed by the
streamlines in both input data. Figure 3depicts a sample image when compar-
ing two different data sets. Two different data named A and B were used for
this comparison. In Figure 3 red cells show the cells which both streamlines
pass through. Green and yellow cells are assigned to streamlines which only pass
through cells in data A and B, respectively.

We have defined the similarity S as follows.

S = ab/(a + b + ab) (1)

where a and b are the quantity of cells which are passed by streamlines of only
data A and B, respectively. On the other hand, ab means the number of cells
which are passed by a streamline in both data A and B.

4 Evaluation

4.1 Comparison Using CPG-Based Method

We evaluated our proposal method by using both two and three dimensional
data sets. We used a global daily average air pressure level data set supplied by
National Center of Environmental Prediction (NCEP)[9] (Figure 1) as examples
of two dimen-sional data. We used a set of fifty images for the evaluating the
degree of similarity. These images were selected randomly from a whole set of
365 images of the year 1993. We estimated the similarity between each pair of
images mutually for all of fifty data sets. We estimated the similarity between

300 T. Minami, K. Sakai, and K. Koyamada

Fig. 3. Example of a Similarity Comparison by using Streamlines

both different and same data sets. The result of these similarity estimations are
described in Figure 4 (a). From the obtained results, we can divide them into
two distinct groups which indicate different degree of similar-ity. The group in
the left (which indicates similarity lower than 0.42) is composed of comparisons
executed between different data sets. On the other hand, the group in the right
is composed of the results when comparing same data sets. In order to verify
the ability for handling rotational and scaling transformations, we prepared an
additional set of 36 images generated by adding some rotation and scaling to
a particular data. We estimated the similarity by using a combination of all of
these 36 sample images. The result of this comparison is described in Figure 4
(b). We can verify from these obtained results that the similarity evaluation
is not influenced by the rotation and scaling in two dimensional fields. As an
example of three dimensional data, we used the fluid simulation result of wa-ter
which is depicted in Figure 5. We obtained a low degree of similarity (under 0.5)
as a result of similarity evaluation when using different volume data sets. On the
other hand, we obtained higher degree of similarity (near 1.0) when comparing
same volume data sets. In order to verify that our proposed method can handle
rotational transformation and also scaling, we generated an additional volume
data by adding some rotation and scaling (Figure 5). We could also obtain a
high degree of similarity (near 1.0) even when comparing these kind of volume
data (with added transformation).

4.2 Comparison between CPG and CT-Based Matching Techniques

We conducted a comparison between the proposed CPG-based and the CT-based
matching technique which uses affine-invariant metrics. In addition, a detailed
study of how these matching techniques can be properly used has also been
conducted.

A Similarity Evaluation Method for Volume Data Sets 301

Fig. 4. Histogram of the similarity evaluation (a) On the left is the histogram of sim-
ilarity between 50 sample data sets. (b) On the right is the histogram of similarity
between 36 sample data sets after rotation and scaling.

Fig. 5. A sample of utilized 3D volume data

CT-based Similarity Evaluation. Contour tree generation algorithm is de-
tailed in [3]. An example of CT is shown in figure 6. However, the evaluation
method by using CT is not documented. Therefore we use the ”Elastic Match-
ing” technique for minimizing the cost between saddle points of two Contour
Trees. The cost is defined using information of saddle points of CT, scalar value
of saddle, connection information, and information of parent of child nodes. As
the purpose of this paper is concerned, it is not necessary to discuss the way to
evaluate similarity between CTs in detail. An important point to emphasize is
that CT-based similarity evaluation technique is affine-invariant metric.

Comparison of CPG and CT-based methods. In order to verify the perfor-
mance difference between CPG and CT-based similarity evaluation methods, we
have evaluated them by using several two dimensional sample data. The utilized
data are shown below:

Data A: Global daily average air pressure data of 1/1/1993 (Figure 1).
Data B: Data A rotated 90 degrees.

302 T. Minami, K. Sakai, and K. Koyamada

Fig. 6. Example of Contour Tree (in the right)

Data C: Symmetrical data of data A.
Data D: Data A with scalar values reduced to half.

We evaluated the degrees of similarity between the Data A and other data.
Firstly, we evaluated the degree of similarity between Data A and B. By using
the proposed CPG-based method, we obtained a similarity of 1.0. By using CT-
based method, we also obtained a similarity of 1.0. From this result, we verified
that both techniques can handle efficiently rotational transformation. Secondly,
we evaluated the degree of similarity between Data A and C. By using CPG-
based method, we obtained a similarity of 0.316. However, when using CT-based
method, we obtained a similarity of 1.0. From this result, we verified that our
proposed CPG-based method can classify a symmetric data because CPG use
coordinate infor-mation of streamlines. Finally, we evaluated the degree of sim-
ilarity between Data A and D. By using CPG-based method, we obtained a
similarity of 1.0. However, when using CT-based method, we obtained a similar-
ity under 0.01. From this result, we verified that CT-based method can recognize
general shifts of scalar values because CT stores the sca-lar values of CPs.

5 Discussion

We can verify from figure 4 (a) that a similarity can be clearly classified into
two distinct groups when comparing two of the same data set or two different
data sets. This result clearly shows that we can effectively retrieve an objective
data from a given database. In addition, this method provides more information
facilitating the building of a data retrieval system. The main goal of our proposed
method is to handle affine transformation such as translation. From figure 4 (a),
we can recognize that our method can efficiently handle such affine translation.
The experiment was conducted by calculating the degree of similarity in respect
to data generated by rotating and scaling the original. The experi-mental results

A Similarity Evaluation Method for Volume Data Sets 303

show that our method can verify a high degree of similarity between these pairs
of data. We think calculation errors such as rounding errors are the main cause
for not achieving 100% (or 1 in the 0 to 1 scale) of similarity. The proposed
method evaluates a similarity by comparing the cells which stream-lines pass
through. For this reason, there is also a possibility of some streamlines, espe-cially
those passing in the boundaries of the cells, influencing the similarity evaluation.
However, even considering all these affecting influences the error margin can be
kept small, in the order of 0.05. Therefore, even when some errors are taken
into considera-tion, it is reasonable to suppose that this proposed method can
efficiently handle affine translation. In three dimensions, the same thing can be
said. Our proposed CPG-based method has both advantage and disadvantage.
The ad-vantage is that CPG-based method can efficiently classify symmetrical
data. For in-stance, in three dimensions, symmetrical mirror isomers of proteins
which have both L and D-isomers can divide each other efficiently. However,
CT-based methods can not handle such divisions. The disadvantage is that our
method can not recognize parallel shifts of scalar values. This is caused by the
fact that scalar value is not used in com-parisons between CPGs.

6 Conclusions

We proposed a method to evaluate the similarities between two given volume
data sets. Our proposed method permits rotational transformation and scal-
ing of input vol-ume data sets. We evaluated our method by using 50 different
data sets and the excel-lent results lead us to the conclusion that our proposed
method can sufficiently handle rotational transformation and scaling. In addi-
tion, our method has proven highly in-formative for showing the degree of sim-
ilarity. Moreover, the advantages and disad-vantages of applying our proposed
method are made clear when compared to the tradi-tional CT-based method.
Future works include the handling of mirror symmetry and a study on more ac-
curate similarity evaluation methods. In addition, further comparison between
other correlated evaluation techniques is also being considered.

References

1. Suzuki, M.T.: A Dynamic Programming Approach to Search Similar Portions of
3D Models. The World Scientific Engineering Academy and Society Transaction on
SYSTEMS 3(1), 125–132 (2004)

2. Sakai, K., et al.: Classifying Scalar Field by using Critical Point Graph. In: The
10th International Symposium on Flow Visualization, F326 (2002)

3. Carr, H., et al.: Classifying Scalar Field by using Critical Point Graph. In: The 10th
International Symposium. Computing contour trees in all dimensions, Computa-
tional Geometry, vol. 24, pp. 75–94 (2003)

4. Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. IEEE
Proceedings Fall Joint Computer Conference 63, 445–458 (1963)

304 T. Minami, K. Sakai, and K. Koyamada

5. Freeman, H., Morse, S.: On searching a contour map for a given terrain elevation
profile. J.Franklin Institute 284(1), 1–25 (1967)

6. Hilaga, M., et al.: Topology Matching for Fully Automatic Similarity Estimation.
In: ACM SIGGRAPH 2001, Los Angeles, CA, USA, 12-17 August 2001, pp. 203–212
(2001)

7. Maltoni, D., et al.: Handbook of Fingerprint Recognition. Springer, Heidelberg
(2003)

8. Kovacs-Vajna, S.M.: A Fingerprint Verification System Based on Triangular Match-
ing and Dynamic Time Warping. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 22, 1266–1276 (2004)

9. http://cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml

http://cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml

Hybrid Parallelization and Flat Parallelization in

HPF (High Performance Fortran)

Yasuharu Hayashi and Kenji Suehiro

1st Computers Software Division, NEC Corporation, 1-10 Nisshin-cho, Fuchu-City,
Tokyo, Japan

Abstract. We have developed the HPF (High Performance Fortran)
compiler HPF/SX V2 as an interface for distributed memory parallel
programming. HPF is a de facto standard language for parallel programs.
It is possible to write parallel programs just by inserting comment di-
rectives into existing serial Fortran programs in HPF. This paper treats
two parallelization methods in the HPF/SX V2 on an SMP (Symmetric
Multiprocessor) cluster system, each node of which is built by connecting
multiple vector PEs (Processor Elements) with a shared memory. The
one is hybrid parallelization, which consists of vectorization on a PE,
multi-thread parallelization within a node, and distributed memory par-
allelization across nodes. The other is flat parallelization, which consists
of vectorization and distributed memory parallelization. We compare hy-
brid parallelization with flat parallelization by evaluating several typical
codes. The result shows that hybrid parallelization is particularly bene-
ficial, when reduction of memory is expected.

1 Introduction

In recent years, the increasing demand for computational power in scientific,
technological, and industrial fields has made mainstream supercomputers multi-
node systems. This trend forces users to write distributed memory parallel pro-
grams to take full advantage of supercomputers, because a multi-node system
is a kind of distributed memory system that is made up of many single-node
systems connected via a high-speed network.

There are three troublesome tasks in distributed memory parallel program-
ming: data mapping, computation partitioning, and communication. HPF (High
Performance Fortran) is a parallel programming language defined by HPFF
(High Performance Fortran Forum) to enable users to write parallel programs
easily. In HPF programming, what users mainly have to do in the tasks above
is to specify data mapping just by inserting comment directives that designate
how to map data onto processors into existing serial Fortran programs. The other
two tasks, computation partitioning and communication, are automatically per-
formed by a compiler. This characteristic of HPF enables developers of parallel
programming to write and maintain parallel programs easily.

NEC’s supercomputer SX series provide the HPF compiler HPF/SX V2. This
paper describes two parallelization methods, hybrid parallelization and flat par-
allelization, in the HPF/SX V2. We show that hybrid parallelization is useful

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 305–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 Y. Hayashi and K. Suehiro

for reduction of memory. Reduction of memory is important to solve larger-
scale problems, especially in distributed memory parallel programming, because
replicated data are usually allocated in equal number to processes.

2 Hybrid Parallelization and Flat Parallelization

2.1 Parallelization in the HPF/SX V2

The HPF/SX V2 conforms to the HPF 2.0 specification [1]. The HPF/SX V2
also supports the major specifications in the HPF Approved Extensions and the
HPF/JA 1.0 [2], which include functions for managing computation partitioning
and communication. Moreover, unique extensions, such as HALO [3][4], suitable
for problems that contain irregular access patterns, such as FEM (Finite Ele-
ment Method), are available in the HPF/SX V2. Advanced users can improve
programs step by step by inserting directives for computation partitioning and
communication, in addition to directives for data mapping, or by rewriting a
part of a program using MPI (Message Passing Interface), to tune the program
ultimately in the HPF/SX V2.

The HPF/SX V2 is a source-to-source translator that inputs HPF source pro-
grams and outputs parallelized SPMD (Single Program Multiple Data) Fortran
programs. At first, the HPF/SX V2 allocates data among abstract processors,
each of which is a logical processor and the unit of parallelization in HPF, ac-
cording to the data mapping directives specified by users. Then the HPF/SX V2
judges if each loop can be parallelized, and it divides the iterations of the paral-
lelizable loops among abstract processors so that the occurrence of data access to
remote abstract processors is minimized. The HPF/SX V2 finally generates par-
allelized Fortran programs with the invocations of the run-time libraries, which
mainly take charge of communication with MPI. Following translation by the
HPF/SX V2, the back-end Fortran compiler performs automatic multi-thread
parallelization and vectorization, and generates executable programs. Users can
also insert directives for multi-thread parallelization and vectorization into HPF
programs.

The SX series are offered as single-node and multi-node systems. The single-
node system is built by connecting multiple vector PEs (Processor Elements)
with a shared memory. The multi-node system is an SMP (Symmetric Multi-
processor) cluster composed of multiple single-node systems connected with the
IXS (Internode Crossbar Switch).

In the HPF/SX V2, abstract processors, each of which is the unit of par-
allelization in HPF, have one-to-one correspondence with processes, and MPI
libraries are invoked for inter-process communication. Users can choose whether
each process corresponds to a node or a PE, with specification at execution-time.

When a process corresponds to a node, parallelization by the HPF/SX V2
is performed on inter-node; and multi-thread parallelization within a node

Hybrid Parallelization and Flat Parallelization in HPF 307

HPF Parallelization

Network (Inter-node Crossbar Switch)

Memory
Multi-Thread Parallelization

Vectorization

Node

PE PE PE

Memory
Multi-Thread Parallelization

Vectorization

Node

PE PE PE

Fig. 1. Hybrid Parallelization with Vectorization

and vectorization on a PE are automatically performed by the back-end Fortran
compiler, as shown in Fig. 1. We call this parallelization method hybrid
parallelization.

When a process corresponds to a PE, parallelization by the HPF/SX V2
is performed on both inter-node and intra-node, in which the inter-process
communication with MPI is generated irrespective of inter-node or intra-node.
The back-end Fortran compiler only performs vectorization as shown in Fig. 2.
We call this parallelization method flat parallelization.

Memory

PE PE PE
Vectorization

Memory

PE PE PE
Vectorization

HPF Parallelization

Network (Inter-node Crossbar Switch)

Node Node Inter-Process Communication

Fig. 2. Flat Parallelization with Vectorization

One significant feature of the HPF/SX V2 is that users can achieve maxi-
mum efficiency on an SX multi-node system with the selection between hybrid
parallelization and flat parallelization. Flat parallelization without multi-thread
parallelization is simpler and easier for users than hybrid parallelization, because
users do not have to consider multi-thread parallelization. But the communica-
tion cost can become larger when collective communication occurs. The amount
of used memory is also larger in flat parallelization. Part of the reason for this is
that some memory areas, which include the shadow area in HPF, the communi-
cation buffer for MPI, and the I/O buffer used by the system, are allocated in
every process. Moreover, this is conspicuous especially when there are arrays to
which no mapping directives are specified by users or non-mapped arrays tem-
porally allocated because of data access to remote processes, since the entire size
of such arrays is allocated on each process.

308 Y. Hayashi and K. Suehiro

In the following part of this section, we consider several codes that include
communication patterns of frequent appearance, to compare hybrid paralleliza-
tion with flat parallelization.

2.2 Gather-to-All Communication

The following is a dot product code that includes gather-to-all communication,
because the mapping of array x conflicts with computation partitioning.

double precision a(lm,lm),x(nk,lm),c(lm)
!HPF$ distribute (*,block) :: a,x
!hpf$ align (i) with a(*,i) :: c
!hpf$ shadow (0,0) :: a,x
!hpf$ shadow (0) :: c

do k=1,lm
do j=1,nk
do i=1,lm
c(k) = c(k) + a(i,k) * x(j,i)

enddo
enddo

enddo

In the code above, both HPF parallelization and multi-thread parallelization
are performed on the outermost do loop k, to which the mapped axis of the
array a and c corresponds, and vectorization is on the innermost do loop i.

The gather-to-all communication from the array x to the temporary array
x tmp is generated immediately before the do loops, as shown in Fig. 3, because
the entire elements of the mapped array x are used in each iteration of the
parallelized do loop k. The non-mapped temporary array x tmp is referred to in
the loops instead of the array x as the following code:

tmp_x = x ! Gather-to-All Communication

do k=1,lm ! Parallelization
do j=1,nk
do i=1,lm ! Vectorization
c(k) = c(k) + a(i,k)*tmp_x(j,i)

enddo
enddo

enddo

The total amount of memory needed for the temporary array x tmp becomes
the product of the size of the entire array x and the number of processes, which
is equal to the number of abstract processors.

Hybrid Parallelization and Flat Parallelization in HPF 309

Process(0) Process(1) Process(2)

x(1:512) x(513:1024) x(1025:1536)

x_tmp

2nd axis

communication copy

x_tmp

2nd axis

x_tmp

2nd axis

Fig. 3. Gather-to-All Communication

Table 1. The Performance of Dot Product (16-Way Parallel Execution)

Size of Method Num. of Time Memory
x Processes Threads (sec) (GB)

(16383,16383) Flat 16 1 74.6 72.45
Hybrid 2 8 74.6 8.54

(11263,11263) Flat 16 1 15.6 34.56
Hybrid 2 8 15.6 4.22

(8191,8191) Flat 16 1 8.83 18.69
Hybrid 2 8 8.84 2.40

Table 1 is the result of execution of the code above in different three sizes on
the two nodes of SX-8 (16 CPUs).

In this example, the adoption of hybrid parallelization significantly reduces the
amount of memory. This is because conversion into multi-thread parallelization
of HPF parallelization lessens the total number of copies of the non-mapped
temporary array, as a result of reduction of the number of processes. The elapsed
time is almost the same, because the communication cost takes only a small part
of the execution time.

2.3 Array Reduction

The following is an array reduction code in which the values of w(i,j,k,:) accu-
mulate into those of a(i,j,k).

310 Y. Hayashi and K. Suehiro

! Loop Nesting Pattern 1

double precision a(lx,ly,lz),w(lx,ly,lz,np)
!hpf$ distribute w(*,*,*,block)
!hpf$ shadow w(0,0,0,0)

a = 0.0

do k=1,lz
do n=1,np
do j=1,ly
do i=1,lx
a(i,j,k)=a(i,j,k)+w(i,j,k,n)

enddo
enddo

enddo
enddo

In the code above, HPF parallelization is performed on the do loop n, which
corresponds to the mapped axis of the array w: multi-thread parallelization is
on the outermost do loop k, and vectorization is on the innermost do loop i.

The entire area of array a is allocated on each process, since array a is not
mapped. The total amount of memory allocated for array a by the HPF/SX
V2 becomes the product of the size of the entire array a and the number of
processes.

Collective communication occurs immediately after the do loops, to add up
the local values of array a on each process.

This example requires careful consideration to the nesting order of the loops
in hybrid parallelization. Consider the case in which the do loop n comes to the
outermost as follows:

! Loop Nesting Pattern 2

double precision a(lx,ly,lz),w(lx,ly,lz,np)
!hpf$ distribute w(*,*,*,block)
!hpf$ shadow w(0,0,0,0)

a = 0.0

do n=1,np
do k=1,lz
do j=1,ly
do i=1,lx
a(i,j,k)=a(i,j,k)+w(i,j,k,n)

enddo
enddo

enddo
enddo

Hybrid Parallelization and Flat Parallelization in HPF 311

In the loop nesting pattern 2, both HPF parallelization and multi-thread
parallelization are performed on the outermost do loop n, and vectorization is
on the innermost do loop i.

Reduction dependence of the loop n makes it impossible to define the values
of array a concurrently in multi-thread parallelization, because the memory area
of array a is shared by all threads in a process, whereas each process has separate
memory area of array a in HPF parallelization. Therefore, temporary area whose
size is the same as that of array a is allocated in equal number to threads in each
process, to store thread-local results of array a in multi-thread parallelization.

The values of the temporary areas are accumulated one by one into array a
with synchronization immediately after the do loops.

Then collective communication occurs, to add up the local values of array a
on each process, too.

Table 2 is the result of ten iterative execution of the two codes above in
different three sizes on two nodes of SX-8 (16 CPUs).

Table 2. The Performance of Array Reduction (16-Way Parallel Execution)

Size of Method Loop Nesting Num. of Time Memory
w Pattern Processes Threads (sec) (GB)

(767,767,768,16) Flat 1 16 1 26.5 111.36
2 16 1 26.2 111.36

Hybrid 1 2 8 19.1 49.92
2 2 8 32.5 117.47

(511,511,512,16) Flat 1 16 1 7.38 33.54
2 16 1 7.37 33.54

Hybrid 1 2 8 5.56 18.72
2 2 8 9.53 34.85

(255,255,256,16) Flat 1 16 1 0.902 5.12
2 16 1 0.906 5.12

Hybrid 1 2 8 0.689 2.66
2 2 8 1.195 4.45

In flat parallelization, the nesting order of the loops does not affect the elapsed
time or the amount of memory. This is because overhead by HPF paralleliza-
tion, such as computation for loop division and communication, is automatically
hoisted out of the loops by the HPF/SX V2 and no extra memory is needed in
both patterns.

On the contrary, the nesting order of the loops is crucial in hybrid paralleliza-
tion. The loop nesting pattern 1 shows the best performance and the smallest
memory use, because the outermost do loop k, which is target of multi-thread
parallelization, is perfectly independent. But the loop nesting pattern 2 shows
the worst performance, because the outermost do loop n, which is target of multi-
thread parallelization, has reduction dependence. Actually, the multi-thread par-
allel execution with reduction overhead takes almost the same elapsed time as

312 Y. Hayashi and K. Suehiro

the communication for reduction. The loop nesting pattern 2 also shows the
largest memory use in the cases of the largest size and the second largest size,
because of the temporary area for reduction operation in multi-thread paral-
lelization. The memory use in flat parallelization is the largest in the case of the
smallest size, because buffer areas allocated by the system in every process have
greater impact.

These examples show that the adoption of hybrid parallelization reduces both
the elapsed time and the amount of memory, so long as target loop of multi-
thread parallelization has no dependence. This is because conversion into multi-
thread parallelization of HPF parallelization lessens communication cost of array
reduction and the total number of copies of array a, which is equal to the number
of processes. Therefore, it is important to select target loop of multi-thread
parallelization, so as not to cause extra overhead in hybrid parallelization.

2.4 Shift Communication

The following is a nearest neighbor computation code that includes shift commu-
nication to fetch the array elements a(:,:,k+1) on the neighbor abstract processor.

!hpf$ template t(lx,ly,lz)
!hpf$ distribute t(*,*,block)

double precision, dimension(lx,ly,lz)::a,b
!hpf$ align (i,j,k) with t(i,j,k) :: a,b
!hpf$ shadow (0,0,0:1) :: a
!hpf$ shadow (0,0,0) :: b

do k = 1,lz-1
do j = 1,ly
do i = 1,lx
b(i,j,k)= a(i,j,k+1)-a(i,j,k)

enddo
enddo

enddo

In the code above, both HPF parallelization and multi-thread parallelization
are performed on the outermost do loop k, and vectorization is on the innermost
do loop i.

The shift communication to the shadow area of array a is generated immedi-
ately before the do loops.

Table 3 shows the result of 100 iterative execution of the code above in dif-
ferent three sizes on two nodes of SX-8 (16 CPUs).

In this example, the performance of flat parallelization is slightly superior to
that of hybrid parallelization, because of overhead by multi-thread paralleliza-
tion. The difference in the performance becomes smaller as the problem size
becomes larger, because computation cost becomes relatively larger than over-
head by multi-thread parallelization.

Hybrid Parallelization and Flat Parallelization in HPF 313

Table 3. The Performance of Nearest Neighbor Computation (16-Way Parallel Exe-
cution)

Size of Method Num. of Time Memory
a,b Processes Threads (sec) (GB)

(1791,1791,1792) Flat 16 1 22.8 89.09
Hybrid 2 8 22.9 88.13

(1023,1023,1024) Flat 16 1 4.29 17.41
Hybrid 2 8 4.36 16.74

(511,511,512) Flat 16 1 0.546 3.07
Hybrid 2 8 0.561 2.43

The communication cost in flat parallelization is larger than that in hybrid
parallelization, because the cost of shift communication on three or more pro-
cesses is larger than that on two processes, though this difference will disappear
in execution on more than two nodes. But overhead by multi-thread paralleliza-
tion has greater impact than the cost of shift communication.

The amount of memory in hybrid parallelization is a little superior to that in
flat parallelization, because of the buffer areas allocated in every process.

2.5 Comparison between Hybrid Parallelization and Flat
Parallelization

These results show that the adoption of hybrid parallelization can reduce the
amount of memory, so long as target loop of multi-thread parallelization does
not bring about extra overhead, and the effect is conspicuous especially when
large non-mapped arrays appear as user-defined arrays or temporary arrays.

As for improvement of execution performance, the effect depends on the com-
munication pattern. The use of hybrid parallelization is beneficial when com-
munication cost increases as the number of processes increases, such as array
reduction, whereas it has little benefit when the communication cost does not
depend on the number of processes, such as shift communication, or takes an
insignificant part of execution time.

On the other hand, it becomes difficult to get scalable performance in pro-
grams whose dominant part is communication, such as array reduction, as the
number of processes increases. Therefore, it is difficult to expect significant im-
provement of performance from hybrid parallelization in highly parallel compu-
tation. But the amount of memory depends on the part of a program where the
largest size of memory is allocated, even if the part takes just a small part of
the total execution time.

Consequently, hybrid parallelization is effective for reduction of memory, when
large non-mapped arrays appear as user-defined arrays or temporary arrays, and
it enables users to solve larger-scale problems. On the other hand, when reduction
of memory with hybrid parallelization is not expected, flat parallelization is easier
for users, because hybrid parallelization requires additional consideration to the

314 Y. Hayashi and K. Suehiro

selection of target loop of multi-thread parallelization, as shown in the example
of array reduction.

3 Conclusion and Future Works

We have compared hybrid parallelization with flat parallelization by evaluating
several typical codes.

The result shows that hybrid parallelization is particularly beneficial for re-
duction of memory, when large non-mapped arrays appear as user-defined arrays
or temporary arrays. And when reduction of memory by hybrid parallelization
is not expected, flat parallelization is usually practical, because it is simpler and
easier for users. It also can be said that to derive advantage from hybrid par-
allelization, it is important to select target loop of multi-thread parallelization
that does not have dependence.

In the last few years, the compiling technique of HPF compilers has matured
gradually, and the performance of HPF programs bears comparison with that of
MPI programs in regular problems[6],[7].

At present, the matter of highest priority is to improve the usability of HPF
compilers, because it is still difficult to detect the cause of abortion at execution-
time, or that of deficient performance in HPF programs. We are going to provide
functions for debugging and tuning, so that users can develop efficient distributed
memory parallel programs more readily.

Acknowledgement

We would like to thank all members of the HPF development team in NEC
System Technologies, Ltd., for their effort to improve the HPF/SX V2.

References

1. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion Version 2.0. (January 31, 1997)

2. Japan Association of High Performance Fortran (JAHPF): HPF/JA Language Spec-
ification Version 1.0. (November 11, 1999)

3. Benkner, S.: Optimizing Irregular HPF Applications Using Halos. In: Concurrency:
Practice and Experience, vol. 12, pp. 137–155. John Wiley & Sons Ltd, Chichester
(2000)

4. Suehiro, K., Hayashi, Y., Hirosawa, H., Seo, Y.: HPF and its Performance on SX-
6/SX-7. NEC Research & Development 44(1) (January 2003)

5. Yokokawa, M., Tsuda, Y., Suehiro, K.: An HPF performance of a CFD code on
SX-5 SMP nodes. In: HUG 2000, October 19-20, 2000, pp. 124–130 (2000)

6. Sakagami, H., Murai, H., Seo, Y., Yokokawa, M.: 14.9 TFLOPS Three-dimensional
Fluid Simulation for Fusion Science with HPF on the Earth Simulator. In: proc. of
SC 2002 (November 2002)

7. Okabe, Y.: Performance Evaluation of Large-scale Parallel Simulation Codes and
Designing New Language Features on the HPF (High Performance Fortran) Data-
Parallel Programming Environment, Annual Report of the Earth Simulator Cen-
ter(April 2003 - March 2004), pp. 115–118, The Earth Simulator Center (2004)

Mapping Normalization Technique on the HPF

Compiler fhpf

Hidetoshi Iwashita1 and Masaki Aoki2

1 Next Generation Technical Computing Unit, Fujitsu Limited,
140 Miyamoto, Numazu-shi, Shizuoka 410-0396, Japan

2 Software Unit, Fujitsu Limited,
140 Miyamoto, Numazu-shi, Shizuoka 410-0396, Japan

{iwashita.hideto,m-aoki}@jp.fujitsu.com

Abstract. We propose a technique of mapping normalization which re-
duces the variety of data and computational mapping representation of
HPF into a certain standard form. The base of the reduction is a set
of equivalent transformations of an HPF program, using composition of
alignment and affine transformation of data and loop indices. The map-
ping normalization technique was implemented in the HPF compiler fhpf,
and made the succeeding processes, such as local access detection and
SPMD conversion, much slimmer. The measurement result shows that
performance of the MPI code generated by the fhpf compiler is fairly
comparable to the one written by a skillful MPI programmer.

Keywords: HPF, compiler, distribution, MPI.

1 Introduction

High Performance Fortran (HPF) has a variety of capabilities of describing data
and computational mappings [3]. For example, each different description in Fig. 1
represents the same mapping of a variable A onto three processors with block
distribution.

Such rich variation of mapping is the feature of HPF, and the variation is
important to improve the portability and reusability of user programs. How-
ever, it has made compilers complicated. Compilers can hardly take good care
of the entire variation under the limitation of development cost. Identification
and relation recognition of the mappings among data, computational loops, and
processors are very important for higher-level optimization. For example, if a
compiler could not know relationship between the mappings of an array vari-
able and of a loop onto processors, the compiler could not conclude an access
of the variable in the loop to be local to the processor, and it would generate a
redundant code that decides at runtime whether the access is local or remote.

We are developing the HPF compiler fhpf [5], which is a translator accepting
the HPF/JA1.0 [6] program and generating a Fortran program with MPI calls.
To obtain higher performance under the limited term and resources of devel-
opment, we first tried to conquer the huge variation involved in HPF language

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 315–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

316 H. Iwashita and M. Aoki

specification. In the result, we propose a technique of mapping normalization,
which converts various descriptions of alignments, shapes of variables, templates
and processor arrays, and indices of loops into a certain standard representation.

In this paper, we describe the mapping normalization technique and the effec-
tiveness. After a brief introduction of the fhpf compiler in Section 2, the mapping
normalization technique employed in fhpf is described in Section 3. Optimizations
enabled by the normalization is shown in Section 4. Then Section 5 evaluates the
fhpf compiler and Section 6 shows related works. Section 7 concludes the paper.

Fig. 1. Various representations for the same mapping of a variable A onto three proces-
sors with block distribution. Each description has a different alignment coefficient and
offset parameter in (a), a different number of layered alignments in (b), and a different
number of dimensions of the alignment target in (c), whose axes mapped from the axes
of the variable are also different

2 HPF Translator fhpf

The HPF translator fhpf generates a standard Fortran program code calling MPI
library routines and not calling other special libraries. Therefore, the output code
can be compiled and can be executed on any platforms, including PC-clusters
and blade servers through supercomputers, as long as they can treat standard
Fortran 90 and MPI 1.1 [11].

Fig. 2 illustrates how to compile and execute HPF programs with the fhpf.
Compilation consists of two processes: The fhpf converts HPF programs into For-
tran/MPI programs, and then a Fortran compiler compiles and links the For-
tran/MPI programs and Fortran and MPI programs (if any) into an executable
code. As such, the fhpf compiler can be regarded as an MPI program generator.

Mapping Normalization Technique on the HPF Compiler fhpf 317

Fig. 3 roughly shows the flow of the fhpf translator. Normalization will be per-
formed in the normalizer before other major conversions including paralleliza-
tion and optimization. The succeeding SPMD converter converts an intermediate
code representing the behavior of the entire system into an SPMD (Single Pro-
gram/Multiple Data) model representing the behavior of each processor. All
modules succeeding the normalizer can assume that the input intermediate code
contains just normalized forms.

Fig. 2. Compilation using the fhpf compiler
Fig. 3. Processing modules in the
fhpf compiler

3 Mapping Normalization

Mapping normalization is an equivalent transformation of an HPF program. This
section describes three possible conversion rules as principle, the algorithm we
applied in the fhpf, and an example of the normalization.

3.1 Principle

(1) Composition of alignment. Let the alignment of an axis of variable Y
with an axis of variable (or template) X be i → ai + b, and let the alignment of
an axis of variable Z with the axis of Y be i → ci + d. The composed alignment
of the axis of Z with the axis of X will be

a(ci + d) + b = (ac)i + (ad + b). (1)

Using the composition, the alignment of Z with Y can be transformed into the
equivalent alignment of Z with X. Similarly, the alignment of loop index described
by the ON HOME directive can be transformed. That is, the ON directive

ON HOME(Y(c*I+d))

318 H. Iwashita and M. Aoki

can be transformed into the equivalent ON directive

ON HOME(X((ac)*I+(ad + b)))

using the same composition.

(2) Affine transformation of array shape. Affine transformation without
permutation of the shape of an m-dimensional array A

⎛
⎜⎝

i1
...

im

⎞
⎟⎠ →

⎛
⎜⎝

a1i1 + bi

...
amim + bm

⎞
⎟⎠ (2)

can be performed as an equivalent transformation with the following conversion.
Some Fortran 90 terms are used here.

– Declaration of array dimensions
DIMENSION A(l1 : u1, · · ·, lm : um)

is converted to
DIMENSION A(l′1 : u′

1, · · ·, l′m : u′
m)

where l′k ≤ aklk + bk and akuk + bk ≤ u′
k for all k = 1, · · · , m.

– Conversion of the k-th subscript of a reference of A:
• A scalar or vector expression ek is converted to

akek + bk.

• A triplet sk1 : sk2 : sk3 is converted to

aksk1 + bk : aksk2 + bk : aksk3.

For example, when an array X(1:N) is transformed with parameters a1 = 2
and b1 = −2, the array definition is converted to X(0:2*N-2), accesses X(3),
X(1:10) and X(N:1:-2) are converted to X(4), X(0:19:2) and X(2*N-2:0:-4),
respectively.

The parameters ak and bk are chosen in order to normalize the mapping of
the array variable, as shown later.

(3) Affine transformation of loop index. Affine transformation of loop
index space on DO loop

DO I = e1, e2, e3
· · ·
ENDDO

can be performed as an equivalent transformation with the following conversion
in the scope of the DO loop.

Mapping Normalization Technique on the HPF Compiler fhpf 319

– Conversion of the three loop parameters

e1 → ae1 + b

e2 → ae2 + b

e3 → ae3

– Conversion of all references of DO variable I in the body of the loop

I → I − b

a

For example, if a = 3 and b = 1, then

DO I = 1,N,2
J = I
A(3*I) = B(3*J+1)
ENDDO

is converted to

DO I = 4,3*N+1,6
J = (I-1)/3
A(I-1) = B(3*J+1)
ENDDO

The parameters a and b are chosen in order to normalize the mapping of the
loop index space. Note that a is always chosen so that the last conversion is
divisible.

3.2 Algorithm

Definition:

N The size of the template T in a certain dimension.
P The size of the processor arrangement in the corresponding dimension.
w The block size of block or block-cyclic distribution in the corresponding

dimension. If not specified in the case of block distribution, it is defined
as �N/P �.

W The mapping array of generalized block (gen block) distribution in the
corresponding dimension. The size is P and

∑P−1
q=0 W (q) = N .

M The mapping array of indirect distribution in the corresponding dimen-
sion. The size is N . 0 ≤ M(k) < P (k = 0, · · · , N − 1) if M has been
normalized.

(1) Normalization of processors. For each processor arrangement, replace
the lower and upper bounds P1 and P2 by 0 and (P2−P1), respectively, for all di-
mensions. Then replace all elements of the mapping array of indirect distribution
M(k) with (M(k) − P1).

(2) Normalization of distribution. For each distribution, record the follow-
ing distribution parameters in the form of the immediate value, or the expression
to be evaluated at runtime.

– The block size w in the case of block distribution.
– The mapping array W (0 : P − 1) in the case of gen block distribution.
– The mapping array M(0 : N − 1) in the case of indirect distribution.

320 H. Iwashita and M. Aoki

(3) Normalization of alignment and templates

1. For each template, collapse all dimensions that are not distributed.
2. For each template, replace the lower and upper bounds N1 and N2 by 0 and

(N2 − N1), respectively, for all dimensions. Then replace all of the corre-
sponding alignments i → ai + b by i → ai + (b − N1).

3. For each variable immediately distributed onto processors, generate a new
template with the same shape and distribution as the ones of the variable,
and normalize the template and the variable similarly to 2 above.

4. For each variable or loop ultimately but not immediately aligned with the
template T, transform the alignment into the immediate alignment with T,
using the rule of Section 3.1 (1) recursively.

5. (Optional) Unite templates as much as possible. A template can be replaced
by another template if they have the same target processors, the same target
axis of the processors, and the same distribution kind and parameters, such
as the block size and the mapping array.

(4) Normalization of data objects. For each variable aligned as i → ai + b
with template T in the corresponding dimension:

1. Replace the lower and upper bounds by the same ones of T, i.e., 0 and
(N2 − N1).

2. Replace the alignment of the variable with T by the identical alignment
i → i.

3. For each reference of the variable, replace the subscript in the corresponding
dimension s by (as + b), using the rule of Section 3.1 (2).

(5) Normalization of loop variables. For each loop aligned as i → ai + b
with template T:

1. Replace the three loop parameters e1, e2, and e3 by (ae1 + b), (ae2 + b), and
ae3, respectively.

2. Replace the alignment of the loop with T by the identical alignment i → i.
3. Substitute all references of the loop variable I by the expression (I − b)/a,

using the rule of Section 3.1 (3). Note that the surrounding expression can be
arithmetically reduced taking into account that the substituted expression
is always divisible.

3.3 Example of Mapping Normalization

An example of mapping normalization using this algorithm is shown in Fig. 4.
The input program (a) is short but complicated in mapping. As shown in (b),
procedures (1) through (3) normalize the shapes of processors and the gener-
ated template, make all alignments immediately with the template, and replace
HOME variables in ON directives by the reference of the template. As shown in
(c), procedure (4) normalizes the shapes of variables, makes alignments of vari-
ables identical, and adjusts the subscripts of the variables. Finally, as shown in

Mapping Normalization Technique on the HPF Compiler fhpf 321

(a) Input program (b) Normalization of processors,
distribution, alignment, and template

(c) Normalization of data objects (d) Normalization of loop variables

Fig. 4. An example of mapping normalization along the algorithm described in Sec-
tion 3.2

322 H. Iwashita and M. Aoki

(d), procedure (5) normalizes the loop parameters, makes alignments specified
with ON directives identical, substitutes the reference of the loop variables and
simplifies the surrounding expressions.

Fig. 5 illustrates the change of data and loop mapping for the same example.
It shows that the complicated alignment relationship described in the input
program is transformed into an extremely simple representation.

Fig. 5. Illustration of mappings of (a) and (d) of Fig. 4. All mappings of data and loops
were transformed into the same identical alignment with a generated template T1.

4 Techniques Enabled by Mapping Normalization

Mapping normalization itself does not optimize the input program. Instead, it en-
courages the succeeding compiler modules to optimize the program. For instance,
the subprogram interface becomes simpler than ever, on the assumption that an
argument variable always has the identical alignment and the same shape as
the corresponding template. In addition, mapping normalization enables some
compiler techniques to be implemented in the fhpf compiler, as shown in this
section for example.

4.1 Detection of Local Access

It extremely improves runtime performance, confirming at compile time that
the access is local, i.e., the data fragment is surely distributed on the processor
itself accessing it. The decision requires analysis of alignment matching. If we
can assume that mapping of the input code is previously normalized, it is not
so difficult:

Mapping Normalization Technique on the HPF Compiler fhpf 323

Let the array A align with the m-dimensional template T and let r
the reference of an array element (or subarray) of A appear inside an
n-multiple DO-loop L1, · · ·, Ln. We can say r is local if the following
condition meets for all k = 1, · · · , m.
– The subscript of r in the dimension corresponding to the k-th di-

mension of T is the loop variable of Lj itself (0 ≤ j < n).
– Lj is aligned with the k-th dimension of T.

In the example of Fig. 4 (d), the reference of F(I+1,I) in the first loop can be
said on local because its second subscript is corresponding to the first dimension
of template T1, the second subscript is the loop variable I itself, and the loop
is aligned also with the first dimension of T1. Similarly, the reference of A(I) in
the first loop and the references A(K) and D(K) in the second loop can be said
on local. On the other hand, the reference of C(I+1) in the first loop cannot to
be said on local because the subscript is not the loop variable I itself but an
expression. From a program like Fig. 4 (a), which is not normalized, it would be
much more difficult to make the same decision.

4.2 SPMD Code Generation

An HPF compiler generates SPMD (Single Program/Multiple Data) code as the
output describing the behavior of each processor. Fig. 6 shows an example of
the SPMD conversion in the fhpf compiler. The parameters for each processor
should be determined at runtime as follows:

Processor myI1 myI2 myI3 myLB
P(0) 1 9 1 0
P(1) 0 9 1 10
P(2) 0 8 1 20

As shown in this example, the SPMD converter converts the shape of the
distributed data, DO loop parameters, DO loop variables, subscripts of data
reference, etc. These conversions are based on the fundamental functions shown
below:

– p = gtop(k)
processor ID p corresponding to global index k

– i = gtol(k)
local index i corresponding to global index k on the current processor

– k = ltog(i)
global index k corresponding to local index i on the current processor

– (i1, i2) = gtol2(k1, k2)
local duplet i1 : i2 (or interval [i1, i2]) corresponding to the subset
of global duplet k1 : k2 (or interval [k1, k2]) that is mapped onto
the current processor

– (i1, i2, i3) = gtol3(k1, k2, k3)
local triplet i1 : i2 : i3 corresponding to the subset of global triplet
k1 : k2 : k3 that is mapped onto the current processor

324 H. Iwashita and M. Aoki

!hpf$ processors P(0:2)
real A(0:29) real A(0:9)

!hpf$ distribute A(block) onto P

!hpf$ independent
do I=1,28 do I=myI1,myI2,myI3

!hpf$ on home(A(I))
A(I)=I A(I)=I+myLB

end do end do

(a) HPF global program (b) SPMD output code

Fig. 6. An example of SPMD conversion in fhpf

On the assumption of the normalized input code, we can express these func-
tions with respect to the distribution types as follows:

gtol(k) ltog(i)
block(w) k mod w i + pw

gen block(W) k − ∑p−1
q=0 W (q) i +

∑p−1
q=0 W (q)

cyclic � k
P � iP + p

cyclic(w) w� k
Pw� + (k mod w) Pw� i

w � + pw + (i mod w)

The fundamental functions in the case of indirect distribution are references of
tables. Function gtol2 always keeps the form duplet, i.e., contiguous numbers of
integer. Function gtol3 can keep the form triplet in the cases of block, gen block,
and cyclic, and it cannot in the cases of block-cyclic and indirect.

Note that these expressions would be much more difficult unless the input code
had been normalized previously. Before employing the mapping normalization
technique, we used to use runtime library to calculate some of these functions
at the cost of runtime overhead because it was too difficult to generate these
expressions in the form of Fortran statement. Besides, in the cases of cyclic
and block-cyclic, the loop parameters could not be kept in the form of duplet
or triplet so the loop used to be expanded into nested loops. Thanks to the
normalization, the current fhpf compiler always keeps the single loop single.

5 Evaluation

As shown in Section 4, mapping normalization indirectly contributes to the per-
formance and reduces runtime overhead costs at entrances of parallel loops, array
subscripts, entrances of subprograms, etc. They are often summed up in the se-
quential part of the execution. According to Amdahl’s Law, the larger number
of processors we use, the more decline of performance they cause.

Mapping Normalization Technique on the HPF Compiler fhpf 325

5.1 Evaluation of the fhpf Compiler

This section evaluates the fhpf compiler using a blade server with the following
environment:

CPU Pentium III, 670MHz
Operating System Red Hat Linux release 7.2
Memory size 377MB
Compilers fhpf V1.2.4 for Linux, MPICH1.2.6, and Fujitsu Fortran

Compiler (in Linux Parallel Language Package 1.0)

Himeno benchmark is a Poisson equation solver using Jacobi iterative method
[4]. We made an HPF version benchmark code from the serial and OpenMP
versions, which are being distributed on the Web site. For fair comparison to the
MPI version on the Web site, we used the same manner on the HPF version, i.e.,
the largest elapsed time in all processors, instead of the CPU time on the master
processor, is evaluated using the MPI WTIME function of MPI library. Besides,
the reduction operation of the variable gosa, calculating the computational error,
is performed not outside but inside the loop of nn iterations in the subroutine
jacobi.

Fig. 7 shows the results of MPI and HPF versions of S, M and L models. Fig. 8
shows their performances are almost the same; the fhpf version is 4% slower on
average. All data were measured three times and the average was plotted. The
average of standard deviation (SD) of the measurements was about 3% both in
MPI and fhpf.

5.2 Evaluation of SPMD Code Generation

As shown in Section 4.2, mapping nomarization realized an algorithm of SPMD
code generation for various distribution types. This section evaluates the imple-
mentation.

Fig. 9 shows the speedup ratios on some distribution types for the LINPACK
benchmark program. We used one node of Fujitsu PRIMEPOWER HPC2500
and chose the problem size N = 4000. All HPF programs are the same except
their distribution types. They has 1-dimensional distribution along J-axis of the
I ×J matrix and no special code tuning such as tiling and paneling. The graphs
named as block, cyclic, cyclic(1) and cyclic(20) show respectively the measure-
ment results of the HPF programs with block distribution, cyclic distribution,
and block-cyclic distributions whose block widths w are 1 and 20.

Fig. 9 shows the following features:

– Cyclic and block-cyclic distributions show better performance than block
distribution.

– Cyclic(1), the block-cyclic distribution with w = 1, offers almost the same
performance as the cyclic distribution despite being made from different
fundamental functions shown in Section 4.2.

326 H. Iwashita and M. Aoki

Fig. 7. Result of Himeno benchmark compared with MPI version. “fhpf (fixed)” was
evaluated from HPF programs whose numbers of processors are respectively specified
at compile time similarly to the MPI version. “fhpf (n of p)” was made from single
HPF program whose numbers of processors are specified at runtime.

Fig. 8. Detail comparison between two 3-dimensional Himeno MPI codes; one is dis-
tributed on the Web page and the other is made from HPF code by the fhpf compiler

Mapping Normalization Technique on the HPF Compiler fhpf 327

Fig. 9. Speedup ratios on LINPACK comparing block-cyclic distributions with block
and cyclic distributions. Thanks to the normalization technique, we have achieved a
good implementation of block-cyclic distribution.

The former is because the load balance is not uniform in the LINPACK program.
By contrast, on the previous implementation not using mapping normalization,
cyclic distribution was much slower than block distribution and block-cyclic
distribution was not implemented because of difficulty. As a result, it can be
said that mapping normalization technique not only makes various distributions
possible but also suppresses the overhead cost of the SPMD conversion.

6 Related Work

There have been many frameworks based on affine loop transformation. Banerjee
introduced unimodular transformation [2], and Li and Pingali extended it to non-
singular matrix [8]. In Omega Project [12], Kelly, Pugh and Rosser proposed
an algorithm on a more general iteration space. Besides, Allen, et al. (Rice
Univ.) proposed a loop alignment algorithm which transforms loop carried data
dependence into loop independent [1]. All of these aimed for mapping between
the iteration space and the data access space, and did not mention mapping of
data to the distributed memory.

As an approach taking into account memory hierarchy, Li and Pingali normal-
ized the subscript of the data access to improve data locality [9]. By contrast,
we normalize alignment of data and loops, and the subscripts of the data access
will become simplified naturally, on the assumption that appropriate data and
loop mappings are given.

328 H. Iwashita and M. Aoki

7 Conclusions

The HPF compiler fhpf is being developed assuming use of the mapping nor-
malization technique. Taking into account the limitation of developers’ thought
and the quality of software products, how to avoid the explosion of variation is
quite important. The normalization process in the compiler makes the succeed-
ing processes much slimmer. Though evaluation employed in fhpf is only just
being started, the performance seems worth comparing to MPI programs.

Acknowledgment

We appreciate the contribution of Shunsuke Inoue, Yoshihiro Kasai, Kentaro
Koyama, and Masanori Moroto (Fujitsu Nagano System Engeneering) and Masa-
fumi Sekimoto (Fujitsu Limited).

Part of this research was funded by the New Energy and Industrial Technology
Development Organization (NEDO), a Japanese governmental agency.

References

1. Allen, R., Callahan, D., Kennedy, K.: Automatic Decomposition of Scientific Pro-
grams for Parallel Execution. In: Conference Record of the 14th ACM Symposium
on Principles of Programming Languages, pp. 63–76 (January 1987)

2. Banerjee, U.: Unimodular transformations of double loops. In: Proceedings of the
Workshop on Advances in Languages and Compilers for Parallel Processing, pp.
192–219 (August 1990)

3. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion Version 2.0. (1997), http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/
hpf2/hpf-v20/index.html

4. Benchmark, H.: http://accc.riken.jp/HPC/HimenoBMT/index.html
5. Iwashita, H., Hotta, K., Kamiya, S., van Waveren, M.: Towards a Lightweight HPF

Compiler. In: Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M. (eds.) ISHPC
2002. LNCS, vol. 2327, pp. 526–538. Springer, Heidelberg (2002)

6. Japan Association for High Performance Fortran (JAHPF): HPF/JA Language
Specification Version 1.0 (November 1999),
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf

7. Kelly, W., Pugh, W., Rosser, E.: Code Generation for Multiple Mappings. In: Fron-
tiers 1995. The 5th Symposium on the Frontiers of Massively Parallel Computation,
McLean, VA (February 1995)

8. Li, W., Pingali, K.: A Singular Loop Transformation Framework Based on Non-
Singular Matrices. Technical Report TR 92-1294, Cornell University, Ithaca, NY
(July 1992)

9. Li, W., Pingali, K.: Access normalization: loop restructuring for NUMA computers.
ACM Transactions on Computer Systems (TOCS) 11(4), 353–375 (1993)

10. Mellor-Crummey, J.M., Adve, V.S., Broom, B., Chavarria-Miranda, D.G., Fowler,
R.J., Jin, G., Kennedy, K., Yi, Q.: Advanced optimization strategies in the Rice
dHPF compiler. Concurrency and Computation: Practice and Experience 14(8-9),
741–767 (2002)

11. Message Passing Interface Forum. http://www.mpi-forum.org/
12. The Omega Project. http://www.cs.umd.edu/projects/omega/

http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/hpf-v20/index.html
http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/hpf-v20/index.html
http://accc.riken.jp/HPC/HimenoBMT/index.html
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.mpi-forum.org/
http://www.cs.umd.edu/projects/omega/

Development of Electromagnetic Particle

Simulation Code in an Open System

Hiroaki Ohtani1,2, Seiji Ishiguro1,2, Ritoku Horiuchi1,2, Yasuharu Hayashi3,
and Nobutoshi Horiuchi4

1 Theory and Computer Simulation Center, National Institute for Fusion Science,
322-6 Oroshi-cho, Toki 509-5292, Japan

2 Graduate University of Advanced Studies (SOKENDAI),
322-6 Oroshi-cho, Toki 509-5292, Japan

3 1st Computers Software Division, NEC Corporation,
1-10 Nisshin-cho, Fuchu, Tokyo 183-8501, Japan

4 NEC System Technologies Ltd.,
4-24 Osaka, Shiromi 1-Chome, Chuo-ku, Osaka 540-8551, Japan

Abstract. In an electromagnetic particle simulation for magnetic recon-
nection in an open system, which has a free boundary condition, particles
go out and come into the system through the boundary and the number
of particles depends on time. Besides, particles are locally attracted due
to physical condition. Accordingly, it is hard to realize an adequate load
balance with domain decomposition. Furthermore, a vector performance
does not become efficient without a large memory size due to a recur-
rence of array access. In this paper, we parallelise the code with High
Performance Fortran. For data layout, all field data are duplicated on
each parallel process, but particle data are distributed among them. We
invent an algorithm for the open boundary of particles, in which an oper-
ation for outgoing and incoming particles is performed in each processor,
and the only reduction operation for the number of particles is executed
in data transfer. This adequate treatment makes the amount and fre-
quency of data transfer small, and the load balance among processes
relevant. Furthermore, a compiler-directive listvec in the gather process
dramatically decreases the memory size and improves the vector perfor-
mance. Vector operation ratio becomes about 99.5% and vector length
turns 240 and over. It becomes possible to perform the simulation with
800 million particles in 512 × 128 × 64 meshes. We succeed in opening a
path for a large-scale simulation.

1 Introduction

Magnetic reconnection plays an important role in high-temperature plasmas; for
example, solar corona, high-temperature tokamak discharge, magnetospheric sub-
storm, and reconnection experiments [1,2,3,4,5]. It leads to fast energy release
from a magnetic field to plasmas and change of the magnetic field topology. How-
ever, the mechanism of fast energy release is not fully understood, and several com-
puter simulations have been performed to study this mechanism[6,7,8,9,10,11].

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 329–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

330 H. Ohtani et al.

To investigate the behaviour of magnetic reconnection, both from the microscale
viewpoint for electron and ion, and the macroscale viewpoint for the dynamic
change of field, we need to perform a three-dimensional electromagnetic particle
simulation on an open system[12,13,14,15,16,17]. In this paper, we develop a sim-
ulation code with a distributed parallel algorithm for a distributed memory and
multi-processor computer system.

2 Distributed Parallel Computing Method

2.1 High Performance Fortran

For the distributed parallel algorithm, there are some programming paradigms;
for example, Message Parallel Interface (MPI) and High Performance Fortran
(HPF). Using HPF, programming is easier in comparison with MPI, because it
is sufficient to add only instruction directives for parallel calculation and data
transfer to the Fortran code. HPF compiler handles the distribution and schedul-
ing of processing, and the control of communication according to the instruction
directives. We adopt HPF for the distributed parallel computing method in this
paper.

2.2 Estimation of Calculation Cost

Before considering a simulation code in the distributed parallel algorithm, we
estimate the calculation cost in a particle simulation. Figure 1 shows a simu-
lation cycle per time step in a particle simulation in an open system [18]. In
the first process: “Force from fields,” the force on particle position Fj is cal-
culated from the electric and magnetic field defined on the grid ((E, B)i). In
the second process: “Particle pusher (Equation of motions),” the integration of
equation of motions is performed using the force values Fj . In the third process:
“Particle gather,” the charge and current densities defined on the grid ((ρ, J)i)
are calculated from the particle positions and velocities ((x, v)j). In the last

Force from fields

(E,B)i → Fj

�

�

�

���� Particle pusher

(Equation of motions)
Fj → vj → xj

�

�

�

����Particle gather

(x, v)j → (ρ, J)i

�

�

�

�

���

Field solver

(Maxwell equations)

(ρ, J)i → (E,B)i

�

�

�

�

���

Outflow & inflow

(Open system)

(x, v)out, (x, v)in

�

�

�

�

���

One time step Δt

Fig. 1. A simulation cycle per time step in a particle simulation in an open system
[18]. i is the grid number and j is the particle number.

Development of Electromagnetic Particle Simulation Code 331

and fourth process: “Field solver (Maxwell equations),” the field equations on
the grid are integrated using (ρ, J)i. These four processes are the typical cy-
cle, one-time step, in a particle simulation program. Further, in a simulation in
an open system, the “Outflow and inflow (Open system)” process is added. In
this process, the information of particles which are going out of ((x, v)out) and
coming into ((x, v)in) the system is obtained under the free boundary condition
for particles (See Sec. 3). The calculation costs of three processes (“Force from
fields,” “Particle pusher” and “Particle gather”) are in proportion to the total
number of particles, while the calculation cost of “Field solver” is proportional
to the number of grids. To investigate the magnetic reconnection, a large-scale
simulation is needed, in which the numbers of particles and grids are, for ex-
ample, one billion and 2563, respectively. Accordingly, the calculations of the
first three operations cost most in the one-time step, and these processes should
be distributed in the parallel calculation. The “Outflow and inflow” processes
should also be treated adequately in the same way.

2.3 Domain Decomposition and Particle Distribution

It is very important to decide which array is distributed in the distributed parallel
algorithm. There are two cases. One case is to decompose the domain [19,20]
(Fig. 2(b)). For example, the field variable is defined by three coordinates (x, y,
and z), and we distribute it along z-direction. In this case, the processor performs
“Field solver” in the mapped domain, and carries out “Particle pusher” for
the particles which exist in the domain. However, communication among HPF
processes is needed when the particle moves to the neighbouring distributed
domain (like the arrow in Fig. 2(b)) and the global calculation is performed (for
example, Fourier transformation). Furthermore, as a simulation for magnetic
reconnection goes on, the particles are attracted locally due to the physical
condition and then the load balance among HPF processes does not become
sufficient in the domain decomposition case. From the viewpoints of data transfer
and load balance, this case is disadvantageous. Another case is not to decompose
the domain, but to distribute only information of particles [21] (Fig. 2(c)). In
this case, we do not need the communication frequently, because every HPF
process has the same full information of domain and performs “Field solver”. As
a simulation goes on, the number of particles is changed, because the particles go
out and come into the system through the free boundary (See the next section).
Because each processor has the same full field information and performs “Outflow
and inflow” process, the change of the number of particles is supposed to be
uniform among the processors, and the load balance is anticipated to be adequate
through the simulation. As mentioned in the previous subsection, the number
of particles is much larger than that of grids. It is expected that the simulation
code becomes efficient only with distributing the array of particle values. From
these reasons, we adopt the latter way in this paper.

332 H. Ohtani et al.

(a)

�
�

�
�

�

�

�
� �

�

�

�

��

�

�

�

�

� �

�

�

(b)

�1
�1

�1

�1�1

�1

�1
�2

�2

�2

�2

�3

�3

�3

�3�3
�4

�4
�4

�4

�4

Ip = 1 Ip = 2 Ip = 3 Ip = 4

�

(c)

�1
�2

�3 �4

�1

�2

�3

�4
�1

�2

�3

�4

�1�2

�3

�4

�1

�2

�3

�4

�1

�2

Fig. 2. Schematic illustration of (a) full system, (b) decomposed domain case, and (c)
distributed particles case. Ip and the circle number are the index of HPF process.

2.4 Distribution of Particle Array

Figure 3 shows a schematic illustration of a distributed array of particle values,
for example, position and velocity, and so on, (a) before and (b) after distri-
bution. Ip and Np are the index and number of PEs, respectively. The number
of PEs equals to the product of the numbers of HPF processes and micro task
parallelisation, and we use them together in this program code. The micro task
parallelisation is the parallelisation on shared memory in one node. This archi-
tecture is available in an NEC SX system. The information of electrons and ions
is recorded in the first and latter half of the array, respectively. In each part
of electrons and ions, the information of “active” and “reserved” particles is
recorded, respectively. “Active” means an array of the particles subject to the
calculations of charge and current densities, while “reserved” means an empty
array for the particle that will come into the system in the future. Because the
number of particles in simulation box increases twice and over as many as the
initial one as the simulation goes on, the parts of the array for electrons and ions
are initially divided to 40% for ‘active’ and 60% for ‘reserved’, respectively.

Development of Electromagnetic Particle Simulation Code 333

Fig. 3. Schematic illustration of array of particles (position, velocity, mass, and charge)
(a) before and (b) after distribution. nl is the total number of particles, nm is the number
of distributed particles, Ip is the index of PEs, Np and np are the number of PEs (the
production of HPF processes and micro task parallelisation), and x(nl) and x(nm,np)
are, for example, the particle position

Appearing in Fig. 3, the number of subscripts for the array of the particles
is changed from (a) one to (b) two, and the second subscript is applied to the
PEs. Using this type of distributed array, we can perform parallel calculation as
BLOCK distribution along the second subscript, and attain an adequate load bal-
ance among HPF processes, because all of HPF processes have the same-form ar-
ray. If we simply divide the original array in Fig. 3(a) as BLOCK distribution,
some HPF processes may control only “active” particles and the others may con-
trol “reserved” particles. In this case, the load balance does not become adequate.
Furthermore, because the vector performance gets worse due to the stride access,
we do not adopt CYCLIC distribution with using the array type in Fig. 3(a).

A key point in development of a simulation code under a distributed parallel
algorithm is that the amount and frequency of data transfer are as small as
possible. Fortunately, since the field variables are not distributed and only in-
formation of particles is distributed in this code, data transfer of the distributed
information of particles is almost not needed as long as load balance is adequate.
That is, the number of particles changes due to the outgoing and incoming par-
ticles through the free boundary as the simulation goes on, and then the number
of particles mapped to the processor will differ among the processors. If the dif-
ference of the numbers among the processors becomes large, the load balance
is not sufficient and we need to transfer data of particles among the processors
(But this situation does not take place almost). The necessary data transfer is
the reduction operation when “Open system” and “Particle gather” operations
are performed (See Sec. 3 and Sec. 4 in details).

334 H. Ohtani et al.

The original code for magnetic reconnection in an open system was written
in FORTRAN77 without considering the parallel algorithm. We first rewrote
it in Fortran90. Second, we changed the number of subscripts for the array of
the particles from one to two. Third, we invented a new algorithm of the free
boundary condition of particles for parallelisation (See Sec. 3). These renewals
were so hard that it took about a half of year, and finally the original code
was transformed into the completely different one. Then, we inserted instruction
directives of HPF into the code, and tuned it up for a larger-scale simulation
(See Sec. 4). The insertion of the instruction directives was easy, because HPF
compiler handles the distribution and scheduling of processing, and the control
of communication according to the instruction directives.

In this way, we distribute the array and calculation for the distributed parallel
algorithm.

3 Boundary Condition for Particle Variables

The free boundary condition for particles is the key point of the simulation in
the open system [14]. Besides, we need to elaborate its algorithm for parallel
computing.

3.1 Upstream Boundary

The upstream boundary is supposed to be the ideal magnetohydrodynamic
(MHD) region where both ions and electrons are frozen in the magnetic field.
Thus, the plasma inflow is supplied with E ×B drift velocity from the upstream
boundaries into the simulation domain. The input particle velocity is controlled
by a shifted Maxwellian with the initial constant temperature, where the average
velocity u

(d)
i and density ρ

(d)
i are

u
(d)
i =

Ei × Bi

B2
i

, (1)

ρ
(d)
i = ρ

(d),t=0
i

Bi

Bt=0
i

, (2)

where i is the grid number. The density ρ
(d)
i is calculated at every grid point on

the upstream boundary, and the number of input particles N
(d)
i is obtained from

the product of ρ
(d)
i and volume element ΔV . As particles of N

(d)
i must obey the

specific shifted Maxwellian to preserve locality, data transfer is needed if N
(d)
i is

distributed. Instead of the distribution of N
(d)
i , the grid number is distributed

cyclically to the parallelised process as follows.

real(kind=8),dimension(nx)::n_d,n_d0,b_d,b_d0
real(kind=8),dimension(nx,np)::np_d
!hpf$ distribute (:,block):: np_d

do i=1,nx

Development of Electromagnetic Particle Simulation Code 335

n_d(i)=n_d0(i)*b_d(i)/b_d0(i)
enddo

!hpf$ independent
do ip=1,np
do i=1,nx
np_d(i,ip)=0

enddo
enddo
do i=1,nx
nn=mod(i,np)+1

!hpf$ on home(np_d(:,nn))
np_d(i,nn)=n_d(i)

enddo

Where nx is the dimension size of space, np is the number of parallelised pro-
cesses, n d(nx) is N

(d)
i , n d0(nx) is N

(d),t=0
i (= ρ

(d),t=0
i ΔV), b d(nx) is Bi, and

b d0(nx) is Bt=0
i . The shifted Maxwellian is also computed on every parallelised

process. Using this algorithm, much data transfer does not take place.

3.2 Downstream Boundary

Figure 4 schematically illustrates the free boundary condition at downstream for
particles. At the open downstream boundary, particles can not only go out of but
also come into the system across it. The information of the outgoing particles
(Nout) can be obtained directly by observing their motion at the boundary. We
must define the number of particles which should go into the system (N in), and
the positions and velocities of these incoming particles as boundary condition in
the open system.

As the first step, we show how to calculate the number of incoming particles
across the open downstream boundary in the distributed parallel algorithm. In
every parallelised process (Ip), we first calculate the average particle velocity
vx(Ip) and number density n(Ip) in region I, which we choose with width of six
grids (6Δx) on the boundary. Second, we obtain the net number of outgoing
particles (Nnet) passing across the boundary during one-time step Δt in the
system under reduction operation, as

Nnet = −
Np∑

Ip=1

n(Ip)vx(Ip)Δtyb, (3)

where yb is the width of region I, and Np is the number of parallelised processes.
According to the charge neutrality condition, we assume that the net numbers
of electrons and ions are the same. So the numbers of incoming electrons and
ions to the system are given as

N in
e = Nout

e − Nnet, N in
i = Nout

i − Nnet. (4)

336 H. Ohtani et al.

�

�

	

�
	

�

yb

Nout

N in

Nnet

1 2

I

Fig. 4. Illustration of the free boundary condition for particles

Then, we distribute N in
e and N in

i to every parallelised process as

nin
e (Ip) = N in

e /Np, nin
i (Ip) = N in

i /Np. (5)

As the next step, the positions and the velocities of the incoming particles
have to be assigned. We assume that the physical state outside is the same as
that in region I. In other words, the particle distribution function outside is
the same as that in region I. Then, the positions and velocities of the incoming
particles can be defined by using the information of particles crossing surface 2
from left to right (The arrows in Fig. 4). In this distributed parallel algorithm,
the information of electrons and ions crossing surface 2 is kept in each parallelised
process, and we use them for positions x

Ip

j and velocities v
Ip

j of input electrons
and ions, respectively.

Using these algorithms at the upstream and downstream boundary condi-
tion, respectively, data transfer is necessary only in the reduction operation, and
much data transfer, such as data transfer of particle position and velocity, is not
needed.

4 Gather Process

The vector algorithm makes an error in the calculations of the charge and cur-
rent densities in the particle gather process due to a recurrence of array access,
when several particles exist in the same cell. To avoid this error, we introduce
a temporary array assigning the particle information to different array indices
to avoid any recurrences. This temporary array has three subscripts in the one-
dimensional simulation case, such as vector mv, grid number nx, and parallelised
process np (w(mv,nx,np)). Due to the vector subscript, the vector operation
can be performed in this gather process [22]. In the HPF process subscript, be-
cause the distributed array w is mapped onto the same HPF process on which
the distributed arrays of particles (position and velocity) are also mapped, this
execution of the loop should be parallelised without data transfer. The concrete
code is shown as follows.

real(kind=8),dimension(nm,np):: x
real(kind=8),dimension(mv,nx,np):: w
real(kind=8),dimension(nx):: rho

Development of Electromagnetic Particle Simulation Code 337

!hpf$ distribute (:,BLOCK):: x
!hpf$ distribute (:,:,BLOCK):: w
!hpf$ independent

do ip=1,np
do m=1,nm,mv
do k=1,min(mv,nm-m)
j=m+k-1
ix=int(x(j,ip)/dx+0.5)
xx=x(j,ip)/dx-ix
s1=(0.5 -xx)**2/2
s2=(0.75-xx**2)
s3=(0.5 +xx)**2/2
w(k,ix-1,ip)=w(k,ix-1,ip)+q*s1/dx
w(k,ix, ip)=w(k,ix, ip)+q*s2/dx
w(k,ix+1,ip)=w(k,ix+1,ip)+q*s3/dx
enddo

enddo
enddo

!hpf$ independent,reduction(+:rho)
do ip=1,np
do i=1,nx
do k=1,mv
rho(i)=rho(i)+w(k,i,ip)

enddo
enddo

enddo

Where nm is the number of particles mapped in one PE, dx is the grid length
Δx, q is the particle charge q, x(j,ip) is the particle position xIp

j , and rho(i)
is the charge density ρi. However, in a large-scale three-dimensional simulation
case, this temporary array needs a lot of memory size, because the size of the
first vector subscript of the array w should be 256, for the vector operation with
full efficiency, and the number of the grid subscript becomes three. In contrast,
when we use the compiler-directive listvec, which is available on an NEC SX
vector computer, we can decrease the memory size of the temporary array and
perform the vector calculation [23,24]. This compiler-directive can vectorise an
assignment statement in a DO loop of the immediately following executable
statement, when the same array element with the same vector subscript appears
on both of the left and right of the assignment statement [25]. As such, we can
drop the vector subscript from the temporary array w. Moreover, the operation
amount of the reduction of temporary array can be reduced along the vector
subscript when rho is calculated.

real(kind=8),dimension(nm,np):: x
real(kind=8),dimension(nx,np):: w
real(kind=8),dimension(nx):: rho

338 H. Ohtani et al.

!hpf$ distribute (:,BLOCK):: x,w
!hpf$ independent

do ip=1,np
do m=-1,1

!cdir listvec
do j=1,nm
ix=int(x(j,ip)/dx+0.5)
xx=x(j,ip)/dx-ix
if(m.eq.-1) s1=(0.5 -xx)**2/2
if(m.eq. 0) s1=(0.75-xx**2)
if(m.eq.+1) s1=(0.5 +xx)**2/2
ix=ix+m
w(ix,ip)=w(ix,ip)+q*s1/dx

enddo
enddo
enddo

!hpf$ independent,reduction(+:rho)
do ip=1,np
do i=1,nx
rho(i)=rho(i)+w(i,ip)

enddo
enddo

Note that this vectorisation may cause performance down in the case of the
array subscript having some elements with the same value. That is, if particles
whose indices are close to one another exist in the same cell, the vector cal-
culation is not performed; rather, the scalar calculation is. As such, we should
randomise the particle indices sufficiently, when we make the initial particle dis-
tribution. On the application of the compiler-directive listvec, a restriction is
imposed. Namely, in a DO loop of the immediately following executable state-
ment, an operation to w must be performed only one time. As such, a do m loop
is inserted newly.

To estimate the effect of the compiler-directive listvec, we program a code
only for the particle gather process and test-run both in the cases of (a) vector
subscript and (b) listvec. In this simple code, three-dimensional calculation is
performed. Calculation parameters are as follows: The number of active particles
is 60 million, the grid numbers are 128×64×128, and the number of calculation
times is 100. The computer system we use is the “Plasma Simulator” at the
National Institute for Fusion Science [26]. The “Plasma Simulator” is composed
of 5 nodes of an NEC SX-7 vector parallel supercomputer. Its total memory size
and logical peak performance are 1,280Gbytes and 1,412GFlops, respectively.
The number of PE per one node, the number of vector pipe lines, and the data
transfer speed between nodes are 32, 4, and 8Gbps, respectively. The number of
HPF processes is 1, and the number of tasks for micro parallelisation is 32. The
calculation performance is listed in Table 1, where the floating-point arithmetic
per second (GFlops) is defined as the ratio of the FLOP count to execution

Development of Electromagnetic Particle Simulation Code 339

Table 1. Calculation performance of (a) vector subscript case and (b) listvec case

Case (a) (b)

Memory (GB) 226.2 7.4

Vector length 254.3 254.5

Vector operation ratio (%) 99.25 99.80

Time (sec) 179.8 137.62

GFlops 24.88 55.74

time. FLOP count, execution time, vector length and vector operation ratio are
obtained from run-time information of the NEC SX computer.

The memory size of case (b) is 3.2% of that of case (a). The reason why
the ratio of them is not 1/256 as follow: It is sure that a memory size of the
temporary array w becomes 1/256, but a memory size of the particle values, such
as, 6 components of position and velocity, charge and mass, and a memory size
of the stack area for the micro task parallelisation do not change. The memory
size of case (b) is almost occupied by them. (The memory size of array of the
particles and stack area are 3.6Gbytes and 2.2Gbytes, respectively). The vector
length is almost the same in the cases (a) and (b). The vector operation ratio
of the case (b) is about 0.55 points larger than that of the case (a). The vector
operation is vastly improved from the viewpoint of vector operation ratio. The
executed time in case (b) is smaller than that in case (a), and the value of GFlops
of case (b) also becomes larger compared with that of case (a). However, this
increase of GFlops is a little unnatural: GFlops value in case (b) is about 2.24
times as much as in case (a), while the executed time in (b) is only 0.765 times
as long as in case (a). The reason is that extra operations are counted in the
listvec DO loop (FLOP count in case (b) is 1.7 times as much as in case (a)).

As a consequence, it becomes possible to perform a much larger-scale sim-
ulation due to using the compile-directive listvec because the memory size of
temporary arrays dramatically reduces compared with that of typical method.

5 Performance

To investigate the execution performance of the simulation code developed in
this paper (the code is tuned up moreover), we test-run under various parallel
calculation condition, such as a different number of parallelisation (PE), nodes,
and so on (Table 2). Calculation parameters are as follows: The number of par-
ticles is 60 million, the number of active particles is 24 million at initial time,
the numbers of grids are 128 × 64 × 128 and the number of time steps is 1000.
In the Table 2, the load balance of PE is defined as the ratio of the two kinds
of concurrent time. One is the time period in which more than one processors
are concurrently performed, and the other is for the same number of processors
as that of micro tasks in one process, where concurrent time is obtained from
run-time information of the NEC SX computer. The load balance of process is

340 H. Ohtani et al.

Table 2. Calculation performance

Case (1) (2) (3) (4) (5) (6) (7)

Compiler f90 hpf hpf hpf hpf hpf hpf

Number of nodes 1 1 1 1 2 3 5

Number of PE 32 32 32 32 32 96 160

Number of HPF processes - 1 2 4 2 6 10

Number of micro tasks 32 32 16 8 16 16 16

Memory (GB) 44.93 45.18 47.13 53.25 48.26 131.25 222.50

Time/step (sec) 1.808 1.974 1.929 2.022 1.744 1.144 0.996

Vector operation ratio (%) 99.69 99.62 99.60 99.58 99.61 99.28 99.03

Vector length 247.3 247.7 243.7 236.5 243.6 234.14 227.95

Gflops 45.36 42.42 41.97 41.71 46.29 83.09 98.69

Ratio to peak performance (%) 16.1 15.1 14.9 14.8 16.4 9.8 7.0

Load balance of PE 85.4 83.8 86.5 87.8 87.6 85.2 82.3
(in one process) (%)

Load balance of process - - 94.8 95.4 94.2 91.3 89.5
(between processes) (%)

the ratio of the smallest and largest concurrent times, which are the executed
times using more than one processors, among processes.

We first make a comparison between f90 and hpf compilers ((1) and (2) in
Table 2). The calculation time per step and GFlops in f90 compiler are smaller
and larger than that of hpf, respectively. And the load balance of PE in hpf case
is smaller than that in f90 case. But the difference between them is not so large.
The vector operation ratio and the vector length are almost the same. From the
comparison of these values, it is reasonable to suppose that the efficiency of the
HPF program bears comparison with that of the f90 program.

Next, we change the number of HPF processes keeping the number of PE
in one node (Compare (2), (3), and (4) in Table 2). In the node, a micro task
parallelisation is performed. In this test-run, when the number of HPF processes
increases, the number of the micro task parallelisation reduces. When the number
of HPF processes changes from one to two, the executed time reduces, while when
it changes from two to four, the time per step increases. However, the differences
among them are very small. From these results, it is found that the efficiency of
HPF is almost the same favourable as that the micro task parallelisation, and
that 16 is the best suitable for the number of micro tasks in one HPF process in
this simulation code. Note that memory size increases when the number of HPF
processes increases, because the each process has the full field information.

Third, we consider the influence of data transfer among the HPF processes. To
study it, we test-run under the conditions of two HPF processes in one node ((3)
in Table 2), and two HPF processes in two nodes ((5) in Table 2). The former
case is data transfer in the node, while the latter is data transfer between nodes.
The executed time in case (5) is smaller than that in case (3), although the other
efficiency values are almost the same. This result is, at a glance, strange, because
the speed of data transfer among the nodes in case (5) might be slower than that

Development of Electromagnetic Particle Simulation Code 341

of within the node in case (3). The reason for this strange result is considered to
be that memory conflict takes place in one node in case (3). The only reduction
operation is performed when data transfer occurs in this simulation code, as
mentioned in Secs. 2, 3 and 4, and it is concluded that data transfer is carried
out efficiently.

To sum up the efficiency of this simulation code, when the number of PE
increases ((6) and (7) in Table 2), the vector operation efficiency is maintained
good, while the load balances of PE and nodes get worse. This is the general
tendency. Since all field data are duplicated on each parallel process for data
layout, the parallel efficiency becomes worse when the number of PE increases.
Consequently, it is reasonable to suppose that this code is efficient.

6 Summary

To investigate the behaviour of magnetic reconnection, both from the microscale
viewpoint for electron and ion dynamics, and from the macroscale viewpoint for
the dynamic change of field, we developed a three-dimensional full electromagnetic
particle simulation in an open boundary system. Moreover, we improve it using
High Performance Fortran (HPF) for a distributed memory and multi-processor
computer system. Using HPF program language, the distribution and scheduling
of processing, and the management of communication are handled by HPF com-
piler according to the instruction directives. It is considered that this language is
suitable for development of simulation code from the view point of programming.

It is of significance in the development of simulation code for a distributed
parallel algorithm to decrease the amount and frequency of data transfer. In
the simulation code developed in this paper, each process has the same full
field information, and the information of particles is distributed. Every process
controls only the particles in its own process, which going out of and coming into
the system through the boundary. Data transfer takes place when the reduction
operation is performed. These algorithms make the load balance proper and
reduce the communication between processes.

A temporary array is required in the particle gather process, in which the
current and charge densities are calculated from the particle position and velocity
for a vector operation without much data transfer. However, this temporary array
needs a lot of memory size in a large-scale simulation. In this paper, we succeed
in dramatic reduction of the temporary array memory size and improvement of
vector operation performance using the compiler-directive listvec.

As a consequence, we can make up an efficient simulation code and make it
possible to perform a larger-scale simulation. Actually, we have performed the
simulation with 800 million particles in 512 × 128 × 64 meshes, and are opening
new frontier in this research field.

Acknowledgments

This work was performed with the support and under the auspices of the National
Institute for Fusion Science (NIFS) Collaborative Research Program.

342 H. Ohtani et al.

References

1. Biskamp, D.: Magnetic Reconnection in Plasamas. Cambridge University Press,
Cambridge (2000)

2. Drake, J.F., Lee, Y.C.: Kinetic theory of tearing instabilities. Phys. Fluids 20 (1977)
3. Ono, Y., Yamada, M., Akao, T., Tajima, T., Matsumoto, R.: Ion acceleration and

direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76
(1996)

4. Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Trintchouk, F.: Experimental
investigation of the neutral sheet profile during magnetic reconnection. Phys. Plas-
mas 7 (2000)

5. Hsu, S., Fiksel, G., Carter, T.A., Ji, H., Kulsrud, R.M., Yamada, M.: Lo-
cal measurement of nonclassical ion heating during magnetic reconnection.
Phys. Rev. Lett. 84 (2000)

6. Sato, T., Hayashi, T.: Externally driven magnetic reconnection and a powerful
magnetic energy converter. Phys. Fluids 22 (1979)

7. Shay, M.A., Drake, J.F., Rogers, B.N., Denton, R.E.: Alfvnic collisionless magnetic
reconnection and the hall term. J. Geophys. Res., [Space Phys.] 106 (2001)

8. Kuznetsova, M., Hesse, M., Winske, D.: Collisionless reconnection supported
by nongyrotropic pressure effects in hybrid and particle simulations. J. Geo-
phys. Res., [Space Phys.] 106 (2001)

9. Hesse, M., Birn, J., Kuznetsova, M.: Collisionless magnetic reconnection: Electron
processes and transport modeling. J. Geophys. Res., [Space Phys.] 106 (2001)

10. Birn, J., Hesse, M.: Geospace environment modeling (gem) magnetic reconnec-
tion challenge: Resistive tearing, anisotropic pressure and hall effects. J. Geo-
phys. Res., [Space Phys.] 106 (2001)

11. Ma, Z.W., Bhattacharjee, A.: Hall magnetohydrodynamic reconnection: The
geospace environment modeling challenge. J. Geophys. Res., [Space Phys.] 106
(2001)

12. Horiuchi, R., Sato, T.: Particle simulation study of driven magnetic reconnection
in a collisionless plasma. Phys. Plasmas 1 (1994)

13. Horiuchi, R., Sato, T.: Particle simulation study of collisionless driven reconnection
in a sheared magnetic field. Phys. Plasmas 4 (1997)

14. Pei, W., Horiuchi, R., Sato, T.: Long time scale evolution of collisionless driven
reconnection in a two-dimensional open system. Phys. Plasmas 8 (2001)

15. Pei, W., Horiuchi, R., Sato, T.: Ion dynamics in steady collisionless driven recon-
nection. Phys. Rev. Lett. 87 (2001)

16. Ishizawa, A., Horiuchi, R., Ohtani, H.: Two-scale structure of the current layer con-
trolled by meandering motion during steady-state collisionless driven reconnection.
Phys. Plasmas 11 (2004)

17. Horiuchi, R., Sato, T.: Three-dimensional particle simulation of plasma instabilities
and collisionless reconnection in a current sheet. Phys. Plasmas 6 (1999)

18. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-
Hill, New York (1985)

19. Fox, G.C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: Solving
Problems on Concurrent Processors. Prentice-Hall, Englewood Cliffs (1988)

20. Liewer, P., Decyk, V.: A general concurrent algorithm for plasma particle-in-cell
codes. J. Comput. Phys. 85 (1989)

21. Martinoa, B.D., Briguglio, S., Vladb, G., Sguazzeroc, P.: Parallel pic plasma sim-
ulation through particle decomposition techniques. Parallel Computing

Development of Electromagnetic Particle Simulation Code 343

22. Anderson, D.V., Horowitz, E.J., Koniges, A.E., McCoy, M.G.: Parallel computing
and multitasking. Comp. Phys. Comm. 43 (1986)

23. Suehiro, K., Murai, H., Seo, Y.: Integer sorting on shared-memory vector paral-
lel computers. In: ICS 1998. Proceedings of the 12th international conference on
Supercomputing (1998)

24. Sugiyama, T., Terada, N., Murata, T., Omura, Y., Usui, H., Matsumoto, H.: Vec-
torized particle simulation using listvec compile-directive on sx super-computer.
IPSJ 45 (2004)

25. NEC Corporation: FORTRAN90/SX Programmer’s Guide. NEC Corporation
(2002)

26. Theory and Computer Simulation Center, National Institute for Fusion Science,
Japan(2005), http://www.tcsc.nifs.ac.jp/mission/

http://www.tcsc.nifs.ac.jp/mission/

Development of Three-Dimensional Neoclassical

Transport Simulation Code with High
Performance Fortran on a Vector-Parallel

Computer

Shinsuke Satake1, Masao Okamoto2, Noriyoshi Nakajima1,
and Hisanori Takamaru3

1 National Institute for Fusion Science, Toki, Japan
satake@nifs.ac.jp,

2 Department of Information Processing Education, Chubu University, Kasugai,
Japan

3 Department of Computer Science, Chubu University, Kasugai, Japan

Abstract. A neoclassical transport simulation code (FORTEC-3D) ap-
plicable to three-dimensional configurations has been developed using
High Performance Fortran (HPF). Adoption of computing techniques
for parallelization and a hybrid simulation model to the δf Monte-Carlo
method transport simulation, including non-local transport effects in
three-dimensional configurations, makes it possible to simulate the dy-
namism of global, non-local transport phenomena with a self-consistent
radial electric field within a reasonable computation time. In this paper,
development of the transport code using HPF is reported. Optimization
techniques in order to achieve both high vectorization and paralleliza-
tion efficiency, adoption of a parallel random number generator, and also
benchmark results, are shown.

1 Introduction

In research activities on magnetic confined fusion plasma, one of the basic and
important issues is to evaluate the confinement performance of the plasma. The
loss mechanisms of plasma can be classified roughly into two categories. One
is caused by orbit motion of charged particles and their diffusion by Coulomb
collision, and the other is caused by several types of instabilities occurring in
plasmas such as MHD instabilities and micro-turbulences. In this paper, we
focus on the development of transport simulation code for the former transport
process, which is called “neoclassical transport”[1,2] in fusion research activities.

In Fig. 1, two typical configurations of plasma confinement devices are shown.
The nested surfaces shown in the figures are called “magnetic flux surfaces”,
which consist of twisting magnetic field lines around those surfaces. Fig. 1 (a) is
a tokamak configuration, which has a symmetry in the toroidal direction, and (b)
is a helical configuration of Large Helical Device (LHD)[3] in National Institute
for Fusion Science (NIFS), Japan, which is a typical configuration of so-called

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 344–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Development of Three-Dimensional Neoclassical Transport Simulation Code 345

heliotron devices[4]. The coordinate system (ρ, θ, ζ) (magnetic coordinates) we
use here is also shown in Fig. 2. Here, ρ =

√
ψ/ψedge is a normalized radius,

θ is the poloidal angle, and ζ is the toroidal angle. ψ is the toroidal magnetic
flux inside a flux surface ρ =const, and ψedge is the value of ψ at the outermost
surface, respectively. The change of magnetic field strength |B| along a field line
is illustrated in Fig. 3. In the tokamak case, the modulation of |B| is caused by
its toroidicity. In a heliotron configuration, modulation of |B| caused by helically
winding coils is superimposed on the toroidal modulation.

(a) (b)

Fig. 1. Cut images of the magnetic flux surfaces (a) tokamak (two-dimensional) con-
figuration, (b) Large Helical Device (LHD) configuration

The guiding center velocity of a charged particle can be decomposed as v =
v‖b + vE + vd, where v‖ is the parallel velocity, b = B/B, B is the magnetic
field, vE = E × B/B2, E = −∇Φ is the static electric field in plasma, and vd

is the drift velocity, which is caused by the gradient and curvature of magnetic
field. Since Φ is considered to be constant on a flux surface, i. e., Φ = Φ(ρ), the
E×B direction is along the flux surface. Therefore, only the drift velocity vd has
a component in the radial direction. Usually the dominant component of parti-
cle motion is the parallel motion v‖b. On the other hand, the magnetic moment
μ = mv⊥2/2B is a constant of the motion, where v⊥2 = v2−v‖2, mv2/2 = E−eΦ,
and E is the total energy of a charged particle. Since μB ≤ mv2/2, particles with
large μ are trapped in a weak-B region as illustrated in Fig. 3. Compared with
passing particles, trapped particles have a large excursion of orbit in radial direc-
tion, called “orbit width” Δρ, caused by the drift motion. Neoclassical transport
theory treats the enhancement of transport by these trapped particles in torus
plasmas.

The radial electric field evolves in time so that the radial ion and electron par-
ticle fluxes Γi, Γe satisfy the ambipolar condition Γi(ρ, Eρ) = Γe(ρ, Eρ), where
Eρ = −dΦ/dρ. Compared with tokamak cases, particle orbit in helical configura-
tions becomes complicated as shown in Fig. 3(b), and it is difficult to be treated
exactly by an analytic way. Since neoclassical ion flux in helical plasma strongly
depends on vE , the self-consistent radial electric field by treating properly the

346 S. Satake et al.

ρ θ

ζ magnetic field lines

Fig. 2. Illustration of a magnetic coordi-
nates (ρ, θ, ζ). Flux surface ρ =const. is
formed by twisting magnetic field lines.

(a)

(b)

B

length along field line

(i) passing

(ii) trapped

(i) passing

(ii) toroidally trapped

(iii) helically trapped

Fig. 3. Illustrations of guiding center mo-
tions in magnetic field : (a) in a toka-
mak configuration and (b) in a helical
heliotron-type configuration

particle orbits in a three-dimensional magnetic field is a key to evaluate transport
level correctly in helical plasma. Another point which is difficult to treat in
analytic way is the non-local effect on transport brought by the finiteness of
orbit width (finite-orbit-width (FOW) effect)[5]-[7]. Conventional neoclassical
theory has been established under the assumption of the local transport model
(small-orbit-width limit) in which Δρ is treated as a higher-order small value. In
order to evaluate precisely the neoclassical transport level in a realistic plasma,
the FOW effect is needed to be considered.

To simulate the dynamic transport process and formation of an ambipolar
electric field, including non-local effects in helical configurations, we have been
developing the δf Monte Carlo code FORTEC-3D[8]. The δf method[9,10] di-
rectly solves the drift-kinetic equation, which describes the time evolution of
plasma distribution function, by using a Monte Carlo technique. The outline of
the code is explained in Sec. 2. 1. Since electron motion is much faster than that
of ions while the FOW effect on electron transport is negligible, it is inappropriate
to treat both ions and electrons by the δf method, in practice. In our simulation
model, only the ion transport is solved by the δf method, while the electron
transport is obtained from a reduced kinetic equation solver GSRAKE[11,12],
which is more compact than FORTEC-3D but does not include the non-local
effect. The adoption of this hybrid simulation model enables us to simulate neo-
classical transport including the FOW effect of ions and self-consistent evolution
of Eρ within a reasonable computation time.

To carry out a simulation in the full volume of a helical configuration like LHD
by the δf method, a large amount of memory and high calculation performance
are needed. We have developed FORTEC-3D code by using High Performance
Fortran (HPF)[13] in order to achieve both high parallelization and vectorization

Development of Three-Dimensional Neoclassical Transport Simulation Code 347

efficiency as well as to develop the code easily, on the SX-7 supercomputer sys-
tem (NEC Corporation, Japan) at the Theory and Computer Simulation Center,
NIFS. The system has five nodes connected by high-speed network switches, and
each node has 32 PE (processor elements) and 256GB memory. The total peak
performance is 1412 GFLOPS/160 PE. Parallelization of codes with HPF can
be achieved by specifying the data mapping on the distributed memory and in-
structing the parallel calculation by embedding HPF directives (in the form of
!HPF$ distribute, !HPF$ independent, etc.), which is easier than program-
ming a parallelized code using Fortran with Message Passing Interface (MPI).
We have also adopted a parallelized pseudorandom number generator with a
preferable vectorization efficiency because a non-parallelized random number
generator will be a bottleneck of Monte Carlo simulation. Since the Monte Carlo
method itself is suitable for parallel computing, as it basically treats independent
events, we have achieved a high computation performance on the SX-7 system, as
fast as 30% of the peak performance at the full five-node, 160 PE. The technique
to optimize the code and some benchmark results, both in two-dimensional and
three-dimensional simulations, are shown in Sec. 2. 2 and 2. 3. Section 3 contains
a discussion and a summary.

2 Development of FORTEC-3D Code with HPF

2.1 Outline of FORTEC-3D Code

In FORTEC-3D, the drift-kinetic equation for the deviation of plasma distri-
bution function from local Maxwellian, δf = f − fM , is solved by using the
two-weight scheme[9,10]. The flowchart of FORTEC-3D code is shown in Fig. 4.
In the two-weight scheme, two weights w and p are introduced which satisfy the
relations wg = δf and pg = fM , where g is the distribution function of simu-
lation markers. Each marker moves like a charged particle in plasma, and time
evolution of marker weights are solved. The effect of collisions is implemented
numerically by random kicks of marker velocity. In FORTEC-3D, the time evolu-
tion of radial electric field Eρ is solved according to ∂Eρ/∂t = −e [Γi − Γe] /ε⊥,
where subscripts i and e describe particle species, ε⊥ is the dielectric constant in
the torus plasma. As mentioned in Sec. 1, the hybrid simulation model for eval-
uating neoclassical particle fluxes is adopted, in which only Γi is solved by the
δf method while the table of Γe(ρ, Eρ), which is prepared by using GSRAKE, is
referred to in FORTEC-3D. Since the collisionality of fusion plasma is very low,
collision operator is solved once after nss times orbit calculation using 4th-order
Runge-Kutta method. The field particle operator is introduced to retain the
conservation property of the Fokker-Planck collision term. The marker weights
w and p are averaged in the phase space (ρ, θ, ζ, v‖, v⊥) to reduce the statis-
tical noise in the simulation. Markers escaped from the simulation region are
recycled, and the assignment procedure of new weights for the recycled markers
is integrated into the weight-averaging procedure[14]. The procedures with star
marks in Fig. 4 contain a part to take some ensemble averages and reflect them
on the time evolution of the simulation, which make FORTEC-3D different from

348 S. Satake et al.

calculate radial fluxes
and electric field

time evolution of
marker orbits and weights

Orbit

every nss stepsCollision

assign markers into
(ρ, θ, ζ) cells

test particle operator

field particle operator

random number
generator

Weight average
Marker recycle

assign markers into
(ρ, θ ,ζ ,v ,v) cells||

calculate averaged
weight field

marker
recycling()

modify weights toward
the averaged value

Fig. 4. Flowchart of FORTEC-3D code. Procedures with star mark involve reduction
calculation and communication between HPF processes.

a simple Monte Carlo code that treats completely independent phenomena. In
parallel computing, as we will explain in the next subsection, communication
among parallel processes is needed in these procedures.

2.2 Optimization

Parallelized random number generator. On implementation of test particle
collisions in a Monte Carlo way, a long sequence of random numbers {Xi} is
needed. Though there are many types of pseudorandom number generators used
in simulations, we need to use the one which has both a good statistical properties
as a random numbers and ability to generate random numbers as fast as possible.
Taking account of the above points, we have adopted Mersenne Twister[15] (MT)
in FORTEC-3D. We have also adopted the Dynamic Creation scheme[16] to
create independent sets of MT, which enables generating independent random
number sequences in parallel.

At first, we have tuned the subroutine of MT to achieve high vectorization
efficiency. The original source code of MT returns one random number for each
calling. We made a subroutine grnd(rnd,n) returns n sequence of MT random
number in the array rnd(1:n). It is known that MT has a long period of pseu-
dorandom number sequence, which is equal to Mersenne prime number 2p − 1,
where p = 521, 4423, 9941, 19937, and so on. It is found that, as the index p
becomes larger, the vector length becomes longer. Therefore, we decided to use
p = 19937 version of MT, which is longest one available for generating 32 bits
pseudorandom numbers. The vector length of grnd becomes 216 (max=256 on
SX-7), and the vector operation ratio is 99.5%.

For parallelization on our SX-7, 160 PE system, we have created 160 data sets
which specify the form of recurrences in MT. MT characteristic polynomials
for each data set are independent each other, and therefore the sequences of
random number are also independent each other. It took about 4 days to create

Development of Three-Dimensional Neoclassical Transport Simulation Code 349

160 independent MT data sets on an Athlon XP desktop PC. Subroutine grnd
is parallelized by using HPF. If one needs to generate total n pseudorandom
numbers in an HPF code, grnd(rnd,ni) is called, where ni = n/ncpu. Then
each HPF process refers to different data sets and creates ncpu independent
sequences of random numbers into rnd(1:ni,1:ncpu) at once in parallel, where
rnd is distributed on ncpu HPF processes. The running time of parallel MT to
generate total 1.924 × 107 random numbers is shown in Fig. 5, where each PE
generates 1.924 × 107/ncpu numbers. It can be seen that the overhead time cost
for parallelizing MT by HPF is small even if ncpu becomes larger. Because of the
good parallelization efficiency of the grnd routine, the ratio of time consumption
of grnd on the total simulation time of FORTEC-3D is suppressed as small as
0.2%.

The statistical independence of parallelized MT random numbers was not
evaluated well. On purpose to check it, we devised a test scheme, named “checker-
board test”, which can check the independence of two sequences of random
numbers {Xi} and {Yi} which are uniformly distributed, as illustrated in Fig. 6.
In the test, N = n × n cells are considered, and the flag at the cell (Xi, Yi)
is turned on at i-th step and the number of cells m(i) which are remain off is
counted. If {Xi} and {Yi} are independent, the mean and variance of m(i) at
i-th step become

E[m(i)] = N

{
1 −

(
N − 1

N

)i
}

� N exp(−t), (1)

σ2[m(i)] = N

{
N + (N − 1)

(
N − 2

N

)i

− (2N − 1)
(

N − 1
N

)i
}

, (2)

d(t) = {m(t) − E[m(t)]} /σ[m(t)], (3)

where t is the normalized time step t = i/N . By plotting d(t) as shown in
Fig. 7, one can easily check if two sequences {Xi} and {Yi} have an inappro-
priate correlation or not. If {Xi} and {Yi} are independent, the amplitude of
d(t) will not grow as the time step goes on. We have checked every 160C2 com-
binations of independent MT created from Dynamic Creation scheme in this
way by using N = (214)2 checker-board and found that there is no combination
of random number sequences which has an inappropriate correlation. Moreover,
we have also checked some other statistical values such as the average ratio of
time steps on which the deviation of m(i) from the mean becomes larger than
±σ, ±2σ, ±3σ, and the average steps tend to fill all the N cells. The results are
shown in Table 1. One can see that the parallelized MT random numbers follow
the expected statistical properties.

Parallelization of FORTEC-3D. On SX-7 5 node system, there are two cases
to parallelize a code, as shown in Fig. 8. In Fig. 8(a), an HPF process is exe-
cuted on a PE with a distributed memory. On the other hand, in the model (b),
an HPF process is executed on multiple PEs with a shared memory, and each
HPF process is further parallelized among those PEs which shares the memory.

350 S. Satake et al.

0 32 64 96 128 16010−3

10−2

10−1

0

50

100

150

T
im

e
[s

]

Number of PE (n)

T
im

e(1P
E

) / T
im

e(n P
E

)
Fig. 5. Time consumption of pseudoran-
dom number generators to generate to-
tal 1.924 × 107 random numbers by the
parallelized Mersenne twisters of which
periods is 219937 − 1. Solid line is the
calculation time and dashed line shows
the speedup ratio; Time(1 PE) / Time(n
PE), respectively. Dotted line is the ideal
maximum of the speedup.

n

n

total : N=n2

X

Y

i

i

Yi

X i

Yi

iX

(i) (ii)

(iii)(iv)

y

Fig. 6. A diagram of the checker-board
test. (i) Initially, all the flags of the cells
are off. (ii) Generate two independent
random numbers {Xi}, {Yi} and turn on
the flag at (Xi, Yi). (iii) Continue the pro-
cedure and count the number of the flags
that are still off. (iv) The flag does not
change if (Xi, Yi) hits the cell of which
flag has already been turned on.

Table 1. statistical check for parallel MT

|m − E[m]| ≥ σ 2σ 3σ time steps tend

test result of 160C2 parallelized Mersenne Twisters

0.3191 0.04588 0.00288 19.992

expected value if two MT are independent

0.3173 0.04550 0.00270 19.408

The shared memory parallelization in an HPF process is automatically done (or
using embedded directives like !CDIR PARALLEL DO) by SX-7 Fortran compiler.
Since non-distributed arrays in HPF program case (b) is shared by several PEs,
memory consumption and the number of communication events in the model
(b) is expected to be smaller than in the model (a). If we adopt the model (b),
however, it is needed to optimize the ratio of HPF processes to shared memory
processes in a node (for example 16 : 2, 8 : 4, etc.) to achieve the best running
performance of a parallelized code, and coding such a hybrid parallel program
is more difficult than in the one-by-one model (a) to tune the parallelization.
Moreover, there is a possibility that the bank-conflict will increase in the shared
memory parallelization. Therefore, we have adopted the model (a) for FORTEC-
3D with HPF. The consumption of memory in the one-by-one model would be

Development of Three-Dimensional Neoclassical Transport Simulation Code 351

Fig. 7. Example of the results of checker-board test (between parallel MT #1 and #34
to 37). The horizontal axis is the normalized time step t = i/N and the vertical axis
is the normalized deviation of the number of remaining cells from the mean d(t) =
(m(t) − E[m(t)])/σ(t). The triplet on each graph are the proportions of time steps on
which m(t) deviates ±σ, ±2σ, ±3σ from the mean, respectively.

PE

MEM

(b)

PE

MEM

(a)

1 1 1 1..... 1 1 1 1.....

.....

16 16 16 16

shared by 16 PE

1 HPF process1 HPF process

distributed for each PE

Fig. 8. A diagram of distributing processors and memory in running HPF parallelized
code. (a) an HPF process is executed on a PE with a distributed memory.(b) HPF
processes with shared memory parallelization on each HPF process. Note that the
diagram is truncated to 2 nodes though actual system has 5 nodes.

352 S. Satake et al.

a problem if one is running a code which has large non-distributed arrays. We
will check the memory usage in FORTEC-3D in the next subsection.

In FORTEC-3D, all the parallel procedures and data distribution are assigned
according to the index of markers. In Fig. 9, an example source of HPF code
is shown, in which the total marker number is ntot, and the number of HPF
processes is ncpu. We explicitly added a extra dimension for parallelization to
help the compiler to recognize the structure of the source code. In the sample
code, data distribution is defined by !HPF$ directives, where !HPF$ TEMPLATE
and !HPF$ DISTRIBUTE make a template pattern to distribute arrays where dst
is only a dummy array for the template. Then !HPF$ ALIGN instructs that the
second dimension of arrays w(:,:) and p(:,:) are distributed in the same way
as the template dst. Packing both the declarations of arrays and !HPF$ directives
for distribution together into a module is an easy way to write an HPF code;
otherwise, one has to write !HPF$ directives in the beginning of every subroutines
that uses distributed arrays in it.

Almost all of the communication occurring in FORTEC-3D is related to re-
duction calculations to take some moments of marker weights, as shown in Fig. 9,
where w(ni,ncpu) and p(ni,ncpu) are summed up from all of the HPF pro-
cesses to wpsum(1:2) at the do loop with the directive !HPF$ INDEPENDENT,
REDUCTION. Procedures that have reduction calculation are marked in the flow-
chart in Fig. 4. An optimization of communication is taken in this example by
summing up w and p not into a separate variable, as in the original source, but
into the same array wpsum. It serves to pack the data to be communicated, and
to reduce the overhead time on the communication.

Optimization for vectorization has also been taken. One of the most effective
tunings concerns orbit calculation, because about 80% of the total simulation
time was consumed in this procedure. In the Runge-Kutta routine to solve the
marker motion, magnetic field data on each marker’s position (ρi, θi, ζi) given by
the form B =

∑
m,n Bm,n(ρ) cos(mθ − nζ) need to be referred to. Here, Fourier

spectrum data Bm,n(ρ) are given as a discrete set of tables on the ρ-grid, and
each marker refers to the data on the grid that is closest to the marker position.
However, marker radial positions {ρi} are not aligned in the ρ-direction about
the marker index number i. Therefore referring of the Bm,n-table becomes a
random access to memory, which causes the memory bank conflict and makes
the vector operation slower. Fortunately, as explained in the Introduction, the
marker motion is mainly directed to the field line, and the radial drift vd · ∇ρ is
slow. Therefore, It is not needed to refer to a different entry of the Bm,n-table on
every steps in the Runge-Kutta routine until the closest grid position for each
marker moves to another grid. To reduce the bank conflict, each marker holds
the field data Bm,n(ρ) on the closest radial grid, and renews it only when the
closest grid has changed. This optimization makes orbit calculation time almost
twice faster compared with the original version.

Development of Three-Dimensional Neoclassical Transport Simulation Code 353

Original source HPF parallel source

module VARIABLES module VARIABLES
real, allocatable(:) :: w,p real, allocatable(:,:) :: w,p
integer ntot integer ntot,ni

end module parameter :: ncpu=32
!HPF$ TEMPLATE dst(ncpu)

program main !HPF$ DISTRIBUTE dst(block)
use VARIABLES !HPF$ ALIGN (*,i) with dst(i) : w,p

. end module

.
read(5)ntot program main
allocate (w(ntot),p(ntot)) use VARIABLES

. real wpsum(2)

. .
call reduce_wp(wsum,psum) read(5)ntot

. ni=ntot/ncpu

. allocate (w(ni,ncpu),p(ni,ncpu))
.

subroutine reduce_wp(wsum,psum) .
use VARIABLES call reduce_wp(wpsum)
wsum=0.0 .
psum=0.0 .
do i=1,ntot subroutine reduce_wp(wpsum)

wsum=wsum+w(i) use VARIABLES
psum=psum+p(i) real wpsum(2)

end do wpsum(:)=0.0
return !HPF$ INDEPENDENT, REDUCTION(+:wpsum)

. do nd=1,ncpu

. do i=1,ni

. wpsum(1)=wpsum(1)+w(i,nd)
wpsum(2)=wpsum(2)+p(i,nd)

end do
end do
return

.

.

Fig. 9. Example of HPF source code and its original code to parallelize some reduction
calculations. Here, ntot is the total marker number and ncpu is the total number of
HPF processes, respectively. This is a calculation of the sum of marker weights w and
p, which is a typical procedure in FORTEC-3D.

2.3 Benchmark Results

In this section, benchmark results of simulations, both in 2D (tokamak) and 3D
(LHD) configurations, are shown. The total marker number is ntot = 1.344×107

for 2D cases and 3.072×107 for 3D cases. The radial electric field is calculated on
60 radial mesh points. (20, 20, 1) meshes in (ρ, θ, ζ) for 2D cases ((20, 20, 10) for

354 S. Satake et al.

3D cases) and (20, 10) meshes in (v‖, v⊥) are used. To benchmark FORTEC-3D
by changing number of nodes, we have chosen a somewhat small ntot here com-
pared with that used in a practical run. In table 2, number of nodes and PEs,
marker number per 1 PE (ni), total simulation time, total FLOP count, and
communication time are shown. These values were measured by using FTRACE
and PROGINF run-time options of the Fortran compiler on SX-7. The total
performance of floating point operation and total simulation time on each run
are shown in Fig. 10, where the GFLOPS value is total FLOP count/total sim-
ulation time. One can see that the GFLOPS value is almost linearly growing
with the number of PEs, which indicates the good efficiency of parallelization
of FORTEC-3D with HPF. The vector length and vector operation ratio of the
benchmark runs observed by FTRACE are about 254 and 98.0%, and they hardly
change as the number of PEs changes. Therefore, it can be said that HPF has
good affinity for a vector computer. The maximum performance of FORTEC-
3D reaches 369 GFLOPS on run #9. In fact, GFLOPS value becomes higher if
more markers are used, because vector length becomes longer while the amount
of data communicated does not change much by changing ntot. The fastest run
we had ever done was the one in which ntot = 6.4 × 107 was used in a 3D case,
and it reached 417GFLOPS, which is about 30% of the peak performance.

Table 2. Description of benchmark runs

two-dimensional case, ntot = 1.344 × 107

run #1 run #2 run #3 run #4 run #5

of node 1 2 2 3 5
of PE (ncpu) 32 32 (16×2) 64 96 160

ni(×104) 42 42 21 14 8.4
tot. time (s) 3194 2499 1511 1126 762

tot. FLOP count (×1014) 2.259 2.259 2.260 2.261 2.262
comm. time (s) 502 71 157 206 195

three-dimensional case, ntot = 3.072 × 107

run #6 run #7 run #8 run #9

of node 2 2 3 5
of PE (ncpu) 32 (16×2) 64 96 160

ni(×1014) 96 48 32 19.2
tot. time (s) 8563 5208 3500 2309

tot. FLOP count (×1014) 8.247 8.255 8.264 8.280
comm. time (s) 101 412 412 365

Next, the ratio of communication time to the total simulation time is shown
in Fig. 11. It becomes larger as the number of PEs becomes larger. Although
we have optimized the reduction communications that appear in FORTEC-3D
by packing the communication data, the increase of the time consumption for
communication in simulation runs with many HPF processes is inevitable. It is
to be noted that the ratio is very large in run #1, in which only one node is
used. It seems that the bank conflict or the imbalance of calculation time among

Development of Three-Dimensional Neoclassical Transport Simulation Code 355

0 32 64 96 128 160
0

1000

2000

3000

0

200

400

0 32 64 96 128 160
0

2000

4000

6000

8000

0

200

400

Number of PE

T
im

e
[s

]

G
F

LO
P

S

(a)
,

,

32PE/node

16PE/node

(b)

T
im

e
[s

] G
F

LO
P

S

Number of PE

Fig. 10. Total simulation time (solid line) and GFLOPS value (dashed line) of the
benchmarks for the two-dimension case (a) and three-dimension case (b). Filled marks
are the results of run #2 and #6 in the table 2 in which only 16 of 32 PE in a node
were used, while in the other runs full 32 PE in each node were used.

0 32 64 96 128 160
0.0

0.1

0.2

0.3

co
m

m
. t

im
e

/ t
ot

al
 ti

m
e

Number of PE

2D, 32PE/node
3D, 32PE/node
2D, 16PE/node
3D, 16PE/node

Fig. 11. Ratio of communication time
over total simulation time

0 32 64 96 128 160

400

800

M
em

or
y

[G
B

]

Number of PE

2D, 32PE/node
3D, 32PE/node
2D, 16PE/node

3D, 16PE/node

Fig. 12. Memory used in the benchmark
calculations. Solid and dashed lines are
obtained from the fitting formula eq. (4).

HPF processes at the orbit calculation increases in run #1, which results in the
increase of waiting time of the reduction communication at the subroutine that
solves the time evolution of radial electric field. We have not found the reason
why the bank conflict or the imbalance of calculation time increased so much in
run #1, and the problem is still under investigation.

Finally, the memory usage of FORTEC-3D is shown in Fig. 12. One can see
that it changes proportional to the number of PEs. Since the total number of
markers is fixed in changing the number of PEs, the total amount of memory
used in the simulation is expected to be described in the following form

total memory (GB) = α × ntot+ β × ncpu, (4)

where the coefficients α and β are related to the memory usage by distributed
data (ex. marker positions and weights) and non-distributed common data (ex.

356 S. Satake et al.

the tables of magnetic field Bm,n and electron flux Γe(ρ, Eρ); in HPF, all the
variables without distributing assignments are copied into the part of the mem-
ory region to which each PE refers to), respectively. From the benchmark results,
we found that α = 1.4 × 10−5, and β = 2.26 (= 2.36) for the 2D (3D) case. In
FORTEC-3D, memory consumption by the distributed data; that is, α × ntot,
is large. Therefore, using the one-by-one model explained in Fig. 8 to run the
HPF code does not bring about a problem of memory shortage.

3 Summary

In this paper, we have reported the development of a neoclassical transport code
FORTEC-3D on a vector-parallel supercomputer. It is shown that, because of the
good parallelization efficiency of the code written in HPF language and the high
affinity of HPF language for vector supercomputer, we have succeeded to obtain
high performance in running a large scale simulation on the multi-node system of
SX-7 supercomputer. We have also adopted and optimized a scheme to generate
parallel random number generator to avoid one of the bottlenecks for parallelized
Monte Carlo simulation. Owing to the high performance of FORTEC-3D, we can
investigate several issues in neoclassical transport phenomena in torus plasmas
such as non-local effect on transport and time evolution of radial electric field in
a complicated three-dimensional configuration[8,14,17], which cannot be treated
properly by the other conventional methods.

We have benchmarked the memory usage in the HPF code which assigns
one HPF process to one PE in Sec. 3. Although we have not suffered from
shortage of memory so far, some measures should be taken to reduce the memory
consumption if we develop the transport code further. Moreover, the largeness of
the number of HPF processes would degrade the parallelization efficiency because
of the increase of the communication time. In future, we will transform our
code by adopting a hybrid parallel model using both HPF and shared memory
parallelization as shown in Fig. 8 (b), and the performance of these codes will
be compared with the present version of FORTEC-3D.

Acknowledgements

One of the authors (S. S.) would like to thank Prof. C. D. Beidler in Max-
Planck Institute for offering us GSRAKE code, and Mr. Yasuharu Hayashi in
NEC Corporation for offering helpful information about HPF compiler and SX-7
system. This work is performed under the auspices of the NIFS Collaborative
Research Program, No. NIFS05KDAD004 and No. NIFS05KNXN040.

References

1. Helander, P., Sigmar, D.J.: Collisional Transport in Magnetized Plasma. Cam-
bridge Univ. Press, Cambridge (2002)

2. Balescu, R.: Transport Process in Plasmas, vol. 1, 2. Elsevier Science Publishers,
Amsterdam (1988)

Development of Three-Dimensional Neoclassical Transport Simulation Code 357

3. Iiyoshi, A., et al.: Fusion Technol. 17, 169 (1990)
4. Wakatani, M.: Stellarator and Heliotron devices, p. 291. Oxford Univ. Press, Oxford

(1998)
5. Shaing, K.C., Houberg, W.A., Strand, P.I.: Phys. Plasmas 9, 1654 (2002)
6. Helander, P.: Phys. Plasmas 7, 2878 (2000)
7. Satake, S., Okamoto, M., Sugama, H.: Phys. Plasmas 9, 3946 (2002)
8. Satake, S., et al.: Conference Proc. 20th IAEA Fusion Energy Conf. Villamoura,

Portugal, November 1-6, 2004, TH/P2-18 (International Atomic Energy Agency,
Vienna, Austria, 2005) (CD-ROM)(2004)

9. Wang, W.X., et al.: Plasma Phys. Control. Fusion 41, 1091 (1999)
10. Brunner, S., et al.: Phys. Plasmas 6, 4504 (1999)
11. Beidler, C.D., et al.: Plasma Phys. Control. Fusion 37, 463 (1995)
12. Beidler, C.D., Maaßberg, H.: Plasma Phys. Control. Fusion 43, 1131 (2001)
13. High Performance Fortran Forum, High Performance Fortran Language Specifica-

tion Version 2.0, Springer-Verlag,Tokyo (1997)
14. Satake, S., et al.: J. Plasma Fusion Res. 1, 2 (2006)
15. Matsumoto, M., Nishimura, T.: ACM Transactions on Modeling and Computer

Simulation 8, 3 (1998)
16. Matsumoto, M., Nishimura, T.: Dynamic Creation of Pseudorandom Number

Generators. In: Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 56–69.
Springer, Heidelberg (2000)

17. Satake, S., et al.: Nuclear Fusion 45, 1362 (2005)

Distributed Parallelization of Exact Charge

Conservative Particle Simulation Code by High
Performance Fortran

Hiroki Hasegawa�, Seiji Ishiguro��, and Masao Okamoto� � �

Theory and Computer Simulation Center
National Institute for Fusion Science

322–6 Oroshi-cho, Toki-shi, Gifu, 509–5292

Abstract. A three-dimensional, relativistic, electromagnetic particle
simulation code is parallelized in distributed memories by High Perfor-
mance Fortran (HPF). In this code, the “Exact Charge Conservation
Scheme” is used as a method for calculating current densities. In this
paper, some techniques to optimize this code for a vector-parallel super-
computer are presented. In particular, methods for parallelization and
vectorization are discussed. Examination of the code is also made on
multi-node jobs. The results of test runs show high efficiency of the code.

1 Introduction

The Particle-in-Cell (PIC) method is a conventional scheme on plasma computer
simulations [1]. In this method, dynamics of full particles (usually, ions and
electrons) and time evolutions of self-consistent fields are calculated.

In relativistic, electromagnetic (EM) PIC codes, first, particle positions at the
next time step (xn+1) are calculated from the old positions xn and momenta
pn+1/2. Then, current densities Jn+1/2 on spatial grids (cells) are computed
from xn, xn+1, and pn+1/2. Further, substituting Jn+1/2 and Bn+1/2 in Am-
pere’s law, the self-consistent electric fields at the next time step (En+1) are
obtained. Next, using En+1 and Bn+1/2, the new magnetic fields Bn+3/2 are
given by Faraday’s law. Finally, substituting En+1, Bn+1/2, and Bn+3/2 into
the relativistic equation of motion, particle momenta are advanced. This cycle
is continued.

Although there are several methods for calculating time evolutions of the
fields, finite-difference Ampere’s and Faraday’s laws are used in this paper. Fur-
ther, we apply the “Exact Charge Conservation Scheme [2,3]” for the calculation
of current densities. In this scheme, current densities are computed with rigorous
satisfaction of the finite-difference continuity equation.

� Present address: Earth Simulator Center, Japan Agency for Marine-Earth Science
and Technology, 3173–25 Showa-machi, Kanazawa-ku, Yokohama 236–0001, Japan.

�� Present affiliation: Department of Simulation Science, National Institute for Fusion
Science.

� � � Present affiliation: College of Engineering, Chubu University.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 358–364, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Distributed Parallelization 359

This paper describes a coding method of optimizing the above scheme for a
vector-parallel supercomputer. In actual calculation, we use the SX-7 supercom-
puter (NEC Corporation), which is used at the Theory and Computer Simula-
tion Center, National Institute for Fusion Science (NIFS). This machine has five
nodes, and one node consists of 32 processor elements and a shared memory of
256 GB. The total theoretical peak performance of the system is 1.4 TFLOPS.

To adapt multi-nodes, we use not only automatic parallelization in shared
memory on each node but also manual parallelization in distributed memories
among nodes. For this purpose, we write simulation code with High Performance
Fortran (HPF), which is a distributed parallel processing language [4].

In Section 2, we present methods for parallelization and vectorization. In
Section 3, the performance of our code is examined. In Section 4, we summarize
our work.

2 Optimization

2.1 Parallelization

Our PIC code is formed from four subroutines. The first one calculates particle
positions at the next time step and current densities on spatial grids (subrou-
tine CURRENT). The second one computes time evolutions of electric fields
through the finite-difference Ampere’s law (subroutine AMPERE). The third
one executes calculation of the magnetic fields at the next time step by the
finite-difference Faraday’s law (subroutine FARADAY). The fourth one advances
particle momenta via the relativistic equation of motion (subroutine PUSH). In
PIC simulation, the required memory size for particle data (positions, momenta)
is usually more than 100 times as large as the one for field data. And then, the
total calculation for particles needs more expensive costs of computing time than
one for fields.

In our code, subroutines CURRENT and PUSH include the computations
about particles. Hence, we now especially optimize these subroutines. Although
the calculations for fields (subroutines AMPERE and FARADAY) are not par-
allelized (that is, all of the processors execute the same subroutines simultane-
ously), the performance of this code is highly improved by only parallelization
of subroutines CURRENT and PUSH with HPF and an automatic paralleliz-
ing function of FORTRAN90/SX, which is a Fortran90 compiler for the SX
supercomputer. We show an overview of the actual source code of subroutine
CURRENT in Fig. 1. (Subroutine CURRENT is described in detail in our pre-
vious paper [5].) Here, the variables and arrays in the code denote as follows.
The parameters npe and npro are the total numbers of processors and HPF
processes, respectively. The parameter neop is equal to neo / npe, where neo
denotes the total number of particles. The parameter nb satisfies the relation
neo = npe × nb × veclen, where veclen is set at a maximum vector register
length of 256. The arrays x and px are the particle position and momentum, re-
spectively. The array curx represents the current densities on grids. The arrays

360 H. Hasegawa, S. Ishiguro, and M. Okamoto

subroutine current(x,px,...,curx,...)
!hpf$ processors pro(npro)

double precision, dimension(neop,npe) :: x,px
:
:

!hpf$ distribute (*,block) onto pro :: x,px
!hpf$ distribute (*,*,*,block) onto pro :: jx0

:
:

!hpf$ independent, new(ii,iv,m,lx0,ly,lz,k,j,...)
!cdir parallel do
!cdir& private(ii,iv,m,lx0,ly,lz,k,j,...)

do ip = 1, npe
do ii = 1, nb

!cdir nodep
!cdir noinner
!cdir shortloop

do iv = 1, veclen
m = iv + (ii-1)*veclen
lx0(iv) = int(x(m,ip) + 1.0d0)
ly(iv,0) = int(y(m,ip) + 1.0d0)
lz(iv,0) = int(z(m,ip) + 1.0d0)

:
:

end do
!cdir novector
!cdir noconcur

do k = -1, 2
!cdir novector
!cdir noconcur

do j = -1, 2
!---
! Loop A
!---
!cdir listvec

do iv = 1, veclen
:
:

wx0 = ...
:
:

jx0(lx0(iv),ly(iv,j),lz(iv,k),ip) =
& jx0(lx0(iv),ly(iv,j),lz(iv,k),ip) + wx0

:
:

end do
end do
end do

end do
end do

!
!hpf$ independent, new(i,j,k), reduction(+:curx)

do ip = 1, npe
do k = ...
do j = ...
do i = ...

curx(i,j,k) = curx(i,j,k) + jx0(i,j,k,ip) + ...
end do
end do
end do
end do

Fig. 1. Source code of subroutine CURRENT

Distributed Parallelization 361

lx0, ly, and lz denote the nearest indices to particle position. The variable wx0
and array jx0 are the work variable and array for the current densities.

As shown in Fig. 1, the extent of last rank of arrays for particle data (positions,
momenta) is taken to be the total number of processors, npe. Then, inserting
DISTRIBUTE directive lines (!HPF$ distribute) under declaration statements
in the main code and subroutines CURRENT and PUSH, they are distributed
with respect to the last rank. Further, writing the INDEPENDENT directive
line (!HPF$ independent) immediately before the outermost DO statements,
these loops are parallelized in each HPF process.

In an HPF process, calculations are automatically parallelized in shared mem-
ory by the FORTRAN90/SX compiler. That is, an HPF process includes multi
tasks, and a task is allocated to one processor. Thus, the total number of gener-
ated tasks is taken to be ntask = npe / npro.

To use the “Exact Charge Conservation Scheme”, the double loop that is
k = -1, 2 and j = -1, 2 before Loop A in Fig. 1 is necessary although it is
not needed in a conventional method for calculating current densities. Because
of those newly added loops, the values which are calculated before Loop A and
used in Loop A (for example, indices for jx0) are repeatedly calculated to the
same values, and it’s wasteful. Thus, we store these values to arrays (e.g. lx0,
ly, and lz) before Loop A and just refer them within the loops. As the outer-
most loop contains complex multiple loops, it is not automatically parallelized
by the FORTRAN90/SX. Thus, we inserted the compiler directive to force paral-
lelization (!cdir parallel do) [6]. Finally, it is parallelized in both distributed
memories and shared memory.

2.2 Vectorization

To make the code more efficient, it is also important to aim at effective vectoriza-
tion. Therefore, we take the loop count of the innermost loop to be a maximum
vector register length. Further, we add some directive lines above some loops, to
promote vectorization. (Directive lines shown in Fig. 1 are explained in detail in
Ref. [7].)

On the other hand, Loop A in Fig. 1 is generally not vectorized, due to uncer-
tainty of dependency between a particle number and an index of its nearest cell.
Thus, in order to vectorize this loop, work arrays, whose first rank is declared
equal to the loop count, are usually implemented. This vectorization scheme,
however, requires large memories. Hence, in our code, using the LISTVEC com-
piler directive lines (!cdir listvec), we vectorize Loop A saving memories.
(This directive option is described in detail in Refs. [7] and [8].)

3 Examination of Code

We then make examinations of the performance of this code. We show, in Table 1,
the results of test runs. The parameters of these runs are as follows. The total
number of cells in the system is 64 × 64 × 64. Both the numbers of electrons

362 H. Hasegawa, S. Ishiguro, and M. Okamoto

Table 1. Results of test calculations. Here, the total number of cells, simulation par-
ticles, and generated tasks are 64 × 64 × 64, 113,246,208, and 16, respectively. Also,
simulation time is 100 steps.

RUN1 RUN2 RUN3 RUN4 RUN5 RUN6

Total PE (npe) 16 32 48 64 96 144
Node 1 1 3 2 3 5

HPF process (npro) 1 2 3 4 6 9
Conc. Time (PE≥ 1) (sec) 1149.03 630.25 494.34 324.27 232.55 163.80
Conc. Time (PE= 16) (sec) 1144.76 594.28 466.09 307.61 209.48 149.76

Memory Size (GB) 10.8 12.9 14.8 17.0 21.0 26.9
Vector Length 255.7 255.3 254.4 254.5 253.8 252.7

Vector Ratio (%) 99.94 99.93 99.91 99.92 99.90 99.87

CURRENT 744.33 398.03 311.35 203.90 145.87 108.33
Execution PUSH 403.05 219.11 173.96 109.06 73.54 50.67

Time AMPERE 0.075 0.082 0.097 0.083 0.081 0.120
FARADAY 0.097 0.105 0.126 0.108 0.105 0.126

Ratio of performance
to theoretical peak one (%) 19.7 17.9 15.3 17.5 16.2 15.4

and ions per cell are 216; that is, the total number of simulation particles is
113,246,208. The total number of generated tasks is taken to be ntask= 16.
The test calculations have been done for 100 time steps. Concurrent times and
information of vector operation are obtained from run-time information of the
system monitor facility.

The results of calculation time indicate that the distributed parallelization
with HPF is very successful. Also, this table shows that the difference between
concurrent times (Conc. Time) with one processor or over, and with 16 proces-
sors, is quite small. This means that the code achieves the highly parallelized
state in shared memory. Since subroutines CURRENT and PUSH occupy most
of the calculation time as shown in the table of execution time, the parallelization
becomes effective.

Because the last rank extent of the work array jx0 is npe, and the field data
are copied to each HPF process, the memory size gradually increases with the
total number of processors or HPF processes. Further, the observed vector length
is almost equal to a maximum vector register length, and vector ratios are close
to 100 percent. The performance is hardly deteriorated as the total number of
HPF processes increases.

Fig. 2 shows the dependence of the computing performance (GFLOPS) on the
total number of processors. Here, the value of FLOPS is calculated from dividing
the total FLOP count by the longest concurrent time in HPF processes, and the
total FLOP count is also obtained by program execution analysis information
listing function of FORTRAN90/SX [7]. The value of FLOPS linearly increases
with the total number of processors.

Distributed Parallelization 363

0

50

100

150

200

0 32 64 96 128 160

G
F

L
O

P
S

PE

Fig. 2. Dependence of the computing performance (GFLOPS) on the total number of
processors (PE). Here, the closed circles are the observed values in RUN1∼6, and the
solid line denotes the value of 17% of theoretical peak performance.

4 Summary

We have parallelized a three-dimensional, relativistic, electromagnetic particle
simulation code that use the “Exact Charge Conservation Scheme.” We have
succeeded in optimization of this scheme for vector-parallel supercomputers.

To make the code adequate at multi-node jobs, we have used not only an
automatic parallelizing function of FORTRAN90/SX in shared memory but also
HPF for distributed parallelization. In vectorization, inserting the LISTVEC
directive line, the required memory size can be saved. From the results of test
runs, it is found that parallelization and vectorization are quite successful.

Acknowledgments

The authors are grateful to Prof. R. Horiuchi (NIFS), Dr. H. Ohtani (NIFS),
and Mr. N. Horiuchi (NEC) for stimulating discussions.

This work is performed with the support and under the auspices of the NIFS
Collaborative Research Program (NIFS04KDAT007) and supported in part by
a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology.

References

1. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Adam
Hilger (1991)

2. Villasenor, J., Buneman, O.: Rigorous charge conservation for local electromagnetic
field solvers. Comput. Phys. Comm. 69, 306–316 (1992)

3. Esirkepov, T.Z.: Exact charge conservation scheme for Particle-in-Cell simulation
with an arbitrary form-factor. Comput. Phys. Comm. 135, 144–153 (2001)

364 H. Hasegawa, S. Ishiguro, and M. Okamoto

4. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion Version 2.0 (1997)

5. Hasegawa, H., Ishiguro, S., Okamoto, M.: Development of the Efficient Electromag-
netic Particle Simulation Code with High Performance Fortran on a Vector-parallel
Supercomputer. IPSJ Trans. on Advanced Computing Systems 46, 144–152 (2005)

6. NEC Corporation: FORTRAN90/SX Multitasking User’s Guide, Revision No. 11,
NEC Corporation (2002)

7. NEC Corporation: FORTRAN90/SX Programmer’s Guide, Revision No. 13, NEC
Corporation (2002)

8. Sugiyama, T., et al.: Vectorized Particle Simulation Using LISTVEC Compile-
directive on SX Super-computer. IPSJ Trans. on Advanced Computing Systems
(in Japanese) 45, 171–175 (2004)

Pipelined Parallelization in HPF Programs

on the Earth Simulator�

Hitoshi Murai1 and Yasuo Okabe2

1 1st Computers Software Division, NEC Corporation,
10, Nisshin-cho 1-chome, Fuchu, Tokyo 183-8501, Japan

murai@hpc.bs1.fc.nec.co.jp
2 Academic Center for Computing and Media Studies, Kyoto University,

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
okabe@i.kyoto-u.ac.jp

Abstract. There is no explicit way for parallelization of DOACROSS
loops in the HPF specifications. Although recent advanced HPF compil-
ers such as HPF/ES have been as powerful as MPI in many situations
of parallel programming, many of them do not have the capability of
pipelining DOACROSS loops. We propose a new extension for pipelined
parallelization, the PIPELINE clause, and have developed a preprocessor,
named HPFX, that translates an HPF source program annotated by the
PIPELINE clause into a normal HPF one, to evaluate the effectiveness of
the clause. Evaluation on the Earth Simulator shows that pipelined par-
allelization in implementations of the NPB LU benchmark with HPFX
and HPF/ES outperforms the hyperplane parallelization in the conven-
tional HPF implementations of the benchmark.

1 Introduction

Twelve years have passed since the first High Performance Fortran (HPF) lan-
guage specification was published [1]. Not a few HPF compilers have been de-
veloped and some are provided on real supercomputers like the Earth Simula-
tor(ES) [2]. The language itself has been evolving; the specifications of HPF2.0 [3]
and its approved extensions were standardized in 1997, and the HPF/JA exten-
sions [4] were published in 1999. HPF/ES, the HPF compiler for the ES, also
supports some unique extensions, such as functionality for irregular problems,
parallel I/O, etc. [5].

Although recent advanced HPF supercompilers have been as powerful as MPI
in many situations of parallel programming [6], there are still some limitations
in their parallelization capability. One of such limitations is in parallelization of
DOACROSS loops, which is a DO loop that has loop-carried dependence in it.
It is known that a DOACROSS loop that has only loop-carried dependence of
a fixed distance along some axes of arrays in it can be parallelized by pipelined
parallelization [7]. HPF has a directive INDEPENDENT that asserts a loop has no

� This work was a part of Earth Simulator Research Projects in FY2004.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 365–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

366 H. Murai and Y. Okabe

loop-carried dependence in it and can be parallelized. NEW or REDUCTION clauses
can be added on an INDEPENDENT directive to provide additional information on
some types of dependence that does not hinder parallelization and to increase a
chance of the compiler parallelizing the loop. But there is no explicit way in which
a programmer can give information on dependence of general DOACROSS loops
to the compiler. Some of the existing HPF compilers automatically detect the
dependence in a loop and parallelize it in a pipeline fashion [8,9], but Lewis and
Snyder [10] reported that even such compilers failed to parallelize automatically
a number of loops, e.g., those which iterate over indices in reverse order.

In this paper we propose the PIPELINE clause, which is a new extension to the
HPF specification. The clause asserts that there is a loop-carried dependence of a
fixed distance on the target array, and that the compiler can parallelize the loop
in a pipeline fashion. In order to evaluate the effectiveness of the extension, we
have developed a preprocessor, named HPFX, which translates an HPF source
program annotated by the PIPELINE clause into a normal HPF one. We have
parallelized the NPB LU benchmark with HPFX and HPF/ES, and evaluated
its performance on the ES with some other implementations such as by the
conventional hyperplane method for comparison.

The remainder of this paper is organized as follows. Section 2 gives syntax and
semantics of the PIPELINE clause we propose. Section 3 describes the function of
the HPFX preprocessor. The evaluation on the ES is shown in Section 4. Finally,
Section 5 provides the concluding remarks.

2 The PIPELINE Clause

A PIPELINE clause on an INDEPENDENT directive is an assertion to an HPF com-
piler that there is a loop-carried dependence of a fixed distance on the target
array in the following loop. The compiler generates communications and syn-
chronizations to parallelize the annotated loop in a pipeline fashion.

2.1 Syntax

The syntax rules of the INDEPENDENT directive (J301 in Section 3.1.1 of the
HPF/JA language specification) are modified as follows:

X101 independent-directive-x is INDEPENDENT [, new-clause]
[, reduction-clause-ja-list] [, pipeline-clause]

X102 pipeline-clause is PIPELINE(pipeline-spec-list)
X103 pipeline-spec is pipeline-target [(pipeline-region-list)]

(pipeline-width-list)
X104 pipeline-target is object-name
X105 pipeline-region is int-expr

or [int-expr]:[int-expr]
X106 pipeline-width is int-expr

Constraint: The length of a pipeline-region-list must be equal to the rank of the object-
name mentioned as a pipeline-target.

Pipelined Parallelization in HPF Programs on the Earth Simulator 367

Constraint: The length of a pipeline-width-list must be equal to the rank of the object-
name mentioned as a pipeline-target.

Constraint: An object-name mentioned as a pipeline-target must have a shadow width
no smaller than the absolute value of an int-expr mentioned as a pipeline-
width, at the low end if the int-expr is positive, or at the high end if the
int-expr is negative, in each of the axes.

2.2 Semantics

The INDEPENDENT directive asserts that the iterations of a DO loop do not mu-
tually interfere (in Section 5.1 of the HPF specification). The PIPELINE clause
relaxes the condition of this interference by adding the following exception.

– Exception: If a variable appears in a PIPELINE clause, then operations as-
signing values to it in separate iterations of the DO loop do not interfere.

– Exception: If a variable appears in a PIPELINE clause, then operations as-
signing values to it in one iteration of the DO loop do not interfere with uses
of the variable in other iterations.

The compiler can parallelize the INDEPENDENT loop in a pipeline fashion by
generating communications of the target array and synchronizations on the basis
of the information from a pipeline-region and a pipeline-width.

The pipeline-region-list, if any, represents the array section really accessed in
the following loop. Only elements in the section are to be communicated between
two neighboring processors at runtime. The pipeline-width-list represents the
width and the direction of a shift communication to be generated along each axis
of the array section. You can specify a multidimensional pipelined parallelization
with this clause.

3 The HPFX Preprocessor

The HPFX preprocessor translates an HPF source program annotated by the
PIPELINE clause into a normal HPF one; however, the current implementation
of HPFX can accept the clause with some restrictions.

Here we describe how HPFX works with a simple example below.

REAL A(100,100)
!HPF$ PROCESSORS P(4,4)
!HPF$ DISTRIBUTE A(BLOCK,BLOCK) ONTO P
!HPF$ SHADOW A(1:0,1:0)

!HPF$ INDEPENDENT, PIPELINE(A(1:50,:)(1,1))
DO J=2, 100

!HPF$ INDEPENDENT
DO I=2, 50

!HPF$ ON HOME(A(I,J))
A(I,J) = A(I,J) + A(I-1,J-1)

END DO
END DO

368 H. Murai and Y. Okabe

The PIPELINE clause in the code means that there is a loop-carried depen-
dence of distance one along the first and the second axes of a two-dimensional
array A, and that a row and a column of elements on the distribution boundary
over the array section A(1:50,:) is to be sent to and received from the neighbor
processor.

HPFX translates the above code into the following one.

CALL RECV2_REAL(A, WDTH, 2, LB, UB)

!HPF$ INDEPENDENT
DO J=2, 100

!HPF$ INDEPENDENT
DO I=2, 50

!HPF$ ON HOME(A(I,J)), LOCAL(A)
A(I,J) = A(I,J) + A(I-1,J-1)

END DO
END DO

CALL SEND2_REAL(A, WDTH, 2, LB, UB)

You can see that one call statement is inserted before the loop, and another
after the loop. The subroutines RECV2 REAL and SEND2 REAL are generated au-
tomatically from a template by HPFX for the type and rank of the target array,
and linked with other HPF subroutines later by HPF/ES. They are written as
extrinsic procedures of kind HPF LOCAL, each of which is embedded with calls to
MPI subroutines for communication and synchronization. The ON-HOME-LOCAL
directive [4] asserts that no communication is required for the loop, so HPF/ES
does nothing for parallelizing the loop except distributing its iteration space onto
the processors on the basis of the mapping of the HOME array A.

At runtime in the two subroutines, they get information on mapping of the tar-
get array from the mapping inquiry subroutines GLOBAL ALIGNMENT and
GLOBAL DISTRIBUTION, contained by the HPF local routine library; they con-
struct a communication schedule for pipelined parallelization of the width given
by the second argument, and perform communication on the schedule.

The runtime sequential behavior of each processor for the example code is as
follows:

(0) The processor P(1,1) goes through RECV2 REAL, while the processors in P(1,2:4)
or P(2,:) wait here for arriving data from their neighbor. The processors in
P(3:4,:) skip all of the following steps and proceed to the next because they
have no task in the loop.

(1) P(1,1) performs its local part of the loop to process the array A.
(2) P(1,1) sends A(25,1:25) to P(2,1) and A(1:25,25) to P(1,2) in SEND2 REAL, and

proceeds to the next.
(3) These substeps are executed in parallel.

(3–1) P(2,1) receives A(25,1:25) from P(1,1) and exits from RECV2 REAL.
(3–2) P(1,2) receives A(1:25,25) from P(1,1) and exits from RECV2 REAL.

(4) These substeps are executed in parallel.
(4–1) P(2,1) performs its local part of the loop to process the array A.

Pipelined Parallelization in HPF Programs on the Earth Simulator 369

(4–2) P(1,2) performs its local part of the loop to process the array A.
(5) · · ·

Fig. 1 illustrates these steps. Note that the processors that have finished or
skipped these steps earlier can execute the next statements asynchronously, in
parallel with the other processors still executing these steps.

1

25

26

50

1 25 26 50 7551 76 100

Comm.

Shadow Areas

Array A

P(1,1) P(1,2) P(1,3) P(1,4)

P(2,1) P(2,2) P(2,3) P(2,4)

Fig. 1. Pipelined Parallelization on a Two-Dimensional Array

This implementation depends on the fact that HPF/ES does not generate
global barrier synchronization on the exit of local procedures, such as RECV2 REAL
and SEND2 REAL above, though the HPF specification states that an HPF com-
piler must do it.

4 Evaluation

We parallelized the LU benchmark (class C) of the NAS Parallel Benchmarks
(NPB) [11] with HPFX and HPF/ES in two manners: one is one-dimensional
pipelined parallelization, and the other is two-dimensional. We ran the programs
on the ES to evaluate the performance of the two manners with those of some
other implementations for comparison.

4.1 Evaluation Environment

The ES is a distributed-memory vector parallel supercomputer, composed of 640
processor nodes (PNs) connected by a single-stage crossbar network providing a
12.3GB/s bidirectional bandwidth. Each PN consists of eight vector arithmetic
processors (APs) and has a 16GB shared memory. The peak performance of each
AP is 8GFLOPS, summing up to the total peak performance of 40TFLOPS.

The software environment used in the evaluation was as follows:

– HPF/ES: Rev.2.2.2(1020) 2005/03/23
– FORTRAN90/ES Version 2.0: Rev.302 ES 17 2004/06/23
– MPI/ES: command Version 7.0.4 (15. October 2004)
– MPI/ES: daemon Version 7.0.6 (27. October 2004)
– MPI/ES: library Version 6.7.3a (22. November 2004)

370 H. Murai and Y. Okabe

HPF/ES translates an HPF program into an intermediate Fortran+MPI pro-
gram, which is to be compiled and linked with the MPI library by a Fortran
compiler to generate an executable. In this evaluation, a set of the compiler op-
tions that instructs HPF/ES to do the highest level of optimization was specified.

We ran the programs on the ES through the L-batch queue that is for large-
scale batch requests. We adopted flat parallelization: HPF processors were as-
signed to APs in a PN if n ≤ 8, or to APs over n/8 PNs with eight processors
in each PN if n > 8, where n is the number of processors used. Note that there
is no inter-node communication performed over the interconnection network in
the case of n ≤ 8.

4.2 The LU Benchmark

LU implements a version of SSOR algorithm to solve a regular-sparse, block lower
and upper triangular matrix system. The code fragment below shows a sequence
of sweeping the horizontal plane of the grid in a subroutine ssor, which is the
main part of this benchmark program.

DO k = 2, nz -1
call jacld(k)
call blts(k)

END DO

DO k = nz - 1, 2, -1
call jacu(k)
call buts(k)

END DO

call add
call rhs

Although the subroutines jacld, jacu, add, and rhs are completely data
parallel and can be parallelized readily with HPF/ES, both blts and buts have
a limited parallelism because there is a loop-carried dependence of v(i,j,k)
on v(i-1,j,k), v(i,j-1,k) and v(i,j,k-1) in blts, and on v(i+1,j,k),
v(i,j+1,k) and v(i,j,k+1) in buts. Therefore, the PIPELINE clauses were
inserted into the two subroutines to apply pipelined parallelization to them in
both cases of one-dimensional and two-dimensional. Below is a PIPELINE clause
specified in buts in the case of two-dimensional.

!HPF$ INDEPENDENT, PIPELINE(v(:,:,:,k)(0,-1,-1,0))
do j = jend, jst, -1

!HPF$ INDEPENDENT
do i = iend, ist, -1

!HPF$ ON HOME(v(:,i,j,:)) BEGIN
...
do m = 1, 5

tv(m) = tv(m)

Pipelined Parallelization in HPF Programs on the Earth Simulator 371

> + omega * (udy(m, 1, i, j) * v(1, i, j+1, k)
> + udx(m, 1, i, j) * v(1, i+1, j, k)

...
end do
...
v(1, i, j, k) = v(1, i, j, k) - tv(1)
...

!HPF$ END ON
enddo

end do

Without pipelined parallelization, you had to exploit the hyperplane method
[12] to parallelize the above loop with HPF. There have been two implementa-
tions of LU using the hyperplane method: one is two-dimensional, or a hybrid
of hyperplane and pipeline [13]; the other is three-dimensional, adopted in the
NPB3.0-HPF [14]. It is known that both of the hyperplane implementations need
complicated loop restructuring though neither need any language extensions.

All of our implementations of LU with HPF are based on NPB3.1-SERIAL,
and the MPI one is exactly the same as NPB3.1-MPI.

4.3 Evaluation Result

Fig. 2 depicts the evaluation results. The vertical axis of the graph represents
the speedup ratio relative to the single-CPU execution of the NPB3.1-SERIAL
Fortran implementation.

“HPFX-p1” in the graph is for the result of one-dimensional, and “HPFX-
p2” for two-dimensional, both of which are implemented with HPFX. They have
little difference in performance in this evaluation.

“HPF-hp2” and “HPF-hp3” illustrate the results of the two- and three-
dimensional hyperplane methods, respectively. The former is based on the im-
plementation described in [13] and enhanced by partial REFLECT and EXT HOME,
which HPF/ES started to support recently; the latter is the same as the NPB3.0-
HPF implementation except for a few compiler-dependent modifications. “HPF-
hp3” is much faster in the case of a smaller number of processors, because longer
vector length on the hyperplane leads to higher vectorization efficiency, but the
performance degrades seriously when the number of processors increases. We
suppose that it is mainly due to load imbalance.

You can see that both “HPFX-p1” and “HPFX-p2” certainly outperform
the two hyperplane implementations in the 64-processors execution; besides
pipelined parallelization has the advantage of easy programming over the hy-
perplane methods, which is revealed by the number of program lines that we
added or modified in the subroutines ssor, blts, and buts to parallelize the
DOACROSS loops: We added only six HPF directives in each of “HPFX-p1”
and “HPFX-p2,” while we had to modify or add sixteen Fortran statements, in
addition to the six directives, in “HPF-hp2.” We found far much more addition
and modification of lines in “HPF-hp3.” Consequently, these results show that

372 H. Murai and Y. Okabe

 32

 16

 8

 4

 2

 1
 64 32 16 8 4 2 1

S
pe

ed
up

 (
se

ria
l=

1)

Number of Processors

HPF/ES-1D
HPF/ES-2D

NPB3.0a
MPI

Fig. 2. Evaluation Results

pipelined parallelization gives you a more effective and easier way of parallelizing
DOACROSS loops than the conventional hyperplane methods.

On the other hand, neither “HPFX-p1” nor “HPFX-p2” is comparable to
“MPI,” which is based on the two-dimensional pipeline algorithm that is the
same as “HPFX-p2.” It is mainly because of the overheads of frequently calling
the mapping inquiry subroutines and constructing the communication schedule
in the subroutines, such as RECV2 REAL and SEND2 REAL in Section 3, that HPFX
automatically generates before and after a pipelined loop. We have verified this
fact from an experimental evaluation, in which we modified RECV2 REAL and
SEND2 REAL by hand so that they should reuse in a run the mapping information
and the communication schedule once obtained.

The former overhead would be removed if HPFX could directly refer to the
runtime information managed by the compiler, such as an array descriptor, and
the latter would if HPFX could exploit the compiler’s optimization facility of
communication schedule reuse to amortize the cost of schedule construction.
However, since HPFX is now not a compiler module but a preprocessor, the over-
heads are rather difficult to avoid. Such drawbacks of pipelined parallelization
should be removed if the compiler supports the functionality of the preprocessor.

5 Concluding Remarks

We proposed the PIPELINE clause which is a new extension to HPF for pipelined
parallelization, developed a preprocessor that adds the functionality of pipelined
parallelization to HPF compilers, and evaluated the effectiveness of such
pipelined parallelization in HPF programs on the ES. The evaluation results
of the NPB LU benchmark show that pipelined parallelization is superior to the
conventional hyperplane methods in both performance and easiness of program-

Pipelined Parallelization in HPF Programs on the Earth Simulator 373

ming. However, it could not perform as well as the MPI one, because of the pre-
processor’s limited access to compiler facilities. We expect that this disadvantage
is resolved if HPF/ES directly supports the functionality of the preprocessor.

In future work, we plan to evaluate the pipelined parallelization of HPFX on
other machines to verify its effectiveness.

References

1. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion, Version 1.0 (1993)

2. Habata, S., Umezawa, K., Yokokawa, M., Kitawaki, S.: Hardware system of the
Earth Simulator. Parallel Computing 30, 1287–1313 (2004)

3. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion, Version 2.0 (1997)

4. Japan Association of High Performance Fortran: HPF/JA Language Specification
(1999), http://www.hpfpc.org/jahpf/

5. Yanagawa, T., Suehiro, K.: Software system of the Earth Simulator. Parallel Com-
puting 30, 1315–1327 (2004)

6. Sakagami, H., Murai, H., Seo, Y., Yokokawa, M.: 14.9 TFLOPS Three-dimensional
Fluid Simulation for Fusion Science with HPF on the Earth Simulator. In: Proc.
of SC 2002, Baltimore, MA (2002)

7. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley,
Reading (1996)

8. Gupta, M., Midkiff, S., Schonbeg, E., Seshadri, V., Shields, D., Wang, K., Ching,
W., Ngo, T.: An HPF compiler for the IBM SP2. In: Proc. of 1995 ACM/IEEE
Supercomputing Conference (1995)

9. Nishitani, Y., Negishi, K., Ohta, H., Nunohiro, E.: Techniques for compiling and
implementing all NAS parallel benchmarks in HPF. Concurrency and Computation
– Practice & Experience 14, 769–787 (2002)

10. Lewis, E.C., Snyder, L.: Pipelining Wavefront Computations: Experiences and Per-
formance. In: Proc of the 5th IEEE International Workshop on High-Level Parallel
Programming Models and Supportive Environments (2000)

11. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fa-
toohi, R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., Weeratunga, S.: The NAS Parallel Benchmarks. Technical
Report RNR-94-007. NASA Ames Research Center (1994)

12. Lamport, L.: The parallel execution of DO loops. Communications of the ACM 17,
83–93 (1974)

13. Murai, H., Okabe, Y.: Implementation and Evaluation of NAS Parallel Benchmarks
with HPF on the Earth Simulator. In: Proc. of SACSIS 2004, Sapporo, Japan (2004)

14. Frumkin, M., Jin, H., Yan, J.: Implementation of NAS Parallel Benchmarks in
High Performance Fortran. Technical Report NAS-98-009. NASA Ames Research
Center (1998)

http://www.hpfpc.org/jahpf/

Sampling of Protein Conformations with

Computers to Predict the Native Structure

Junichi Higo

School of Life Science, Tokyo University of Pharmacy and Life Science,
1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan

Higo@ls.toyaku.ac.jp

Abstract. Native-structure prediction of proteins only from the amino-
acid sequential information, without using information from a sequence-
structure database of proteins, has not yet been succeeded. Computer
simulation is now popular in protein conformational sampling for the
prediction. The sampling is, however, hopelessly difficult when a conven-
tional simulation technique (canonical molecular dynamics simulation)
is used, because the conformation is frequently trapped in energy min-
ima in the conformational space. This trapping makes the sampling effi-
ciency considerable poor. I explain an efficient conformational sampling
algorithm, multicanonical molecular dynamics simulation, recently de-
veloped. Results on the sampling of polypeptide chains showed that the
conformation easily overcomes the energy barriers between the energy
minima with using this method.

1 Introduction

Proteins are polypeptide chains, along which amino acids are connected by pep-
tide bonds. After synthesized in solution, the chains spontaneously fold into their
own tertiary structures (i.e., native structure) depending on the amino-acid se-
quences coded in DNA. The native structure is the most thermodynamically
stable conformation (the lowest free-energy conformation) in solution. Thus, the
native structure is determined by physico-chemical properties of the amino-acid
sequence. Once the tertiary structures made up, the biological function is as-
signed to the structure. Summarizing, the amino-acid sequence determines the
tertiary structure and the function of protein.

According to the quick progress of computer power, a computer simulation of
a protein is coming to be popular in the protein-folding research field. The first
goal of protein simulation is to physico-chemically predict the native structure
only from the amino-acid sequence, without using information from a protein
database. If the prediction becomes possible, it is prospective that the folding
pathways are understood from the simulation. The second goal (the final goal)
is to predict the protein function only from the simulation. After the goals, we
can design the protein function starting from the amino-acid sequence, and the
simulation technique will be applied to drag design.

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 374–382, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sampling of Protein Conformations with Computers 375

1.1 Difficulty in the Conformational Sampling

In theory, a polypeptide (i.e., protein) chain can take an astronomical number
(almost infinity) of possible conformations. This means that the conformational
space assessable by the chain is huge. In nature, however, only one conformation
is selected as the native structure: the volume assigned to the native structure
in the conformational space is small in the vicinity of a point. The gap between
the two numbers (one and infinity) leads us to a paradox, known as Levinthal’s
paradox [1]. If the polypeptide chain searches all of the possible conformations
one by one in a human body, the chain cannot reach the native structure before
the life of the human is over. Contrary, experiments teach us that many pro-
teins fold into the native structure within a millisecond, starting from a random
conformation. This means that the proteins do not search one by one (or ran-
domly) all of the candidates. Many researchers, now, consider that the potential
surface of protein has a shape of funnel [2,3], and that the native structure is
positioned at the bottom of the funnel (Fig.1). If so, the fluctuating polypeptide
conformation in the unfolded state is affected by a bias that carries the confor-
mation toward the bottom of the funnel, and consequently, the protein reaches
the native structure in a short time.

Fig. 1. Schematic drawing of folding funnel as a model of protein potential surface.
Polypeptide conformation is originally defined in the multi-dimensional space, although
it is represented by x-axis in one-dimensional form. Native structure is at the bottom,
and unfolded conformations are on periphery. Rectangular box (broken line) is men-
tioned in caption of Fig.2.

A molecular dynamics (MD) simulation is widely used to numerically solve
the Newtonian equation of a system consisting of biomolecules (protein and/or
DNA, etc) and solvent molecules (i.e., water molecules and ions). Time step of the
simulation is usually set to 1 fs (i.e., 10−15 sec), which is a physico-chemical re-
quirement to obtain the simulation trajectory (i.e., series of snapshots) accurate
enough. Suppose that the integration of one step of the equation takes a cpu-time
of 0.1 sec. This value is likely in many laboratories with using a PC. Then, the
entire cpu time for simulating entire protein folding is 0.1 ∗ 0.001/10−15 ≈ 3, 200
years for a protein, which folds in 1 ms. This estimation indicates that the com-
puter simulation with using the accurate all-atom model is impossible.

376 J. Higo

There are two approaches to this 3,200-year problem: one is to develop a fast
computer, and the other is to develop an efficient sampling algorithm. Besides,
the combination of the fast computer and the efficient algorithm is the most
effective. The computer speed is growing quickly thanks to efforts of computer
companies. The Blue Gene/L or the Earth Simulator is, now, available for sim-
ulations of biological systems.

If the potential surface is a perfect funnel, the time scale of protein folding
must be shorter by several orders of magnitude than the experimentally observed.
Then, the development of the effective sampling method is not important, be-
cause the conformation, starting from an unfolded conformation, will straight-
forwardly reach the native structure. Then, the essentially important task is to
develop a fast computer. However, the potential-energy surface is unfortunately
highly rugged (Fig.2), even if the global shape of the surface is funnel. It is
likely that there are a large number of energy minima in everywhere of the real
potential surface of a protein. Then, the conformational sampling encounters
the following difficulty: a conformation falling into an energy minimum (point
A in Fig.2) spends a long time to escape from the minimum before moving into
another minimum (point B in Fig.2). The falling into energy minima is called en-
ergy trapping. Due to the ruggedness, a conformation must jump a large number
of energy barriers to reach the global minimum. Consequently, the folding time
scale of many proteins ranges in 0.001 to 1 sec, for which the folding simulation
is not achievable in most of laboratories, as mentioned above.

Fig. 2. Schematic drawing of rugged energy surface, which is a close-up of the region
in the rectangular box of Fig.1. Two energy minima A and B (arrows), which are the
nearest neighbor to each other in the conformational space, are mentioned in text.

1.2 Equilibrium Sampling

Suppose that the temperature of the system is set at a room temperature (i.e.,
a physiologically important temperature), and that the conformation is in the
minimum A in Fig.2. The conformation cannot escape from A, if the excitation
energy is not enough to climb up the barrier at the room temperature. Heating
(i.e., increment of the temperature) can carry the conformation on the top of
the barrier. However, the kinetic energy at the high temperature does not give a
chance to the conformation to visit energy minima. This means that the confor-
mation never reaches the native structure (or the probability of the conformation

Sampling of Protein Conformations with Computers 377

folding into the native structure is negligibly small), since the native structure
corresponds to the lowest energy (or to ensemble of some low-energy minima).
This property of protein is experimentally well known as the heat denaturation.
To find the native structure out of a number of energy minima in the conforma-
tional space, the sampling should has an ability that the conformation quickly
escapes from a minimum and visit another minimum.

One may think that the repetition of heating and cooling may carry the
conformation to the native structure. However, in this procedure, the current
conformation falls into an energy minimum nearest to the conformation in the
conformational space (Fig.3): Starting from a random conformation, which is
far from the native structure, the correct folding does not happen, and the con-
formation repeatedly falls into energy minima belonging to the unfolded state.
This process corresponds to a quenching, where the conformation has no time
to sample a wide area in the conformational space.

Fig. 3. Schematic drawing of conformational motion (arrow) from the current con-
formation (open circle) to an energy minimum nearest to the current conformation.
Conformational difference between the current and the nearest minimum-energy con-
formations is small, which is far from the native structure. The three conformations
are also schematically shown.

Imagine a simple conformational space that has two energy minima: an energy
minimum M1 with a wide entrance, where the size of the entrance = W1, and the
other minimum M2 with a narrow entrance, where the size = W2. We suppose, for
simplicity of discussion, that the depths of the two energy minima are the same.
Tracing the conformational motion for long, the probability, ρ(M1), of finding
the conformation in M1 should be larger than that, ρ(M2), in M2 with a relation
of ρ(M1)/ρ(M2) = W1/W2 (Fig.4). The conformational ensemble satisfying this
relation is regarded as a physico-chemically acceptable one, called “canonical
ensemble”.

If a conventional MD simulation is done infinitely long at room tempera-
ture, the conformational ensemble generated can be a good approximation of
the canonical ensemble, and the ensemble should involve the most thermody-
namically stable conformation, the native structure. However, the equilibrium

378 J. Higo

Fig. 4. Schematic drawing of conformational motion (curved line with arrow). The
conformation first falls into the energy minimum M1, and second into M2.

sampling is not equivalent to an effective sampling. Since the conformation is fre-
quently trapped into energy minima in the conventional MD simulation, a long
run (i.e., a 3,200-year simulation) is necessarily to reach the native structure.
Thus, a new effective sampling method is required for protein folding.

2 Effective Conformational Sampling Methods

Recently, some powerful conformational sampling methods have been developed
for the protein folding. These methods are, as the whole, called enhanced con-
formational sampling methods [4]. Widely used ones are the multicanonical MD
simulation [5] and replica exchange MD simulation [6]. Both had been originally
developed for the configuration sampling of physical systems, such as a spin
system. These methods ensure that the conformation can quickly overcome the
energy barriers with visiting different energy minima (i.e., the energy trapping
does not occur), and generate the canonical ensemble. I focus on the multicanon-
ical method, below.

2.1 Algorithm

Usually, force f acting on an atom is calculated from a relation f = −grad E,
where E is the potential energy of the system, and the derivative is taken with
respect to the coordinates of the atom. Usage of this force lead the simulation to
the conventional MD one, and the conformation is frequently trapped in energy
minima, as explained above. In the multicanonical method, a term is added to E:

Emc = E − RT ln [P (E, T)] , (1)

where R is the gas constant, T is the simulation temperature, and P (E, T) is
the energy distribution of the system, which are calculated from the canonical
ensemble. Then, the force fmc acting on the atom is computed by

fmc = −grad [E − RT ln [P]] . (2)

The difference between the multicanonical MD and the conventional MD simu-
lations is the difference of the force used. The additional term ensures the high
sampling efficiency.

Sampling of Protein Conformations with Computers 379

One may notice that Eq.2 involves the energy distribution, P , which is not
given a priori. In other words, P is a quantity to be obtained from the simula-
tion, not a given quantity. Then, P is usually determined with an iteration of
consecutive runs of simulation, through which P converges.

The energy distribution obtained from a simulation with Eq.2 provides a flat
distribution [5] in an energy range, where P is estimated accurate enough. The
iteration should be continued till the energy range covers a high to low (i.e.,
room) temperatures to ensure that the conformation overcomes the energy bar-
riers and visit energy minima. The more flat the distribution, the more efficient
the sampling.

2.2 Example of the Multicanonical MD Simulation

In this subsection, I report results from the multicanonical MD simulation of a
chameleon sequence [7]. This sequence was taken from a MATα2/MCM1/DNA
complex [8]. The two proteins, MATα2 and MCM1, forms a dimmer when bind-
ing to a DNA, and the chameleon sequence, located at the linker part between
the two proteins, took either α-helix or β-strand [8]. It is known that the se-
quence is unstructured before binding to DNA [9]. Thus, it is likely that the
chameleon sequence modulates the binding energy between the DNA and pro-
teins with adopting the structure, because the relative position between MATα2
and MCM1 changes depending on the structure of the linker part. The multi-
canonical simulation treated the only part of the chameleon sequence, but taking
the solvent explicitly. The obtained energy distribution was flat (Fig.5) in a wide
temperature range from 290 K to 650 K. The energy profile (i.e., fluctuations of
E along time) is shown in Fig.6. The simulation length (6 ∗ 106 steps) shown in
Fig, 6 is a part of the whole simulation (120 ∗ 106 steps). The figures manifested

Fig. 5. Flat energy distribution (solid line) from a multicanonical MD simulation. Re-
weighted canonical energy distribution, P (E), at 650 K and 300 K, are shown (broken
and dotted lines, respectively). The y-axis is presented by the logarithm of P .

380 J. Higo

Fig. 6. Energy profile. The shown is part of the whole simulation (see text). The energy
fluctuated in the energy range [7,500 to 11,500 kcal/mol], which corresponds to 650 to
290 K.

that the conformation randomly fluctuated in the energy space, with ensuring
that the conformation could frequently overcome energy barriers.

3 Biophysical Interpretation of the Results

From the multicanonical MD simulation, the conformational ensemble consist-
ing of a number of polypeptide conformations was generated. Due to the flat
energy distribution in the wide energy range, the ensemble was a mixture of
conformations at various temperatures. To analyze the conformations, first of
all, conformations corresponding to a temperature should be picked from the
ensemble, with using a re-weighting procedure [10]. The picked conformations
were, then, used for the analysis. For example, the enthalpy of the system at the
temperature is the average of E over the picked conformations.

The distribution of conformations in the conformational space gives us an im-
age of the free-energy landscape. A principal component analysis (PCA), briefly
explained below, is a useful technique to view the distribution. A conformation
of the polypeptide chain can be specified with various coordinate sets: Cartesian
(i.e., x, y, and z) coordinates, distances between atoms constituting the polypep-
tide chain, dihedral angles around covalent bonds constructing the chain. Here,
we designate the set of coordinates as q = [q1, q2, · · · , qn]. Given an ensemble of
conformations, the following matrix, a variant-covariant matrix, is defined:

Cij =< qi qj > − < qi >< qj > . (3)

where Cij is the (i, j)’th matrix element, and < · · · > the ensemble average over
the conformations. Diagonalyzing the matrix, eigen-vectors {v1, v2, · · · , v3N},
where vi · vj = δij , and eigen-values λ1, λ2, · · · , λ3N are obtained. The eigen-
vectors construct a multidimensional conformational space, where the sampled
conformations from the simulation are distributed. The λi represents the stan-
dard deviation of the distribution along vi. We arranged the eigen-values in the

Sampling of Protein Conformations with Computers 381

descending order. In the conformational space, q is expressed by a projection of
q on the eigen-vectors: q = [c1, c2, · · · , c3N], where ck = q · vk. Thus, the eigen-
vectors are used as a basis set. The distribution in the conformational space
gives the free-energy landscape [7,10].

Figure 7 demonstrates the conformational distribution of the chameleon se-
quence at 300 K in the conformational space, where the Cartesian coordinates
were used to calculate the matrix (Eq.3). In the conformational space constructed
by the PCA eigen-vectors v1 , v2, and v3, we could find six conformational clus-
ters (A-F). A region with crowded points is a low free-energy region, because
the system has a high probability of existence in the region. Clusters A and B
were those of α-helical conformations (Fig. 7b), where the helix in cluster B was
slightly disordered comparing to that in cluster A. Clusters C-F were those of
β-hairpin conformations. A β-hairpin is a conformation in that two strands bind
to each other with hydrogen bonds (Fig. 7c). Clusters of C-F correspond to those
with different hydrogen-bonding patterns between the strands. The details from
the analysis had been reported [7].

The results showed that the chameleon sequence inherently has a structural
adaptability to either α or β structure, without the frameworks of the MATα2/
MCM1/DNAcomplex. Statistical mechanics tells us that a systemmoves to a state
where the free energy becomes lower. The property of the chameleon sequence is,
thus, advantageous for the structural modulation in the DNA-protein binding.

Fig. 7. (a) Distribution of sampled conformations of the chameleon sequence at 300 K
in a conformational space constructed by PCA-eigen-vectors v1, v2, and v3 (solid
lines with digits). Clusters (capitals A-F) observed are circled. (b) An a-helical struc-
ture picked from the cluster A is displayed, where water molecules surrounding the
chameleon sequence in the MD simulation are also shown. (c) A β-hairpin structure
picked from the cluster D is displayed, where names of amino acids are also shown.

382 J. Higo

4 Summary

In this report, I explained the multicanolnical MD simulation method to effec-
tively sample the polypeptide chain. From the sampling, the free-energy land-
scape is obtained, in which thermodynamically stable conformations at various
temperatures are found. Furthermore, the landscape can be regarded as a map
to show pathways between the thermodynamically stable clusters [7].

At the moment (June, 2005), we can calculate the free-energy landscape of
a polypeptide chain of about 30 amino-acid residues in explicit solvent by one-
month computation, for which the result will be reported elsewhere. It is crucially
important to increase the chain length. The upper limit of tractable chain length
has been gradually extended.

The first goal is the prediction of protein (i.e., longer polypeptide than the
peptide) tertiary structure, as mentioned before. This may come true in several
years, due to efforts of many scientists in the world. For this purpose, the com-
bination of the fast computers and the effective sampling algorithms is impor-
tant. To obtain the currently reported results (and the results of the 30-residue
polypeptide chain, being reported elsewhere), we used 20 machines of Pentium
4 (2.8 GHz), which is purchasable in many laboratories. A faster computer may
open the door to the protein structure prediction.

References

1. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45
(1968)

2. Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the
energy landscpe perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

3. Koga, N., Takada, S.: Roles of native topology and chain-length scaling in protein
folding: a simulation study with a Go-like model. J. Mol. Biol. 313, 171–180 (2001)

4. Mitsutake, A., Sugita, Y., Okamoto, Y.: Generalized-ensemble algorithms for
molecular simulations of biopolymers. Biopolymers 60, 96–123 (2001)

5. Nakajima, N., Nakamura, H., Kidera, A.: Multicanonical ensemble generated by
molecular dynamics simulation for enhanced conformational sampling of peptides.
J. Phys. Chem. B 101, 817–824 (1997)

6. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein
folding. Chem. Phys. Lett. 314, 141–151 (1999)

7. Ikeda, K., Higo, J.: Free-energy landscape of a chameleon sequence in explicit water
and its inherent a/b bifacial property. Protein Sci. 12, 2542–2548 (2003)

8. Tan, S., Richmond, T.J.: Crystal structure of the yeast MATα2/MCM1/DNA
ternary complex. Nature 391, 660–666 (1998)

9. Sauer, R.T., Smith, D.L., Johnson, A.D.: Flexibility of the yeast a 2 repressor
enables it to occupy the ends of its operator, leaving the center free. Genes Dev. 2,
807–816 (1998)

10. Kamiya, N., Higo, J., Nakamura, H.: Conformational transition states of a b-hairpin
peptide between the ordered and disordered conformations in explicit water. Pro-
tein Sci. 11, 2297–2307 (2002)

Spacecraft Plasma Environment Analysis Via

Large Scale 3D Plasma Particle Simulation

Masaki Okada1, Hideyuki Usui2, Yoshiharu Omura2, Hiroko O. Ueda3,
Takeshi Murata4, and Tooru Sugiyama5

1 Research Institute of Information and Systems, National Institute of Polar Research,
1-9-10 Kaga Itabashi-ku, Tokyo, Japan

mokada@nipr.ac.jp
http://www.nipr.ac.jp/∼mokada/

2 Kyoto University, Research Institute for Sustainable Humanosphere,
Gokasho Uji, Kyoto, Japan

{usui,omura}@rish.kyoto-u.ac.jp
3 Japan Aerospace Exploration Agency, Institute of Space Technology and

Aeronautics
2-1-1 Sengen, Tukuba Ibaraki, Japan

ueda.hiroko@jaxa.jp
4 Ehime University, Center for Information Technology

3 Bunkyo, Matsuyama, Ehime Japan
murata@cite.ehime-u.jp

5 Japan Agency for Marine-Earth Science and Technology, Earth Simulator Center
3173-25, Showa-machi, Kanazawa-ku, Yokohama, 236-0001, Japan

tsugi@jamstec.go.jp

Abstract. Geospace environment simulator (GES) has started as one of
the advanced computing research projects at the Earth Simulator Center
in Japan Marine Science and Technology Center since 2002: [1]. By using
this computing resource, a large scale simulation which reproduces a re-
alistic physical model can be utilized not only for studying the geospace
environment but also for various human activities in space. GES project
aims to reproduce fully kinetic environment around a spacecraft by us-
ing the 3-dimensional full-particle electromagnetic simulation code which
could include spacecraft model inside (NuSPACE). NuSPACE can model
interaction between space plasma and a spacecraft by the unstructured-
grid 3D plasma particle simulation code embedded in the NuSPACE. We
will report current status of the project and our concept of achieving the
spacecraft environment in conjunction with the space weather.

1 Introduction

We have developed a 3-dimensional electromagnetic particle simulation code
(NuSPACE) as a numerical space chamber. This code solves Maxwell’s equations
in 3D simulation space. Plasma particles are also traced by solving the equations
of motion with the Buneman-Boris method. Thus, this simulation code is suitable
for analyzing the plasma environment in the vicinity of a spacecraft especially

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 383–392, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

384 M. Okada et al.

in the region within a Debye length from the surface of the spacecraft as well as
the spacecraft charging phenomena. We will show the scheme of this code and
also show a couple of results from the test simulation runs taking into account
of a realistic shape of a spacecraft.

Plasma particle simulation techniques are widely used in plasma physics among
the space plasma physics, the fusion plasma physics and the device plasma en-
gineering. KEMPO proved its wide applicability and precision in space plasma
area: [2].

NASA has developed a sophisticated spacecraft charging analyzing software
package, NASCAP (NASA Spacecraft Charging Analyzer Program): [3]. This
software solves electrostatic potential at the surface of a spacecraft. The code
has widely been used in spacecraft design for more than a decade and achieved
certain reliability in our community. Though, one deficiency is that this code
solves only static potential and not be able to solve time-dependent problem
neither nor the electromagnetic problems, such as EM wave propagation analysis.

European research project, SPIS (Spacecraft Plasma Interaction System) is
currently developing an open source software of spacecraft-plasma interaction
modeling tools. PicUp3D is one of the SPIS software and adopts unstructured-
grid to model a spacecraft environment: [4]. This code aims to solve spacecraft
charging and not suitable for solving the electromagnetic environment at this
moment.

2 Basic Equations and Algorithms

We have developed a 3-dimensional electromagnetic particle simulation code
with an unstructured-grid system. This code solves Maxwell’s equations which
are discretized with tetrahedral elements in 3D simulation space. Plasma parti-
cles are also traced by solving the equations of motion with the Buneman-Boris
method. The main advantage of this code is the adaptability of modeling more
realistic shape of a spacecraft than the orthogonal grid code. Thus, this simula-
tion code is suitable for analyzing the plasma environment in the vicinity of a
spacecraft especially in the region within a Debye length from the surface of the
spacecraft as well as the spacecraft charging phenomena.

∇ × E = −∂B
∂t

. (1)

∇ × B = μoJ +
1
c2

∂E
∂t

. (2)

∇ · E =
ρ

εo
. (3)

∇ · B = 0 . (4)
dvi

dt
=

qs

ms
(E + vi × B) . (5)

dxi

dt
= vi . (6)

Spacecraft Plasma Environment Analysis 385

Equations (1)–(6) are the basic equations solved by the EM particle simulation
code. Maxwellfs equations are descritized by unstructured-grid coordinate in the
vicinity of a spacecraft. Poissonfs equation (3) can be solved by Finite Element
Method (FEM) over the tetrahedral mesh area.

Figure 1 illustrates time step chart used in the NuSPACE. Electric and mag-
netic fields are solved with the centered differential form, which is called the leap-
frog method. The equation of motion is integrated in time with the Buneman-
Boris method. Benefit of this method is the conservation of the energy of the
particles to be solved. Current is obtained from the particle velocity with the
following equation.

J = q
∑

i

vi (7)

Summation is conducted over all particles located in each grid cell. When
calculating the equation (7), there are two types of interpolation. One is the
linear interpolation method and the other is the charge conservation method
(CCM). The linear interpolation method is usually called Cloud-in-cell method
(CIC). The vectorization of the CIC is easier than CCM. As known from its
name, charge conservation, as show in equation (8), is fulfilled in grid scale.

dρ

dt
+ ∇ · J = 0 . (8)

Fig. 1. Time step chart used in the NuSPACE. Numbers depicted in the time chart
indicates the sequence of the calculation. E and B fields are calculated with the centered
difference form with time. The particle location and velocity are solved with similar
way. Current J is solved at the full-time step. The equation of motion is integrated at
the half-time step by using the E and B field on the other hand.

386 M. Okada et al.

3 Models

Our target region of modeling is summarized in table 1. The first is the low
earth orbit (LEO), whose altitude ranges from 100 km up to about 6000 km.
The Space Shuttle uses the orbit with the altitude of about 100 km. The second
one is the geostationary orbit (GEO). This orbit is well-known by the use of
Japanese weather satellite, “Himawari”. The orbital period of these satellites
are synchronized with the Earthfs rotational period. The third one is the polar
orbit (PEO). This orbit is useful for observing the Earthfs surface with high
spatial resolution. This orbit is known to be used by the LANDSAT, NOAA and
DMSP satellites.

Table 1. Characteristic plasma parameters and the spacecraft scale at the orbit of
LEO, GEO and PEO. PEO is characterized with not only altitude and the Debye
length but also with the aurora precipitation particles.

Orbit Altitude(km) Debye Length(m) Scale(m)

LEO 100-6000 0.001-1 5-100

GEO 36000 10-100 5

PEO(aurora electrons) 600-6000 0.001-0.1 1-10

The most important point in modeling the orbital environment is the Debye
length at the orbit. The relation between the Debye length and the scale size of a
spacecraft characterizes the interaction between spacecraft and the background
plasma. If the Debye length is shorter than the spacecraft size, the spacecraft
potential is mainly determined by the plasma parameters. On the other hand,
if the Debye length is longer than the spacecraft size, the spacecraft potential is
highly affected by the surface material parameters. This causality indicates the
needs of the spacecraft environment simulation.

Another important point of the Debye length is related with the computa-
tional resource point of view. The maximum size of a grid in 3D EM particle
simulation is limited by this Debye length. Thus, if we need to model large
simulation space in LEO, we require large number of grid points than the GEO.

Table 2 summarizes the computational resources available by the simulator.
As described above, the main memory limits the number of grids. For example,
if we use the Earth Simulator and are allowed to use 10TB of memory, we can
model 2000×2000×1000 simulation box. This corresponds to the scale of 40 km3

at GEO with the Debye length of 10m.
In simulation model due to the limitation of physical memory, smaller um-

ber of particles relative to the real can be incorporated in the model. Thus, we
substitute real plasma particles with the super-particles. The number of super-
particles incorporated in the model is estimated with a minimum number of
particles per grid. In 3D EM particle simulations, 64 particles per grid is the
minimum number of particles in order to avoid numerical heating. If we perform

Spacecraft Plasma Environment Analysis 387

Table 2. Relation between the main memory and the modeling size with the major
computational resources. Estimated with parameters opened by each sites, the Earth
Simulator (ES), the Numerical Simulator III (NS III), Kyoto Denpa-Kagaku Simulator
(KDK) and the Polar Science Simulator (PSS).

Computational Memory Grid Particle
Resource (TB) (Mega Grid) (Giga-particles)

ES 10 4000 256

NS III 3.6 1000 64

KDK 0.5 100 6.4

PSS 1 200 12.8

lower numerical noise simulation, we need more super-particles in the simulation
model. In such cases, we can model less number of grids in space.

In most cases, a single simulation run requires from 1024 to 65536 time steps.
Plasma wave analysis and beam interaction analysis require larger number of
time steps than the spacecraft charging analysis. For example, if we use the Earth
Simulator, one time step requires 1 to 10 seconds depending on the simulation
model.

Figure 2 illustrates the physical structure of the spacecraft-plasma simula-
tion. In our simulation code, plasma and spacecraft are solved in time with fully
self-consistent manner. The left most loop indicates that the electric and mag-
netic fields are coupled with Maxwellfs equations. This loop gives the solution of
the electromagnetic waves. EM fields and plasma particles are coupled with the

Fig. 2. Fundamental physical property of the spacecraft-plasma interaction process.
E and B fields are coupled with Maxwell’s equations. Plasma particles move under
the equation of motion and creates current. Spacecraft potential is determined by the
plasma current and affects the trajectories of plasma particles.

388 M. Okada et al.

equation of motion and the current created by the motion of plasma particles.
This loop gives solutions of plasma waves including electrostatic structure in the
plasma. Plasma particles impinging upon the spacecraft surface are absorbed by
the spacecraft and changing the potential of the spacecraft by charging. Space-
craft potential modifies the trajectory of the plasma particles and spacecraft
potential asymptotically approach to the certain potential.

Figure 3 shows the test simulation results obtained by the Earth Simulator.
This model simulates uniform electron beam interacting with the background
electrons. This model is not only used as the code check, but also for under-
standing fundamental plasma phenomena in the Magnetosphere. It is commonly
known that the beam electrons cause the two-stream instability and amplifies
the electrostatic waves. This phe-nomena is well understood both with analyt-
ically and observationally. After decaying the electrostatic waves, the wave is
modified to the electrostatic solitary wave. This process is known as non-linear
process. Thus, it is difficult to solve analytically but EM particle simulation can
simulate the non-linear evolution. Although this figure shows its initial state of
non-linear evolution, the first results obtaind by the 3-dimensional electromag-
netic simulation.

Fig. 3. Uniform electron beam model. Counter stream of the beam electrons and back-
ground electrons are injected in x direction. Electrostatic wave structure is observed in
y-z plane.

Figure 4 models the interaction between ion beam emitted from the ion
thruster and the background plasma. Ion thruster emits heavy ions (Xe) with a
high acceleration velocity in order to obtain propulsion efficiently. In spacecraft
charging and plasma interaction point of view, it is very difficult to understand
why these high velocity heavy ions do not produce spacecraft charging and how
large plasma contamination may cause the plasma instabilities. According to the
simulations, we can estimate the charging rate depending on the background
plasma parameters taking into account of the magnetic field strength and the
background plasma density and temperature.

Spacecraft Plasma Environment Analysis 389

Fig. 4. Ion engine model. Xeon ions (red) are ejected from the ion thruster and the
neutralizer elec-trons (blue) rotate around the background magnetic field.

Strictly speaking, the behavior of beam ions and neutralizer electrons are
highly affected by the spacecraft potential. Without taking into account the
spacecraft potential, it is not appropriate to discuss fully self-consistent feature
of spacecraft-plasma interactions. Figure 5 shows the electrostatic environment
model around a spacecraft with a set of wire antennas. The background electrons
and ions are absorbed by the spacecraft body and wire antennas. By accumu-
lating the charge of absorbed electrons and ions, we obtain spacecraft charging
and plasma sheath around the spacecraft.

Figure 6 shows the surface potential profile obtained by a simple spacecraft
and solar panel model, like ALOS satellite. From the spacecraft engineering point
of view, it is very serious to understand spacecraft surface charging for designing
the spacecraft. When an engineer may find a high voltage surface charging during
its modeling phase, he must modify its surface material and/or design in order
to avoid the charging.

In order to achieving this aim, we do not have to solve electromagnetic waves.
Thus, electrostatic simulation is sufficient. By neglecting the electromagnetic
waves, we can increase the time step Δt larger than Δx/c due to the CFL condi-
tion to solve the electromagnetic waves. When we focus on the spacecraft charg-
ing, the 3D plasma particle simulation becomes very powerful tool for solving
the spacecraft potential in both engineering and scientific use.

At the final stage of the spacecraft design, more precise analysis would be
required for spacecraft charging. Fine structure of a spacecraft shape will be able
to be incorporated from the CAD. Unstructured-grid electromagnetic particle
simulation would be the best for solving the spacecraft plasma environment at
this stage. Figure 7 shows the initial results obtained by the unstructured-grid

390 M. Okada et al.

Fig. 5. Spacecraft charging analysis model. Electric field created by the spacecraft
body (square region in the middle) and the wire antenna is observed.

Fig. 6. Spacecraft charging analysis performed with a single spacecraft body and solar
panel model. (a) floating potential case and (b) fixed potential case.

EM particle code developed by the authors. The results obtained by the sphere
probe model can easily be compared with an analytical model and the chamber
experiments. After calibrating the unstructured-grid code by the sphere probe
model, more realistic model will be incorporated in the NuSPACE.

Figure 8 shows the realistic model derived from the GEOTAIL satellite shape.
This model consists of 11000 nodes and 48000 tetrahedral elements. In order to

Spacecraft Plasma Environment Analysis 391

Fig. 7. Sphere probe model tested by the unstructured-grid EM particle code. This
results is compared with both theoretical analysis and chamber experiments.

Fig. 8. GEOTAL satellite model. Drum structure in the middle models the GEOTAIL
satellite body whose diameter is 2m. The two antenna masts (4m) are attached on the
body.

embed this model into the NuSPACE, 3044 cubic elements are allocated for
boundary elements. As the computational resource becomes available, the more
precise model can be introduced for both engineering and physical analysis.

392 M. Okada et al.

4 Summary

We have developed the numerical space chamber (NuSPACE) and have tested on
5 spacecraft-plasma interaction models. Fundamental performance of the NuS-
PACE has been checked on major super-computers. The NuSPACE can be tun-
able for both vector-type supercomputers and scalar-parallel type supercomput-
ers. The vectorization ratio of 99.7% and parallel efficiency of 100% have been
achieved on the Earth Simulator.

5 simulation runs, i.e., uniform beam test, local beam test, spacecraft surface
charging test, unstructured-grid sphere probe model and GEOTAIL structure
model, have been conducted. The uniform beam test resolves high numerical
precision EM wave characteristics by solving the two stream plasma instability.
The beam model and surface charging model have proved the applicability of
the NuSPACE to the spacecraft environment analysis. The unstructured-grid
models have been tested for future application for the spacecraft design and
engineering.

In this paper, we have performed 5 types of spacecraft plasma interaction
simulations. Uniform beam model and local beam model are conducted on the
Earth Simulator. By using 256 nodes of the Earth Simulator, the elapse time
was 11 hours to resolve electron beam instability. If we need to resolve ion mode,
the more time steps are needed, thus the longer CPU time is necessary.

As for the memory limitations, if we need to model small scale structure
of a spacecraft, we need the larger number of grids in the model. The scale
of the International Space Station (ISS) is about 200 m. If we model the ISS,
0.1 meter grid would be adequate for spacecraft charging analysis. Then the
Earth Simulator may be possible resource for this analysis. In near future, a
couple of large scale construction is planed for space development. 1 km scale
structure and high voltage power line is necessary for the space development.
Thus, we believe that the NuSPACE will become a powerful tool for analyzing
the large scale spacecraft plasma environment analysis in the near future with
the aid of the peta-flops supercomputers.

References

1. Usui, H., Omura, Y., Okada, M., Ogino, T., Terada, N., Murata, T., Sugiyama,
T., Ueda, H.: Development of Geospace environment simulator. In: 9th Spacecraft
Charging Technology Conference, p.49 (2005)

2. Omura, Y., Matsumoto, H.: KEMPO1: Technical Guide to one-Dimensional Electro-
magnetic Particle Code. In: Matsumoto, H., Omura, Y. (eds.) Computer Space
Plasma Physics: Simulation Techniques and Soft-wares, pp. 21–65. Terra Scientific,
Tokyo (1993)

3. Mandell, M., Katz, I., Cooke, D.: Towards a more robust spacecraft charging algo-
rithm. In: 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-2001578,
pp. 251–255 (2000)

4. Forest, J., Eliasson, L., Hilgers, A.: A new spacecraft plasma simulation software,
PicUp3D/SPIS. In: 7th Spacecraft Charging Technology Conference, pp. 257–267
(2001)

PetaFLOPS Computing and Computational

Nanotechnology on Industrial Issues

Shuhei Ohnishi1,2 and Satoshi Itoh3

1 NEC Fundamental and Environmental Research Labs.,
Miyukigaoka 34, Tsukuba, 305-8501, Japan

ohnishi@frl.cl.nec.co.jp
2 Toho University, Fuculty of Science, Miyama 2-2-1

Funabasi, Chiba, 274-8510, Japan
s-ohnishi@sci.toho-u.ac.jp

3 Toshiba Research and Development Center,
Kawasaki, Kanagawa, 212-8582, Japan

satoshi.itoh@toshiba.co.jp

Abstract. TA prospect of new development by PetaFLOPS computing
is discussed for the industrial research and application in the field of ma-
terials sciences based on the TeraFLOPS computing in the Earth Simula-
tor. Two examples of simulations for nano-scale materials are presented
for metal clusters by the first principles calculation and water droplets
by the classical molecular dynamics. A new possibility by PetaFLOPS
computing is proposed in terms of a real-time simulator.

1 Introduction

Nanotechnology provides a new and powerful manufacturing strategy for many
industrial problems; e.g. high-k and low-ε materials for advanced microelectronic,
highly efficient catalysts, long-life electro-luminescence materials, MEMS (micro
electro-mechanical system) and so on. On devising the strategy, a computer
simulation plays an important role at present.

At the beginning of the 21st century, we have entered into possession of the
first TeraFLOPS general-purpose supercomputer, called the Earth Simulator
(ES), which is not special-purpose computer and can be utilized for many types
of numerical calculations. One of the most characteristic properties in the ES is
free from the bottleneck of inter-node network communication. We can utilize
many CPUs without worrying about a physical location in computers. By using
such TeraFLOPS computer, electronic structures of metal clusters with several
hundred atoms can be calculated preciously, and classical molecular dynam-
ics simulation for several million atoms can be performed during nanoseconds.
These systems, however, are limited compared with experimental systems. If
PetaFLOPS supercomputer is developed, bigger and/or longer simulations are
realized; i.e. a high-precision electronic structure calculation of metal cluster con-
sisting of 104−6 atoms, a long time molecular dynamics (MD) simulation over
milliseconds, and so on. These results would show the fact that the majority

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 393–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

394 S. Ohnishi and S. Itoh

of developing and designing processes by experiments take the place of that by
simulations, and the experiments would be only needed at the final stage of the
design and development for confirmation.

In this paper, two simulation results are presented; one is static and electronic
properties of metal cluster based on the first principles calculation using the ES
[1], and the other is dynamic and dielectric properties of water droplets by using
classical MD simulation. The former clues us to develop new catalysts and hydro-
gen storing alloys, and the latter gives fundamental knowledge in biotechnology.
These results are good examples to show the present level of computational nan-
otechnology. Finally, new usage of the results of computational work in the era
of the PetaFLOPS computing will be proposed.

2 Metal Cluster as a Nanotechnology

2.1 Parallel Computation in the ES for the Multi-center Problem
in Clusters

It is now well known that the density functional theory (DFT) can describe
electronic states in any material system. It provides us a powerful and useful
computational scheme, which succeeded to reduce the computational scale to
the O(N3) problem for a system of N atoms. A multi-center problem in the
non-periodic system is the most intractable problems in simulating nanostruc-
ture materials; atomic basis functions and singularities by the nucleus Coulomb
potentials are localized in the atomic site. We can parallelize the non-periodic
atomic cluster for each atomic site using MPI in a natural way. The pseudopoten-
tial method makes it feasible to get rid of the Coulomb singularity numerically
introducing the projection operator to the atomic core states as indicated in
the following equations. By solving the single particle Schödinger equation self-
consistently of which effective potential field is given by the functional of the
electron charge density uniquely, we can obtain the ground state total energy of
the cluster based on the DFT.{

− �
2

2mΔ + veff [ρ (−→r)]
}

ψi = εiψi . (1)

veff [ρ (−→r)] = v̂ext (−→r) + vC (−→r) + vXC [ρ (−→r)] ,

v̂ext (−→r) =
∑

α [v̂PS (| −→r α |) + vcore (| −→r α |)] , (2)
where v̂PS (| −→r |) =| l〉vl (| −→r |) 〈l | .

vC (−→r) =
∫ ρ(−→r ′)

|−→r −−→r ′|d
−→r ′; Coulomb Potential . (3)

Our method in dealing with solving eigenvalue problems and the Poisson
equation is completely based on the multi-center numerical integration scheme
by dividing any physical quantity into each atomic site with a localized fuzzy
cell type weight function as follows.

PetaFLOPS Computing and Computational Nanotechnology 395

F (−→r) =
N∑

α=1

Fα (−→r α) ,

Fα (−→r α) = wα (−→r α)F (−→r) , (4)

where −→r α ≡ −→r − −→
Rα .

N∑
α=1

ωα (−→r α) = 1 ∀−→r α . (5)

I =
N∑

α=1

Iα Iα =
∫

Fα (−→r α) d−→r α . (6)

The numerical integration points are given by one-dimensional radial part
and two-dimensional spherical grids; typically 50 times 200 at each atomic site
to obtain 6 digit accuracy [2]. The parallelization of computing whole physical
quantities is performed by atomic site using MPI. Each physical quantities re-
quires us O(N2) calculation after determining the Coulomb potential field. It is
the most important problem to calculate the accurate Coulomb potential and
energy in the DFT because of its non-local property described in Equations 1, 2,
and 3. The key point in our treatment is that the Coulomb potential is given by
just superimposing each contribution from each atomic site, which is completely
parallelized by using MPI.

ρ (−→r) =
N∑

α=1

ρlm
α (rα) ylm (r̂α) ; ylm (r̂α) ;sphericalharmonic function ,

vC (−→r) =
N∑

α=1

vC (−→r α) ,

vC (−→r α) = vC (rα) ylm (r̂α) , (7)

vC (rα) =
lmax∑
lm

4π

2l + 1

[∫ γα

0

rlρlm
α (r)

rl+1
α

dr +
∫ ∞

rα

rl
αρlm

α (r)
rl+1

]
.

Our present code had been completely tuned to be able to have a high vector
per-formance by implementing all integration parts into the deepest do-loop; the
vector ratio is normally 99.5%. By keeping information of other atoms in each
MPI process, we performed the hybrid type parallelization so as to use CPUs as
possible as we can. Outer operation for atomic sites is dealt with MPI for inter-
node parallelization and middle parts are dealt with the intra-node multi-task
treatments. Figs.1 and 2 show the elapse time and parallel performance of LCAO-
PS code for nanostructure Pt clusters, respectively. The parallelization ratio is
99.95% and the parallelization efficiency is 64% evaluated from elapse time using
176 CPUs and 1080 CPUs for Pt135 after tuning to the ES by the hybrid type
parallelization. Fig.2 shows that two kinds of intra-node parallelization by vector
and micro-task treatments presents a possibility of O(N) computation in the first
principles simulation for the material system.

396 S. Ohnishi and S. Itoh

Fig. 1. Elapse time for computation of Pt clusters

2.2 Nano-Metal Clusters

Fig.3 shows electronic structures of Pt135. The characteristic metal like state
of the finite system of nano-scale is very important to understand a catalytic
high activity. Since electronic energy levels are dense at the highest occupied
molecular orbital (HOMO) and the lowest unoccupied one (LUMO), less than
0.01 eV, it is very diffi-cult to obtain good converged total energy especially in
noble nano-metal clusters having high catalytic activities while the case of Au135
is rather easy because of wide HOMO-LUMO gap, 0.6 eV.

Fig.4 shows another example of the simulation for nano-metal system. Metal-
hydrogen (M-H) systems are getting more and more important in a nano-
structure materials science associated with energy and environmental problems
in terms of the hydrogen storage. It has been recognized that a vacancy plays
a key role in hydrogen distribution in M-H alloys; the interaction between a va-
cancy and hydrogen in metal is strong enough to reduce the formation energy of
a vacancy-hydrogen (Vac-H) cluster. Hydrogen atoms trapped by a vacancy are
more stable than those in the interstitial sites, which causes the increase of the
concentration of Vac-H clusters in the M-H system. Experimental data shows
that the superabundant vacancy (SAV) formation is one of the most basic prop-
erties of the M-H system [3][4]. Fig.4 shows hydrogen binding energy curves in
various atomic elements of the bcc structure. The characteristic feature is that
stable hydrogen positions in the vacancy site are almost same in any atomic
element. The binding energy differences, eb, given by that of hydrogen of M50H6
(the Vac-H model) and M51H6 (the bulk model) are in good agreement with ex-
periments; 0.42 eV per H (calculated) while 0.46 eV (experiment) in Nb, 0.81 eV

PetaFLOPS Computing and Computational Nanotechnology 397

Fig. 2. Parallel performance

(cal.) while 1.03 and 0.80 eV (exp.) in Mo, and 1.095 eV (cal.) while 0.89 and
0.73 eV (exp.).

3 Water at the Nano-Scale

Water is one of the first molecular liquids to be studied intensively by computer
simulations because of its importance for human beings. Additionally, water
shows unique properties as dielectric materials. By using classical MD simula-
tions, the dielectric properties are investigated, and the relation between the bulk
dielectric properties and inter-atomic potentials including charge distribution of
water molecules have been discussed in several papers.

Quite recently, the dynamic properties of water at the nano-scale become
attractive from the viewpoint of industrial applications such as bio-MEMS (mi-
cro electro mechanical system), μTAS (micro total analysis system), and so on.
Moreover, the water plays an important role at the nano-scale for ion channels
and aquaporin in living cells. In this paragraph, the simulation results of water
droplet at the nano-scale are presented, where the relation between the size of
the water droplet and its dielectric properties will be discussed.

3.1 Simulation Method

The dielectric properties of liquids are described from total dipole fluctuations at
finite temperature. As for water, a dipole moment of a water molecule has defined
value and there is no intermolecular charge transfer, so that the total dipole

398 S. Ohnishi and S. Itoh

Fig. 3. Pt135 cluster. (a) Structure of Pt135 : diameter is 1.5 nm. Red and blue sphere
indicate bulk and surface like atoms. (b) Total energy change by the cluster size. Small
contraction (1.5%) from the bulk crystal. (c) Charge density distribution at the HOMO.
It comprises the Pt 5d orbital. (d) Electronic structure near HOMO. Energy difference
between HOMO and the LUMO is less than 0.01 eV, which indicates the finite system
is almost metallic.

fluctuations are evaluated by using classical molecular dynamics simulation. The
static dielectric constant ε is expressed as

ε =
ε∞ (2εRF + 1)2 + 6yGkεRF (2εRF + ε∞)

(2εRF + 1)2 + 3yGk (2εRF + ε∞)
εRF→∞−−−−−→ 3yGk + ε∞ . (8)

where Gk and y are Kirkwood Gk-factor and dipole moment strength, respec-
tively [5]. The value εRF is dielectric constant for reaction field, and is set to
infinite in this calculation. The Kirkwood Gk-factor is given by the total dipole
fluctuation

Gk =
〈M2〉 − 〈M〉2

N〈μ2〉 . (9)

PetaFLOPS Computing and Computational Nanotechnology 399

Fig. 4. Hydrogen in bcc metal clusters. d1/aunit represents normalized distance of
hydrogen site; 0.5 indicates the nearest neighbor square surface to hydrogen atom.

where M means total dipole moment of the system, and μ denotes dipole moment
of water molecule (= 2.27). The dipole moment strength y is written by

y =
4πN〈μ2〉
9V kBT

. (10)

where N is total number of molecules, V is total volume, and kB means Boltz-
mann constant.

The MD simulations were carried out as isothermal MD (T=300 K), in which
the force field of water molecule is SPC/E model. In order to investigate the water
confined in a small space, four kinds of water droplets with different size are used,
i.e. N=639(d=2 nm), 2685(d=3 nm), 12426(d=5 nm), 99678(d=10 nm), and,
additionally bulk system in which N=1024 and the periodic boundary condition
are used. Each simulation run was done for 106 steps with Δt=2 fsec.

3.2 Numerical Results

By using five simulation runs for the same water droplet size with different initial
conditions, the dielectric constants have been estimated. As shown in Fig.5,
calculated dielectric constant of bulk water is 65.9, which is underestimated
compared with experiments. It is known that the SPC/E water model give an
underestimated dielectric constant, and this fact is attributed to the character of
the SPC/E force field model. As for small droplets, dielectric constant of water
droplet at the nano-scale is dramatically reduced. If this trend is extrapolated to
the meso-scale, even at the mm scale, dielectric constant of water in the narrow
space is expected to be small value below 40. In recent bio-MEMS, the width of
flow channel is order of 100 μm. The change of dielectric properties of water in

400 S. Ohnishi and S. Itoh

Fig. 5. Calculated dielectric constant of water as a function of droplet size

such narrow channel would produce a considerable problem in bio-MEMS design.
Accurate knowledge about material properties at the nano-scale would be useful
when developing epoch-making products, e.g. a protein chip which measures all
protein existing inside the living cell simultaneously.

4 Concluding Remarks

We have discussed physical properties of nano-materials in sections 2 and 3.
The first principles calculations have been done by using the ES system. We
could get well converged results for each system within almost one hour, while
the standard calculation typically takes a week. It is very efficient not only
to obtain very accurate results with a very large number of sampling points
for the numerical integration but to consider all possibilities of combination of
atomic elements, which will open a new possibility to build up a new kind of
nano-materials database. The dynamical simulation needs long time results as
possible as we can store whole time series data in both the first principles and the
classical calculations; 0.001 fs times 103 means the ps order and 1 fs times 106

means ns one at the TeraFLOPS stage, respectively. We can, therefore, expect
two kinds of breakthrough for the computer aided materials design in the era of
the PetaFLOPS computing.

One is the actual computer experiment which is so called in-situ theoretical
experiment. We can deal with 104 ∼ 106 atoms estimated from our TeraFLOPS
computa-tion in the ES. It will be enough to discuss whole effects of the

PetaFLOPS Computing and Computational Nanotechnology 401

environment of nano-materials. We will be able to chase the time evolution for
quantum and classical sys-tems comparable to in-situ experiments.

The other one is the more important issue than the direct real-time simulation.
There must be a lot of systems which need a kind of the on demand simulation.
The computer simulation can provide us information predicted something de-
scribed by the basic equations in advance. It is very important to have these
predicted samples before anything happens. In the case of nano-materials design
for industrial applications, these kinds of knowledgebase created by materials-
simulation will become very efficient to have a common platform to share basic
atomic elements extracted from the calculated output of materials-simulation.
It will be very useful not to waste time to explore new materials at the unknown
environment.

References

1. Ohnishi, S.: Annual Report of the Earth Simulator Center, vol. 151 (2004)
2. Watari, N., Ohnishi, S.: Phys.Rev.B. 58, 1665 (1998)
3. Fukai, Y.: J. Alloys Compounds 263, 356–357 (2003)
4. Watari, N., Ohnishi, S., Ishii, Y.: J. Phys.: Condens. Matter 12, 6799–6823 (2000),

Watari, N., Ohnishi, S.: J. Phys. : Condens. Matter 14, 769–781 (2002)
5. Valisko, M., Boda, D., Liszi, J., Szalai, I.: Phys.Chem.Chem.Phys. 3, 2995 (2001)

16.14 TFLOPS Eigenvalue Solver

on the Earth Simulator:
Exact Diagonalization for Ultra Largescale

Hamiltonian Matrix

Susumu Yamada1,3, Toshiyuki Imamura2,3, and Masahiko Machida1,3

1 Japan Atomic Energy Agency,
6-9-3 Higashi-Ueno, Taito-ku, Tokyo, 110-0015, Japan

{yamada.susumu,machida.masahiko}@jaea.go.jp
2 The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-City, Tokyo, 182-8585, Japan
imamura@im.uec.ac.jp

3 CREST (JST), 4-1-8 Honcho, Kawaguchi-City, Saitama, 330-0013, Japan

Abstract. The Lanczos method has been conventionally utilized as an
eigenvalue solver for huge size matrices encountered in strongly corre-
lated fermion systems. However, since one can not obtain the residual
during the Lanczos iteration, the iteration count in the Lanczos method
is not controllable. Thus, we adopt a new eigenvalue solver based on the
conjugate gradient (CG) method in which the residual can be evaluated
every iteration step. We confirm that the CG method with an precondi-
tioner shows much more excellent performance than the Lanczos method.
We achieve 16.14 TFLOPS on 512 nodes (4096 processors) of the Earth
Simulator by the use of the CG method.

1 Introduction

Since the experimental success [1,2,3] of the Bose-Einstein condensation in the
trapped atomic Bose gas honored by the Nobel Prize in 2001, the research
streamline in atomic physics has been directed toward another difficult conden-
sation, namely, superfluidity of the atomic Fermi gas [4,5]. Thus, we numerically
explore a possibility of superfluidity in the atomic Fermi gas [6,7]. Our under-
taking model is the fermion-Hubbard model [8,9] with the trapping potential.
The Hubbard model describes a many-body fermion system on a discrete lattice,
which can be realized by a standing wave created due to interference effect of
two laser beams [10].

The Hubbard model is one of the most intensively-studied models by com-
puters because it owns very rich physics although the model expression is quite
simple [8,9]. The Hamiltonian of the Hubbard model with a trap potential [6,11]
is given as

H = −t
∑
i,j,σ

(a†
jσaiσ + H.C.) + U

∑
i

ni↑ni↓ +
(

2
N

)2

V
∑
i,σ

niσ

(
i − N

2

)2

, (1)

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 402–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 403

where t, U , and V are the hopping parameter from i-th to j-th sites (normally j is
the nearest neighbor site of i), the repulsive energy for on-site double occupation
of two fermions, and the parameter characterizing the strength of the trapping
potential, respectively, as schematically shown in Fig. 1, and ai,σ, a†

i,σ and ni,σ

are the annihilation, the creation, and the number operator of a fermion with
pseudo-spin σ on the i-th site, respectively.

The computational approaches on the Hubbard model are roughly categorized
into three types. The first one is the exact diagonalization using the Lanczos
method [12], the second one is DMRG and the third one is the quantum Monte
Calro [8,9]. The first one directly calculates the ground and a few excited states of
the model, and moreover, obtains various physical quantities with considerably
high accuracy. However, the numbers of fermions and sites are severely limited
because the matrix size of the Hubbard Hamiltonian almost exponentially grows
with increasing these numbers. On the other hand, the second and third one have
an advantage in terms of these numbers, but confronts dimension limitation
due to its theoretical ground and a fatal problem as the negative sign in the
probability calculation [8,9], respectively. From these contexts, if computational
resources are permitted infinitely, the exact diagonalization is clearly found to
be the best way. Thus, one can raise a challenging theme for supercomputing.
This is to implement the exact diagonalization code on the present top-class
supercomputer, i.e., the Earth Simulator [13], and to examine how large matrices
can be solved and how excellent performance can be obtained.

In this paper, we present our progress in both algorithm and technique to
solve the eigenvalue problem of the Hubbard Hamiltonian matrix (1) on the
Earth Simulator. In terms of algorithm, we propose a new profitable algorithm,
i.e., the preconditioned conjugate gradient (PCG) method instead of the conven-
tional Lanczos method and compare between the Lanczos method and the PCG
method. On the other hand, in terms of parallelization techniques, we implement
two techniques which are the inter-node parallelization using MPI for distributed
memory and the intra-node parallelization using the automatic parallelization
for shared memory. Combining the inter- and intra-node parallelizations, we
suggest a practical memory-saving technique to perform the largest-scale matrix
operations on the Earth Simulator.

U
tTrapping Potential

Fig. 1. A schematic figure of the one-dimensional fermion-Hubbard model with a trap-
ping potential. Here, t and U are the hopping parameter and the repulsive energy at
the double occupation on a site, respectively. The up-arrow and the down-arrow stand
for fermion with up pseudo-spin and down pseudo-spin, respectively.

404 S. Yamada et al.

The contents of this paper are as follows. In Section 2, we introduce three
eigenvalue solvers to diagonalize the Hamiltonian matrix of the Hubbard model
and compared their convergence properties. Section 3 presents the implementa-
tion of two solvers on the Earth Simulator. Finally, we show actual performance
in large-scale matrix diagonalizations on the Earth Simulator in Section 4.

2 Numerical Algorithms

Our main target is to calculate the minimum eigenvalue and the corresponding
eigenvector of ultra-largescale Hamiltonian matrices on the Earth Simulator.
The Hamiltonian matrices are sparse, real, and symmetric. Therefore, several
iterative numerical algorithms, i.e., the power method, the Lanczos method,
the conjugate gradient method, and so on, are applicable. In this section, we
compare three numerical algorithms listed above, in terms of the memory use
and the performance on the Earth Simulator.

2.1 Power Method

The power method is one of the most fundamental algorithms in eigenvalue
problems. With zero shift determined by the Gerschgorin circle theorem, our
problem can be simply solved. The algorithm is described in Fig. 2(a). Obviously,
the memory usage to run the algorithm is 2N double precision words, where
N indicates a dimension of the eignevector. This memory requirement is the
minimum among three algorithms. However, as will be shown in Section 2.4,
the convergence rate of the power method is quite miserable, and the desired
accuracy is not obtained within a CPU time limit. Therefore, we will not touch
this algorithm in the following sections.

2.2 Lanczos Method

The Lanczos method is one of the subspace projection methods that creates
a Kryrov sequence and expands invariant subspace based on the procedure of
the Lanczos principle [14] (see Fig. 2(b)). Eigenvalues of the projected invariant
subspace well approximate those of the original matrix, and the subspace can
be represented by a compact tridiagonal matrix Tm. The eigenvector z of the
original matrix is computed by

z ← z + yk+1vk (k = 0, 1, . . . , m − 1),

where y = (y1, y2, . . . , ym)T is the eigenvector of Tm and vk is the k-th Lanc-
zos vector. Due to the memory limitation, only two Lanczos vectors are stored
and updated by each Lanczos iteration. Therefore, we must totally execute the
Lanczos recursion twice to obtain a set of the eigenvalue and the corresponding
eigenvector1.
1 In the following results, the number of iterations m is defined as that of the first

Lanczos recursion.

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 405

For the reason given above, the memory requirement of the main recursion
is 2N words. In addition, an N -word buffer is required for storing an eigenvec-
tor. Consequently, the total memory requirement of the Lanczos method is 3N
words.

2.3 Conjugate Gradient Method

The conjugate gradient (CG) method is originally a popular algorithm, which is
frequently used for solving large-scale linear systems. It is also applicable to the
eigenvalue calculation (see Fig. 2(c), which is modified from the original algo-
rithm to reduce the operation load related to the calculation SA). The algorithm
requires to store six vectors, i.e., wi, pi, xi, Wi, Pi, and Xi. Thus, the memory
usage is totally 6N words.

An operator T in Fig. 2(c) indicates the preconditioner, whose choice is
crucial for fast convergence. In the present Hubbard-Hamiltonian matrix, we
find that the zero-shift point Jacobi preconditioner is the best one from the
convergence test. Detailed description of the preconditioning is given in
Appendix A.

2.4 Performance Test of Three Algorithms

The performance of the three algorithms, i.e., the power method, the Lanczos
method, and the PCG method, are examined. In addition to the basic memory
requirement described in Section 2.1-2.3, all algorithms demand two N -word
communication buffers and additionally an N -word buffer for diagonal elements
of the Hamiltonian matrix to execute parallel calculations. Table 1 summarizes
the total memory usage, the number of iterations, the elapsed time, and the
FLOPS rate for an eigenvalue calculation of a 1,502,337,600-dimensional Hamil-
tonian matrix by using 10 nodes (80 processor elements) of the Earth Simulator.
The result illustrates that the PCG method is an overwhelmingly powerful al-
gorithm except for the memory requirement.

Table 1. A performance test of three algorithms on 10 nodes of the Earth Simulator

Power Lanczos PCG

Memory Requirement 5N 6N 9N
[Byte] 56.0G 67.2G 100.7G

Iteration Controllability — Fixed Variable
Iterations No Convergence 200 91

Residual Error — 8.3523E-9 1.255E-9

Elapsed Time [sec] (1800.0) 95.0 28.2

FLOPS — 269.5G 391.4G
(Peak Ratio) — (42.1%) (61.1%)

406 S. Yamada et al.

w0 := an initial guess.
v0 := w0/‖w0‖
do i=1,2,... until convergence,
wi := Hvi−1

θi := (vi−1, wi)
vi := wi/‖wi‖
if (‖vi − vi−1‖ < ε‖v0‖) exit
enddo

(a) Power method

x0 := an initial guess.
β0 := 1, v−1 := 0, v0 := x0/‖x0‖
do i=0,1,... m − 1
ui := Hvi − βkvi−1

αi := (ui, vk)
wi+1 := ui − αivi

βi+1 := ‖wi‖
vi+1 := wi/βi+1

enddo

(b) Lanczos method

x0 := an initial guess, p0 := 0
x0 := x0/‖x0‖, X0 := Hx0, P0 = 0, μ−1 := (x0, X0)
w0 := X0 − μ−1x0

do k=0, ... until convergence
Wk := Hwk

SA := {wk, xk, pk}T {Wk, Xk, Pk}
SB := {wk, xk, pk}T {wk, xk, pk}
Solve the smallest eigenvalue μ
and the corresponding vector v, SAv = μSBv, v = (α, β, γ)T .
μk := (μ + (xk, Xk))/2
xk+1 := αwk + βxk + γpk, xk+1 := xk+1/‖xk+1‖
pk+1 := αwk + γpk, pk+1 := pk+1/‖pk+1‖
Xk+1 := αWk + βXk + γPk, Xk+1 := Xk+1/‖xk+1‖
Pk+1 := αWk + γPk, Pk+1 := Pk+1/‖pk+1‖
wk+1 := T (Xk+1 − μkxk+1), wk+1 := wk+1/‖wk+1‖
enddo

(c) Preconditioned conjugate gradient method

Fig. 2. Algorithms of three eigenvalue solvers

3 Implementation on the Earth Simulator

In this section, we concentrate on a core operation Hv common for both the
Lanczos and the PCG algorithms and present the parallelization issues including
data partitioning, the communication, and the overlap. Furthermore, we give
two technical remarks, i.e., a memory saving technique by combining inter- and
intra-node parallelizations and an effective usage of vector pipelines.

3.1 Matrix-Vector Multiplication

By using a matrix representation, the Hubbard Hamiltonian H is mathematically
given as

H = I ⊗ A + A ⊗ I + D, (2)

where I, A, and D are the identity matrix, the sparse matrix due to the hopping
between neighboring sites, and the diagonal matrix originated from the presence
of the on-site repulsion, respectively.

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 407

In the core operation Hv, the matrix-vector multiplications are transformed
into the matrix-matrix multiplications as

Hv �→
⎧⎨
⎩

Dv �→ D̄ � V
(I ⊗ A)v �→ AV
(A ⊗ I)v �→ V AT

(3)

where the matrix V is derived from the vector v by the following procedures.
First, decompose the vector v into n blocks, and order in the two-dimensional
manner as follows,

v = (v1,1, v2,1, . . . , vn,1︸ ︷︷ ︸
first block

, v1,2, v2,2, . . . , vn,2︸ ︷︷ ︸
second block

, · · · , v1,n, v2,n, . . . , vn,n︸ ︷︷ ︸
n-th block

)T .

Here, a pair of subscripts of each element v formally indicates a position of row
and column of the matrix V . The k-th element of the matrix D, dk, is also
mapped onto the matrix D̄ in the same manner, and the operator � means an
elementwise multiplication.

3.2 Data Distribution, Parallel Calculation, and Communication

The matrix V must be treated as a dense matrices whose dimension is large
enough to overfull the memory capacity of a single node. Therefore, the matrix
V is columnwisely partitioned. In contrast, since the matrix A is a sparse matrix
and its sparsity is high, all non-zero elements of the matrix A can be stored on the
memory systems of all nodes. Other large matrices are partitioned columnwisely
or rowwisely on each node. The operation Hv including the data communication
can be written down as follows:

CAL1: Ec = D̄c � V c,
CAL2: W c

1 = Ec + AV c,
COM1: communication to transpose V c into V r,
CAL3: W r

2 = V rAT ,
COM2: communication to transpose W r

2 into W c
2 ,

CAL4: W c = W c
1 + W c

2 ,

where the superscript c and r mean columnwise or rowwise partitioning, re-
spectively. The above procedure describes twice matrix-transpose operations
which are normally realized by all-to-all data communication. In the MPI stan-
dards, the all-to-all data communication is realized by a collective communica-
tion MPI_Alltoallv. However, due to irregular and incontiguous structure of
the transferring data, the data-transpose communication should be executed by
a point-to-point or a one-side communication function. Moreover, the one-side
communication function MPI_Put more excellently runs than the point-to-point
communication on the Earth simulator. In fact, the use of MPI Put is recom-
mended by the developers in this case [15].

408 S. Yamada et al.

3.3 Communication Overlap

To raise up the performance, it is crucial to hide communication behind com-
putation. In the procedure of the matrix-matrix multiplication in Section 3.2,
the calculations CAL1 and CAL2 and the communication COM1 is clearly
found to be independently executed. Moreover, although the relation between
CAL3 and COM2 is not so simple, the overlap is principally possible. Thus,
the two communication processes (COM1 and COM2) are expected to be
hidden behind the calculations. However, we note that the overlap depends
on an implementation level of the MPI library. In fact, the MPI library in-
stalled on the Earth Simulator has not provided any functions of the overlap2.
Thus, we have to use the non-blocking MPI Put as a blocking communication
like MPI SEND.

In order to improve the performance under such a situation, we propose a
communication strategy to realize the overlap in the use of the blocking MPI Put
on the Earth Simulator. The way is as follows: The blocking MPI Put can be as-
signed to a single PE per node by the intra-node parallelization technique. Then,
the assigned processor dedicates only communication (see Fig. 3). Consequently,
the calculation load is divided into seven PE’s. The intra-node parallelism is
described by the automatic parallelization using CDIR compiler directives. This
parallelization method, which we call task assignment (TA) method, imitates a
non-blocking communication and enable to overlap between the blocking com-
munication and calculation (see Appendix B).

P
E
0

P
E
1

P
E
7

Communication Computation

Fig. 3. A schematic figure for the task division. The communication task is assigned
to a processor element (ex. PE 0) on each node.

2 At the present, the situation is different from the time when this paper was accepted,
because the MPI library to overlap between the MPI non-blocking communication
and computation was released in December, 2005.

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 409

Table 2. The dimension of Hamiltonian matrix H , the number of nodes, and memory
requirements from Model 1 to 4. Model 4 in the PCG method requires more than 8TB,
which is beyond the memory size of 512 nodes of the Earth Simulator.

Model
No. of No. of Fermions Dimension No. of Memory (TB)
Sites ↑-spin ↓-spin of H Nodes Lanczos PCG

1 24 6 6 18,116,083,216 128 0.8 1.3

2 21 8 8 41,408,180,100 256 1.9 2.9

3 22 8 8 102,252,852,900 512 4.6 6.9

4 22 9 8 159,059,993,400 512 7.1 (10.7)

4 Performance on the Earth Simulator

Let us present the performance of the Lanczos method and the PCG method
with TA method for huge Hamiltonian matrices (see Table 2 for the numbers of
sites and fermions and the matrix dimension). Table 3 shows the performance of
these methods on 128 nodes, 256 nodes and 512 nodes of the Earth Simulator.
The performance measurements are made as follows. The total elapsed time and
FLOPS rates are measured by using the simple performance analysis routines
[16] installed on the Earth Simulator. On the other hand, the elapsed time of the
solvers are measured by using MPI Wtime function, and the FLOPS rates of the
solvers are evaluated by the elapsed time and flop count estimated according to
the following formulae:

Lanczos method: 5 ∗ ndim + 16 ∗ itr ∗ ndim + 2 ∗ itr ∗ (2 ∗ nnz − ndim),
PCG method: 35 ∗ ndim + 46 ∗ itr ∗ ndim + (itr + 2) ∗ (2 ∗ nnz − ndim),

Table 3. Performances of the Lanczos method and the PCG method with the TA
method on the Earth Simulator

a) The number of iterations, residual error, and elapsed time.

Lanczos Method PCG Method
Model

itr.
Residual Elapsed Time(sec)

itr.
Residual Elapsed Time(sec)

Error Total Solver Error Total Solver

1 200 1.1×10−7 106.905 101.666 105 1.4×10−9 39.325 34.285

2 200 7.7×10−7 154.159 148.453 107 2.3×10−9 55.888 48.669

3 300 3.6×10−11 288.270 279.775 109 2.4×10−9 69.123 60.640

4 300 4.2×10−8 362.635 352.944 ——

b) FLOPS rate.

TFLOPS (Peak Ratio)
Model Lanczos Method PCG Method

Total Solver Total Solver

1 3.062(37.4%) 3.208(39.2%) 4.045(49.4%) 4.607(56.2%)

2 5.245(32.0%) 5.426(33.1%) 6.928(42.3%) 7.893(48.2%)

3 10.613(32.3%) 10.906(33.3%) 14.271(43.6%) 16.140(49.3%)

4 13.363(40.8%) 13.694(41.8%) – –

410 S. Yamada et al.

where ndim, itr and nnz are the dimension of the Hamiltonian matrix H , the
number of iterations, and the number of the non-zero elements of H , respectively.

As shown in Table 3, the PCG method shows better convergence property
and solves the eigenvalue problems about three times faster than the Lanczos
method. Moreover, the PCG method overlaps communication tasks with cal-
culations more than the Lanczos method. The reason is that the PCG method
includes a routine calculating inner products in which the communication can be
efficiently hidden. The best performance of the PCG method is 16.140 TFLOPS
on 512 nodes which is 49.3% of the theoretical peak. On the other hand, Table 2
and 3 show that the Lanczos method can solve up to the 159-billion dimensional
Hamiltonian matrix on 512 nodes. To our knowledge, this size is the largest in
a history of the exact diagonalization method of Hamiltonian matrices.

5 Conclusions

The best performance (16.140TFLOPS) in the present is comparable to those
of other ones on the Earth Simulator [17,18,19,20,21]. However, we would like
to point out that our application requires a huge amount of communications
in contrast to the previous ones. Therefore, we made much effort to hide the
communication by paying an attention to the architecture of the Earth Sim-
ulator. Furthermore, we suggested a new algorithm (PCG) showing the best
performance and succeeded to drastically shorten the total elapsed time. In con-
clusion, we obtain the best performance by the new algorithm and attain the
world record of the large matrix operation. We believe that these results are
outstanding achievements in high performance computing.

Acknowledgements

The authors in CCSE JAEA thank G. Yagawa, T. Hirayama, N. Nakajima, C.
Arakawa, N. Inoue and T. Kano for their supports and acknowledge K. Itakura
and staff members in the Earth Simulator for their supports in the present cal-
culations. One of the authors (M.M.) acknowledges T. Egami and P. Piekarz for
illuminating discussion about diagonalization for d-p model and H. Matsumoto
and Y. Ohashi for their collaboration on the optical-lattice fermion systems.

References

1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.:
Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269,
198–201 (1995)

2. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose-Einstein
condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75,
1687–1690 (1995)

3. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn,
D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys.
Rev. Lett. 75, 3969–3973 (1995)

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 411

4. Regal, C.A., Greiner, M., Jin, D.S.: Observation of resonance condensation of
fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

5. Kinast, J., Hemmer, S.L., Gehm, M.E., Turlapov, A., Thomas, J.E.: Evidence for
superfluidity in a resonantly interacting Fermi gas. Phys. Rev. Lett. 92, 150402
(2004)

6. Machida, M., Yamada, S., Ohashi, Y., Matsumoto, H.: Novel superfluidity in a
trapped gas of Fermi atoms with repulsive interaction loaded on an optical lattice.
Phys. Rev. Lett. 93, 200402 (2004)

7. Machida, M., Yamada, S., Ohashi, Y., Matsumoto, H., Machida, et al.: Reply.
Phys. Rev. Lett. 95, 218902 (2005)

8. Rasetti, M. (ed.): The Hubbard Model, Recent Results. World Scientific, Singapore
(1991)

9. Montorsi, A. (ed.): The Hubbard Model: A Reprint Volume. World Scientific, Sin-
gapore (1991)

10. Greiner, M., Mandel, O., Esslinger, T., Hansch, T.W., Bloch, I.: Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Na-
ture 415, 39 (2002)

11. Rigol, M., Muramatsu, A., Batrouni, G.G., Scalettar, R.T.: Local quantum criti-
cality in confined fermions on optical lattices. Phys. Rev. Lett. 91, 130403 (2003)

12. Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod.
Phys. 66, 763 (1994)

13. The Earth Simulator Center Home page,
http://www.es.jamstec.go.jp/index.en.html

14. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-
value Computations. In: Theory, vol. 1, SIAM, Philadelphia (2002)

15. Uehara, H., Tamura, M., Yokokawa, M.: MPI Performance Measurement on the
Earth Simulator. NEC Research & Development 44(1), 75–79 (2003)

16. NEC Corporation, FORTRAN90/ES Programmer’s Guide, EARTH SIMULATOR
User’s Manuals, NEC Corporation (2002)

17. Shingu, S., Takahara, H., Fuchigami, H., Yamada, M., Tsuda, Y., Ohfuchi,
W., Sasaki, Y., Kobayashi, K., Hagiwara, T., Habata, S., Yokokawa, M., Itoh,
H., Otsuka, K.: A 26.58 Tflops Global Atmospheric Simulation with the Spec-
tral Transform Method on the Earth Simulator. In: Proc. of SC 2002 (2002),
http://sc-2002.org/paperpdfs/pap.pap331.pdf

18. Sakagami, H., Murai, H., Seo, Y., Yokokawa, M.: 14.9 TFLOPS Three-dimensional
Fluid Simulation for Fusion Science with HPF on the Earth Simulator. In: Proc.
of SC 2002 (2002), http://sc-2002.org/paperpdfs/pap.pap147.pdf

19. Yokokawa, M., Itakura, K., Uno, A., Ishihara, T., Kaneda, Y.: 16.4
Tflops Direct Numerical Simulation of Turbulence by Fourier Spec-
tral Method on the Earth Simulator. In: Proc. of SC 2002 (2002),
http://sc-2002.org/paperpdfs/pap.pap273.pdf

20. Komatitsch, D., Tsuboi, S., Ji, C., Tromp, J.: A 14.6 billion degrees of freedom, 5
teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: Proc. of
SC 2003 (2003), http://www.sc-conference.org/sc2003/paperpdfs/pap124.pdf

21. Kageyama, A., Kameyama, M., Fujihara, S., Yoshida, M., Hyodo, M., Tsuda, Y.: A
15.2 TFlops Simulation of Geodynamo on the Earth Simulator.In: Proc. of SC 2004
(2004), http://www.sc-conference.org/sc2004/schedule/pdfs/pap234.pdf

 http://www.es.jamstec.go.jp/index.en.html
http://sc-2002.org/paperpdfs/pap.pap331.pdf
http://sc-2002.org/paperpdfs/pap.pap147.pdf
http://sc-2002.org/paperpdfs/pap.pap273.pdf
http://www.sc-conference.org/sc2003/paperpdfs/pap124.pdf
http://www.sc-conference.org/sc2004/schedule/pdfs/pap234.pdf

412 S. Yamada et al.

Appendix A: Preconditioner for CG Method

It is well-known that the preconditioning improves convergence of the CG method.
Effective preconditioning needs to identify the mathematical characteristics of the
matrix. However, it is generally hard to identify them. In this section, we focus on
the following five preconditioners:

1. Point Jacobi,
2. Zero-shift point Jacobi,
3. Block Jacobi,
4. Neumann-polynomial expansion,
5. SSOR-type iteration.

Here, 1, 3, 4, and 5 are very popular preconditioners for the CG method and
2 (zero-shift point Jacobi) is a modified one of 1 (point Jacobi). The zero-
shift point Jacobi is a diagonal scaling preconditioner shifted by ’−μk’ to am-
plify the ground-state eigenvector, i.e., the preconditioning matrix is given by
T = (D − μkI)−1, where D, I, and μk are the diagonal part of the matrix H ,
the identity matrix, and an approximate of the smallest eigenvalue which ap-
pears in the PCG iteration, respectively. In order to solve a huge matrix and
achieve higher performance, we select 1 and 2, since they do not require any
data communication and any extra storage.

Here, we calculate the same eigenvalue problem as Section 2.4. Table 4 sum-
marizes a performance test of three cases, 0) without preconditioner (NP), 1)
point Jacobi (PJ), and 2) zero-shift point Jacobi (ZS-PJ) on the Earth Sim-
ulator. This result clearly reveals that the zero-shift point Jacobi is the best
preconditioner.

Table 4. Comparison among three preconditioners

0) NP 1) PJ 2) ZS-PJ

Iteration 268 133 91
Residual Error 1.445E-09 1.404E-09 1.255E-09

Elapsed Time (sec) 78.904 40.785 28.205
FLOPS 382.55G 383.96G 391.37G

——————————–
This eigenvalue problem is the same as in Section 2.4.

Appendix B: Overlap between Communication and
Calculation

In order to examine the possibility of overlap between communication and calcu-
lation by utilizing TA method, we perform the multiplication Hv on 10 nodes (80
PE’s) of the Earth Simulator. A test matrix H is a 1.5-billion-dimensional ma-
trix derived from the one-dimensional 20-site Hubbard model with 12 fermions
(6 ↑, 6 ↓). We measure the elapsed time of the four calculations CAL1-4 and the

16.14 TFLOPS Eigenvalue Solver on the Earth Simulator 413

two communications COM1-2 shown in Section 3.2. We show the timecharts of
TA and non-assignment (NA) methods in Fig. 4. As shown in the figure, the cal-
culations and the communications are executed serially in NA method. On the
other hand, the calculation and the communication in TA method are executed
simultaneously.

COM1 COM2

CAL1&CAL2

CAL3 CAL4

Preparation for
Communication Idle Time

Elapsed Time (sec)
0.309

0.204

NA

TA

Fig. 4. A comparison of the process timechart on node No.0 for the multiplication Hv
between the TA method and the NA method

Numerical Simulation of Combustion Dynamics

at ISTA/JAXA

Junji Shinjo, Shingo Matsuyama, Yasuhiro Mizobuchi, and Satoru Ogawa

Institute of Space Technology and Aeronautics (ISTA),
Japan Aerospace Exploration Agency (JAXA)

7-44-1 Jindaiji-higashimachi, Chofu Tokyo 182-8522 Japan
shinjo.junji@jaxa.jp

Abstract. This paper briefly reviews recent numerical combustion sim-
ulation results at ISTA/JAXA obtained by DNS and LES approaches,
and shows some topics towards future combustion research. We have suc-
cessfully simulated detailed structures of a hydrogen jet lifted flame by
DNS and an unsteady combustor flow field in a gas turbine combustor
by LES. In these simulations, numerical simulation has been proved very
effective, but its applicability is still limited due to long computational
time. It is expected that future progress in computer performance will
make this kind of simulation more realistic and useful in combustion
research and development.

1 Introduction

Combustion has been utilized by humankind since ancient time to produce heat,
light and power, and even today it is one of the most common and familiar en-
ergy generation methods in our daily life. In terms of research and development,
combustion has been one of the major topics both in scientific and engineer-
ing fields because combustion processes involve a lot of complicated physical
phenomena, such as chemical reactions, heat transfer, convection and radiation.
Even today, there are still many issues to be investigated to understand what is
taking place in reacting flows. Furthermore, in practical devices, the flow filed
is usually turbulent. This adds one more complexity to the flow field. Turbu-
lence and combustion influence each other and the interaction is non-linear.
Numerical simulation has become a powerful tool in understanding combustion
processes in several scales. For laboratory-scale flames, the inner flame structure
is focused on to understand the balance between chemical reaction, convection,
diffusion, turbulence, etc. This kind of analysis is sometimes difficult by exper-
imental measurements. The obtained data will lead to new flame models, novel
combustion methods, etc. For practical-scale combustion devices, such as au-
tomobile engines, gas turbines, furnaces, etc, resolving fine structures of flame
may be difficult, but flame/flow interaction analysis and system evaluation by
numerical simulation have become possible and used together with experiments.
In the present situation, however, different scales are treated differently. The
complexity lies in the very wide range of temporal and spatial scales, and it is

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 414–426, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulation of Combustion 415

still impossible to cover the entire range by direct numerical simulation. The
computational time is usually large, even for LES, and this limits the number
of possible cases for parametric study. It is thus expected that future progress
in computer performance will improve the situation. In this paper, we briefly
review our recent numerical simulation results and computational environment
in combustion research, and discuss future numerical combustion research and
demands for computer performance.

2 Numerical Approaches

There are basically three types of numerical approaches to turbulent combustion
investigation, direct numerical simulation (DNS), Reynolds-averaged Navier-
Stokes simulation (RANS) and large-eddy simulation (LES). In DNS, the small-
est scale, the inner heat release layer of flame or turbulent Kolmogorov scale,
must be resolved. Even with today’s powerful computers, its computational do-
main must be usually very small. The governing equations are rigorously de-
termined and use no model. DNS is used in combustion research to investi-
gate flame structures, flame/turbulence interaction, flame/wall interaction, etc.
RANS is based on ensemble-averaging, so it is very useful in obtaining averaged
flow field data. In this paper, however, any simulation result based on this ap-
proach will not be shown. LES is a spatially-filtered method, where grid scale
structures are directly resolved and sub-grid scale phenomena are modeled. The
underlying principle for modeling sub-grid scales is Kolmogorov’s similarity law.
The flame inner structure is usually smaller than the grid scale, so flame mod-
eling is an important issue in conducting combustion LES. In our simulation of
combustion dynamics in a lean premixed combustor, the phenomenon is prac-
tical scale and unsteady, so this approach is a natural selection to understand
the dynamics. Figure 1 shows schematically the resolved scales in numerical
simulation [1].

Fig. 1. Turbulence energy spectrum and resolved scales in numerical simulation. kc
represents the cut-off wave number. In DNS, all the scales are resolved, while in LES,
scales smaller than the cut-off scale are modeled. The flame inner structure usually lies
in the modeled region in LES.

416 J. Shinjo et al.

In the following section, we briefly present two results from our recent sim-
ulation research: one obtained by DNS and the other by LES. The computer
resources necessary to conduct these simulations are also shown. Then, the fu-
ture issues related to numerical combustion simulation will be discussed.

3 Recent Results of Numerical Simulation

3.1 DNS Study

This study is Mizobuchi’s work [2,3]. See the references for more detail. In this
study, a hydrogen lifted flame is simulated. Hydrogen is injected into air through
a nozzle. When the injection speed is low, the flame is attached to the nozzle rim.
As the injection speed is increased, the flame detaches from the rim at a certain
velocity, and stabilized as a lifted flame with a certain lift-off distance. When the
injection velocity is further increased, the flame will be blown off leading to total
extinction. The mechanism of flame stabilization may lie in the balance between
the flow velocity and combustion processes, but the detailed mechanism has not
been known so far. This study is the first to show the complex structures of lifted
flame stabilization by numerical simulation. The computation has been carried
out on the Central Numerical Simulation System (CeNSS) installed at Aerospace
Research Center (ARC), Japan Aerospace Exploration Agency (JAXA) (table
1). The system has 1792 processors and 3TB memory in total. The theoretical
peak performance is 9.3TFLOPS.

Table 1. CeNSS performance (Fujitsu Primepower)

CPU architecture SPARC64V, 1.3GHz
Number of CPUs 1792

Total memory 3TB
Peak performance 9.3TFLOPS
Number of nodes 56

Data storage 57TB disc and 620TB tape

The flow field configuration is similar to the experiment by Cheng [4]. The
hydrogen jet diameter is 2mm, and the jet velocity is 680m/s (Mach 0.54). The
pressure is 1atm and the temperature 280K. The co-flow velocity is zero. The
computation domain for this simulation is 3x3x3cm in real physical volume. At
the beginning the calculation, the flow is ignited with additional energy. The
finest grid spacing is 0.05mm and the total number of grid points is 200 million.
This simulation uses 291 processors and 230GB memory, and computational time
is about 1500 hours for 1ms physical time integration. The grid spacing is small
enough to resolve the inner heat layer of flame with more than 10 grid points. The
computational domain is decomposed into 75 sub-domains and parallelization is
based on MPI and OpenMP.

Simulation of Combustion 417

Table 2. Computational conditions for hydrogen lifted flame DNS

Computational domain size 3x3x3cm
Characteristic length 2mm (nozzle diameter)

Number of grid points 200 million
Minimum grid spacing 0.05mm
Number of processors 291
Computational time 1500hrs for 1ms integration

Figure 2 shows the temperature iso-surface of 1000K of the lifted flame. The
hydrogen jet is mixed with the surrounding air and the flame stably balances
at 5.5D downstream, where D is the diameter of the injection tube. This lift-off
height is close to the experimental observation [4]. Using the flame index [2,3],
the local flame structure can be classified into two major categories: premixed
flame and diffusion flame. When the flame index is positive, the flame is pre-
mixed, when it is negative, the flame is diffusive. Figure 3 shows the flame index
structure. In the inner flame region, the flame configuration is almost premixed,
while the outer flame layer is mostly diffusive. The edge flame at the flame
base has a very complicated structure and both premixed and diffusion flames
are present. The inner premixed flame is rich (fuel is excessive). Lean premixed
flame is only seen around the base flame. In the outer diffusive flame region,
the reaction intensity differs locally and it looks that there are several diffusion
flame ’islands’.

In the inner premixed region, where the turbulent intensity is high, the heat
release layer and the fuel consumption layer are not the same shape as shown in
figure 4. This is because the turbulent eddies penetrate into the flame, and the
flame structure can be no longer viewed as a flamelet. The flamelet means one-
dimensional laminar flame, and this modeling is typically used in LES studies

Fig. 2. Temperature iso-surface at 1000K

418 J. Shinjo et al.

Fig. 3. Flame index distribution

Fig. 4. (a) hydrogen consumption layer and (b) heat release layer in the inner premixed
flame region

when the turbulent intensity is not extremely high. Non-flamelet flame modeling
is more difficult and needs further analysis using this kind of data.

The formation process of the outer diffusion flame islands has been clarified
by time-series analysis. It has been found that there may be two mechanisms of
flame islands formation. Figure 5 shows the sequences of flame islands formation.
In the downstream region, the inner flame intermittently touches the outer region
by turbulent motion. Then, local extinction occurs and the outer part detaches
as a diffusion flame island. In the base flame region, a rich gas pocket created by
the shear instability attacks the base flame and a part of the base flame becomes
a diffusion flame island.

The base flame is very complicated and should be investigated further to
elucidate its structure and the stabilization mechanism. The investigation is now
under way. As shown above, it has been found that the turbulent lifted flame
is not a simple flame, but consists of three flame elements. This has not been
found by experiments, but by this numerical simulation.

Simulation of Combustion 419

Fig. 5. Sequences of formation of diffusion flame islands (a) at the outer flame region
(above) and (b) at the base flame (below)

3.2 LES Study

This study is Shinjo’s work [5,6]. This is an engineering study to investigate
combustion dynamics in a real-scale combustor. Lean premixed combustion is
a promising method to reduce emissions such as NOx from the exhaust gas,
but this combustion process tends to be unstable. Under certain operation con-
ditions, combustion oscillations may occur, sometimes leading to mechanical
damage or extinction. Especially for aircraft engines, this is a critical issue and
in order to widen the stable operation range, active/passive control strategies
have been studied worldwide [7,8]. The objectives of this study are (1) to un-
derstand combustion oscillation dynamics in a combustor and (2) to examine
active/passive control implementation. This simulation focuses on unsteady com-
bustion oscillation in a practical-scale combustor, so the LES approach is best
suited. The combustor considered here is a swirl-stabilized gas turbine combus-
tor used in the experiment of Tachibana, et al. [9]. The combustor length is
63cm and the width is 10cm. The inner diameter of the swirler is 20mm and the
outer diameter 50mm. The swirl angle is set at 45 degrees. There are 12 injection
holes on the edge of the swirler inner hub to implement secondary fuel injection
control. Figure 6 shows the schematic of the combustor.

The fuel used here is methane and it is mixed and heated in the premixing
chamber before entering the combustor. The equivalence ratio (F/A) / (F/A)st

(fuel/air mass ratio) is set at 0.5, where the subscript st stands for ’stoichiometric
condition’. The incoming flow conditions are: temperature of 700K, pressure of
1atm and velocity of 90m/s. Figure 7 shows the computational domain used
in this analysis. It includes a swirler inlet section, a downstream region and the
combustor. The downstream region is added to implement far-field fixed-pressure
condition at the exit boundary. The domain is decomposed into 60 sub-domains
for parallel computation. The total number of grid points is around 10 million to

420 J. Shinjo et al.

Fig. 6. Combustor configuration. The flame is stabilized by the swirler installed at the
entrance of the combustor. The upstream part of the combustor (length 210mm) has
optical access for visualization, and the downstream part (length 420mm) is water-
cooled. The secondary fuel feed system is used to implement control.

30 million, depending on the flow conditions. The computation has been carried
out on the CeNSS supercomputer system at JAXA/ISTA, and the OpenMP
and thread parallelization method are used. Total memory used is 150GB for 10
million grid points.

Fig. 7. Computational domain

Under typical gas turbine operation conditions, the flame thickness is thin
(0.1-1mm) compared to the scale of the combustor, so it cannot be resolved on
an LES mesh. In this study, the flame is modeled as a sheet between unburned
and burned gases, and only its geometrical motion is computed to make the
calculation less expensive. Chemical reactions are pre-calculated and the result
is stored in a look-up table. By doing this, stiffness of chemical calculation is
eased. The flame motion is governed by the following G-equation

∂ρG

∂t
+

∂ρGuj

∂xj
= ρusL |∇G| (1)

where G = 0 represents the unburned region and G = 1 burned region. The
inner flame structure is not resolved, and the laminar burning velocity sL must

Simulation of Combustion 421

Table 3. Computational conditions for combustor LES

Computational domain size 10x10x63cm (combustor)
Number of grid points 10-30 million
Minimum grid spacing 0.3mm
Number of processors 122
Computational time 1400hrs for 100ms integration

be given explicitly. In this study, the CHEMKIN software [10] is used to obtain
the burning velocity. After implementing LES filtering, this equation is solved,
coupled with the flow field equations of mass, momentum and energy. The LES
sub-grid model for flow filed is the dynamic Smagorinsky model and we use a
semi-empirical formulation for turbulent burning velocity [1,11] to include the
effect of sub-grid turbulent intensity.

s̃T

sL
= 1 + C

(
u′

sgs

sL

)
(2)

u′
sgs = CsΔ

√
S̄ij S̄ij (3)

First, a case without any control is examined to understand the combustion
dynamics. Figure 8 shows the instantaneous snapshot of flame shape in the com-
bustor. The flame shape is very complicated due to flame/turbulence interaction.
The flame is stabilized behind the swirler due to recirculation zones created by
the swirling motion. Figure 8 also shows the time-averaged flow field. The central
recirculation zone pushes the burned gas upstream and serves to hold the flame
in this position.

The complex flame shape is related to pressure oscillations in the combustor.
The temporal pressure trace is measured, as in the experiment, on the combustor
wall 10mm downstream from the dump plane. The FFT result shows that the
basic frequency of oscillation is about 300Hz, and this frequency corresponds to

Fig. 8. (a) (left) Instantaneous flame shape. The color on the flame indicates the local
axial velocity. (b) (right) time-averaged axial velocity field and streamlines. The upper
half from the centerline is shown. The central and corner recirculation zones are formed.

422 J. Shinjo et al.

Fig. 9. Vortex/flame interaction in one acoustic cycle. The solid line indicates the flame
shape and contours represent vorticity magnitude. The upper half from the centerline
is shown.

the quarter-wave mode. The quarter-wave mode is determined by the combustor
length L and the speed of sound of the burned gas a as

f 1
4

=
a

4L
∼ 300Hz (4)

In the experiment, we observed a close frequency [9], so this simulation suc-
cessfully captures the pressure oscillations in the combustor. The pressure oscilla-
tions induce velocity fluctuations, thus leading to periodic vortex shedding from
the dump plane. Figure 9 shows one cycle of interaction between vortices and
flame. During the period, vortices are shed from the combustor dump plane, and
they change local velocity field, thus flame shape and position. The interaction
is especially strong near the flame base region.

The change in flame shape/location is directly linked to heat release change.
Figure 10 shows the temporal traces of pressure and global heat release. The cor-
relation between the pressure and heat release fluctuations is called the Rayleigh
index, which indicates the production of acoustic energy. The global heat release
rate is oscillating basically at the same frequency as the acoustic frequency and
the phase difference is within 90 degrees. In this case, the Rayleigh index over
one acoustic period is positive, meaning that the heat release fluctuation feed
energy to sustain the combustion oscillations.

From the above result, the links between acoustic oscillations, vortex shedding
and heat release fluctuations determine the combustion dynamics and combus-
tion oscillations may be reduced if the links are changed properly. In the next
stage, combustion control is investigated. Secondary fuel is injected through in-
jection holes located at the swirler hub. The secondary fuel will change the local
and global heat release and expected to reduce the oscillation amplitude. In
the experiment by Tachibana et al. [9], both open-loop and closed-loop control
methods were tested. The ’open-loop’ here means continuous injection and the

Simulation of Combustion 423

Fig. 10. Temporal traces of pressure and global heat release

’closed-loop’ control uses combined H2/H∞ feedback injection. The oscillation
amplitude was reduced by 17dB by the open-loop control and 28dB by the closed-
loop control. In this section, the open-loop control is simulated. The secondary
fuel is 100% methane and its amount is 3% compared to the main fuel. In the
experiment, the flame shape changes by secondary fuel injection. The flame at
the outer rim detaches from the wall. In this analysis, the same situation is sim-
ulated. Figure 11 shows a close-up view of the local temperature field when the
injection is on. Around the secondary fuel, a diffusive flame is formed and the
local temperature becomes higher than the premixed flame temperature. This
means that the local heat release is also changed by injection.

The pressure traces with and without secondary injection are plotted in figure
12. The oscillation amplitude becomes smaller when the injection is on, although
the long-term trend is not yet examined. The reason for this reduction can
be attributed to (1) the flame base is stabilized by diffusive combustion mode
and (2) the flame shape extends to downstream region where the coupling with
pressure is smaller. The closed-loop control simulation is now under way and
will be reported in the near future.

As shown in this section, numerical simulation based on LES with flame mod-
els has become a powerful tool to understand what is taking place in practical-

Fig. 11. Temperature field with the injection on

424 J. Shinjo et al.

Fig. 12. Pressure traces with and without secondary fuel injection

scale engineering problems. However, flame modeling issues such as local extinc-
tion, re-ignition, wall interaction, etc. are not included in the present simulation.
The modeling will be future subjects in combustion research.

4 Future Combustion Research and Computer
Performance

The effectiveness of numerical simulation in combustion research will continu-
ously grow. To list a few topics expected to be major themes in future numerical
combustion research, (1) Simulation with complicated chemical kinetics. In the
result shown in 3.1, the fuel used is hydrogen. The chemical kinetics for hy-
drogen is rather simple. The chemical species involved are 9 species (H2, O2,
OH , H2O, H , O, H2O2, HO2 and N2) and 17 elementary reactions are consid-
ered. For methane (CH4) full kinetics (GRI-Mech3.0 [12]), 53 chemical species
and 325 elementary reactions are necessary [12]. For larger hydrocarbons, these
numbers dramatically increase. At present, we often use reduced kinetics, where
several fast reactions are considered to be in equilibrium and removed, to save
computational cost. Future peta-FLOPS machines will make full kinetics DNS
of hydrocarbons a realistic option, and physical understanding will be deepened
by this. (2) Real-scale DNS. Due to the limit of computational time, the present
DNS is limited to small scale calculations. It is expected that peta-FLOPS ma-
chines will expand the limitation. Although ultimately the distinction between
DNS and LES will vanish when all the physical scales can be resolved in DNS,
this will be impossible in the near future. But peta-FLOPS machines will surely
make the direction toward that goal. (3) Parametric LES study for designing
engineering systems. The problem is that it is still computationally expensive to
conduct combustion LES for many cases. One case often takes several-hundred
hours, even using today’s supercomputers and parametric computation can be
only done for limited cases. If this kind of simulation should be used in combus-
tor and combustor system design processes, the turnaround time must be a few
days or less. This requires over 100 times faster performance. On peta-FLOPS

Simulation of Combustion 425

machines, this will be achieved and combustion LES will become a realistic de-
sign tool in engineering applications. The applications include, for example, gas
turbine combustors, automobile combustors, rocket engines, power generation
systems, etc. (4) Multiphase combustion field. Although it is not discussed in
this paper, liquid and solid fuels are commonly used in combustion devices. In
relation to chemical kinetics discussed in (1), detailed physical mechanisms of
combustion with liquid atomization, phase transition, etc. are expected to be
investigated.

As the simulation size enlarges, post-processing of data is also a critical issue.
Data analysis, visualization and storage should be considered at the same time
with computer performance development.

5 Summary

In combustion research, numerical simulation has become a powerful tool to un-
derstand the combustion physics in multi-scales. It provides data that cannot be
obtained by experiment, and the significance of numerical combustion research
will further increase in the future. However, even using today’s supercomputers,
the turnaround time is still long, and it is almost impossible to conduct paramet-
ric LES or large-scale DNS. And there are still many issues to be investigated,
such as chemical kinetics, flame/turbulence interaction, flame/wall interaction,
extinction, re-ignition, etc. Future computer development will contribute to solv-
ing these problems. Peta-FLOPS supercomputers will dramatically decrease the
turnaround time. If the calculation time for one case in LES is reduced to one
week or shorter, it can be used in real combustor design and evaluation processes.
It will also enable us to conduct larger-scale and more complicated DNS. At the
same time, data handling will become more difficult in the future, because the
amount of data produced by numerical simulation will further increase. Data
storage and processing will be also one of the key issues.

References

1. Poinsot, T., Veynante, D.: Theoretical and numerical combustion. Edwards (2001)
2. Mizobuchi, Y., Tachibana, S., Shinjo, J., Ogawa, S., Takeno, T.: Proc. Combust.

Inst. 29, 2009–2015 (2002)
3. Mizobuchi, Y., Shinjo, J., Ogawa, S., Takeno, T.: Proc. Combust. Inst. 30, 611–619

(2005)
4. Cheng, T.S., Wehrmeyer, J.A., Pitz, R.W.: Combust. Flame 91, 323–345 (1992)
5. Shinjo, J., Mizobuchi, Y., Ogawa, S.: CFD J. 13, 348–354 (2004)
6. Shinjo, J., Mizobuchi, Y., Ogawa, S.: Proc. 5th Symp. on Smart Control of Tur-

bulence, Tokyo, pp. 165–173 (2004)
7. Candel, S.: Proc. Combust. Inst. 29, 1–28 (2002)
8. Stone, C., Menon, S.: Proc. Combust. Inst. 29, 155–160 (2002)

426 J. Shinjo et al.

9. Tachibana, S., Zimmer, L., Kurosawa, Y., Suzuki, K., Shinjo, J., Mizobuchi, Y.,
Ogawa, S.: Proc. 6th Symp. on Smart Control of Turbulence, Tokyo. pp. 181–190
(2005)

10. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: SAND85-8240 (1994)
11. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)
12. http://www.me.berkeley.edu/gri mech/

http://www.me.berkeley.edu/gri_mech/

Realization of a Computer Simulation

Environment Based on ITBL and a Large Scale
GW Calculation Performed on This Platform

Yoshiyuki Kawazoe1, Marcel Sluiter1, Hiroshi Mizuseki1,
Kyoko Ichinoseki1, Amit Jain1, Kaoru Ohno2,

Soh Ishii2, Hitoshi Adachi3, and Hiroshi Yamaguchi3

1 Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku,
980-8577, Sendai, Japan

{kawazoe, marcel, mizuseki, kyoko}@imr.edu
http://www.kawazoe.imr.tohoku.ac.jp/

2 Yokohama National University, 79-1, Tokiwadai, Hodogaya-ku, Yokohama,Japan
240-8501

{ohno, ishii-s}@nyu.ac.jp
3 Hitachi East Japan Solutions, 2-16-10 Honcho, Aoba-ku, Sendai, Japan 980-0014

Abstract. An extraordinarily large GRID environment has been es-
tablished over Japan by using SuperSINET based on ITBL connecting
4 supercomputer facilities. This new supercomputing environment has
been used for a large scale numerical simulations using original ab initio
code TOMBO and several remarkable results have already been obtained
to proof that this newly built computer environment is actually useful
to accelerate the speed of designing and developing advanced functional
materials expected to be used in nanotechnology.

1 Introduction

The present study aims to create a materials design environment that surpasses
the present day standard of local density approximation (LDA) with plane wave
and pseudopotentials as a large project with various organizations in Japan. The
project has been supported as part of the Grant-in-Aid for Creative Scientific
Research Collaboration on Electron Correlations; Toward a New Research Net-
work between Physics and Chemistry. It includes five major research institutions
in former national universities and is also part of the SuperSINET Promotion
Conference as a branch of nanotechnology [1]. To perform extraordinarily large
scale simulations, such a scale of 1000 hours with 100 GB of memory on super-
computer, this project networks multiple supercomputers which are distributed
throughout Japan. To achieve this, a VPN (Virtual Private Network) was con-
structed. It is now called the “Nanotech-VPN” on SuperSINET [2], with the
ITBL (IT-Based Laboratory developed by the Japan Atomic Energy Research
Institute (JAERI)) environment [3]. For the simulation program, we selected
the TOhoku Mixed-Basis Orbitals ab initio program (TOMBO) [4] with full

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 427–433, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.kawazoe.imr.tohoku.ac.jp/

428 Y. Kawazoe et al.

potential LDA and optional GWA (based on the many body theorem, Green
function–Vertex (W) Approximation). We mainly report here the newly ob-
tained numerical results connecting three supercomputer sites, connected via
SuperSINET, at ISSP (Institute for Solid State Physics, University of Tokyo),
JAERI, and IMR (Institute for Materials Research, Tohoku University). Simula-
tions based on LDA and GWA versions of the TOMBO program were performed,
and AVS [5] visualizations were specifically designed for this project and used
to display the obtained numerical results.

The ITBL was started in 2001 with the objective of realizing a virtual joint re-
search environment using information technology. We applied the ITBL system
to gain a fundamental and comprehensive view of new materials for nanotechnol-
ogy, via large scale computer simulations, with our specially designed TOMBO
program for this environment. The ITBL project is an improvement relative to
alternatives, such as, e.g. the Globus collaboration, for several reasons: While
the globus GRID toolbox is designed to run on a wide variety of platforms, it is
not specifically optimized for the platforms available to us; the present numerical
simulations require very large scale individual runs, and therefore a large amount
of memory. Thus, toolkits that are optimized for a large number of low perfor-
mance CPUs with limited memory do not work as well. Also, the ITBL solution
is practically available and deployable as a high level top layer for job submission
and output visualization whereas toolkits provide functionality through a set of
“service primitives”. Therefore from the user side, ITBL is far easier to develop
necessary environment.

GWA calculations are particularly time consuming and require more nodes
and more memory, only performable on TeraFlops machines, and are therefore
better suited to the ITBL environment. The ITBL architecture consists of sev-
eral layers. The computing and data resources are connected by common network
that spans the gamut, from the internet up to SuperSINET, and stretches the
length of Japan. On this physical network the primitive layer provides schedul-
ing and monitoring facilities, the intermediate layer consists of tools such as the
component programming toolkit, and the community toolkit, etc, and finally the
top layer is an end user interface that is provided by a Web based technology.
The ITBL system is a “meta computing environment”, in which we can perform
very large scale simulations, e.g. for investigating nanotechnological systems es-
tablished in the present study.

2 Realization of the SuperSINET Computer Connection
Environment

This project started with the activity of the SuperSINET Promotion Conference
as a branch of nanotechnology. At that time, there was a proposal from the Min-
istry of Economy, Trade and Industry, which tried to connect 63 supercomputers
distributed throughout Japan (by Dongarra’s report) [6]. We started the present
project under the Grant-in-Aid for Creative Scientific Research Collaboration
on Electron Correlations; Toward a New Research Network between Physics

Realization of a Computer Simulation Environment 429

Fig. 1. The present computer network scheme and the connected supercomputers via
SuperSINET with ITBL and their purposes in the project

and Chemistry. Five major research institutions, formerly national universities
in Japan, participated. YK has been the group leader of the project to realize
the first large GRID computing environment on SuperSINET for simulations in
nanotechnology.

It was not an easy task, because the project aimed for far more than a simple
parallel programming with MPI. It aimed to connect supercomputers through-
out Japan, which have site specific security policies. With the help of the Super-
SINET Promotion Conference, a new virtual private network (Nanotech-VPN)
was installed. Data transfer speed, and SuperSINET efficiency and stability
were tested with dedicatedly installed workstations at each site, because of non-
restricted usage and security issues. It was immediately known by us that it
is very difficult to establish the proposed GRID supercomputer environment,
and we have initiated further discussions of a new project to link all GRID
computers. This is now established as the NAREGI project [7]. Figure 1 is the
structural representation of the computer network with multiple supercomput-
ers distributed throughout Japan for the present project. In the present study,
among the available systems in this figure, we mainly used the Nanotech-VPN
on SuperSINET, ITBL, and mainly two SR8000 and one SX-6 supercomputers
at ISSP, IMR, and JAERI with 4 and 4, and 2 dedicated nodes, respectively.

The first step of the Nanotech-VPN project was to supply a supercomputer-
network environment. Eight nodes of the IMR SR8000, and six nodes of the IMS
(Institute for Molecular Science, Okazaki) SR8000, were physically separated

430 Y. Kawazoe et al.

from their systems, and dedicated to the nanotech-VPN environment. These 14
SR8000 nodes were used for LDA [8] computations of the H2 absorption in hy-
drate clathrates with the TOMBO program. Since in 2003, 4 SR8000 nodes in
ISSP have been connected to the Nanotech-VPN, in addition to the 8 nodes at
IMR for a total of 12 nodes in continuous operation. These 12 nodes have been
used stably and continuously for over a year, to perform large scale TOMBO
LDA and GWA calculations. We have developed a new virtual supercomputer on
SuperSINET based on ITBL, which are realized by connecting several remote su-
percomputers distributed over Japan, and proved that this research environment
is really stable and can be used for extraordinarily large scale supercomputing
applications for long time over 1000 hours by wall clock.

This GRID environment for large scale supercomputing has been successfully
used for actual simulation to show that the ITBL system, which has been de-
veloped and maintained by JAERI, is a superior software originally developed
in Japan aiming at a total system for GRID computing from the basic level of
physical layer to the topmost layer of user-interface. Up to the present, except
for ITBL, this level of actually useful GRID computing environment has never
been realized. We hope that the ITBL system will be used more in the future
GRID system development over the world as an important original software of
Japan based on our successful implementation such as this Nanotech-VPN.

3 Absolute Energy Level Estimation of Fullerene by
All-Electron GW Program

Although LDA cannot estimate the excitation energies in the system, the GWA
can correctly provide one-particle excitation energies [9,10]. However, GWA cal-
culation demands a lot of CPU time compared with the LDA calculation because
CPU time of GWA (LDA) calculation is proportional to N6 (N3). Here, N de-
notes number of electrons. In the present study, we combined the remote super-
computers on the network in the Nanotech-VPN and divided the processes and
memories into every supercomputer that are separated in physical space, making
it possible to perform large scale computation. We parallelized our GWA code
to perform this type of calculations (see Figure 2).

In the present calculation, we used 4 nodes of SR8000 at IMR and ISSP,
respec-tively and 2 nodes of SX-6 at JAERI. As a result, the number of float-
ing point calculation per process decreased more than 20 %, usage of memories
decreased 65 %. Green’s function approach makes it possible to simultaneously
evaluate one particle excitation energy spectra such as removing (attaching) one
electron from (to) the neutral systems. Although one of the suitable approxima-
tions of Green’s function approach is, as is well known, the GWA, usual calcu-
lations based on the GWA use pseudopotentials, not being able to evaluate the
absolute values of excitation energies such as ionization energies and electron
affinities. We successfully performed all electron GWA calculations of alkali-
metal clusters and clusters of semiconductor after adding our original GWA

Realization of a Computer Simulation Environment 431

Fig. 2. Distributed execution environment for GW approximation program (Coarse
grain parallel number=3, fine grain parallel number=4 for IMR and ISSP, 2 for JAERI)

program to the all electron mixed basis program using plane waves and numer-
ical atomic orbitals within the density functional theory, TOMBO.

In the present report, we tried an all electron GWA calculation of C60. Al-
though the GWA calculation of C60 using pseudopotential approach was already
performed by Shirley and Louie [11], they use some experimental parameters
when evaluating dielec-tric function. That is, their calculation is not a perfect
ab initio GWA calculation. In the present study, we used an fcc unit cell with
a cubic edge of 34 Å. We used cut off energy of 8 Ry when evaluating the LDA
eigenvalues and wave functions and 15 Ry evaluating the Fock exchange term.
Although at most 1 eV error of the present calcu-lation still remains about the
evaluation of correlation-energy, the present results are in good agreement with
experiments within the error bar of the present calculation. In the near future,

Table 1. Energies estimated by LDA and GWA compared with experiment

eV Exc HLDA Sx Sc Ecalc Eexp

HOMO −14.06 −6.61 −14.90 0.0 ± 1.0 −7.4 ± 1.0 −7.612

LUMO −11.18 −5.26 −7.80 −0.7 ± 1.0 −2.6 ± 1.0 −2.613

In the table, Exc, HLDA, Sx, Sc, Ecalc, Eexp, indicate the ex-
pected values of correlation and exchange potential in LDA,
eigenvalues in LDA, Fock exchange energy with LDA wave-
functions, correlation energy in GWA, quasiparticle energy in
GWA, and experimental values, respectively.

432 Y. Kawazoe et al.

we will complete more accurate calculation and publish the results else-where.
To do this aim, a PetaFlops supercomputer facility is desirable in near future.
By using a PetaFlops supercomputer, the present day standard of LDA can be
replaced by better approximations, such as GWA or exact solution by diffu-
sion quantum MonteCarlo method. Another important subject is to trace the
movement of atoms in reaction process by solving time-dependent Schroedinger
equation in the field of chemistry, solid state physics, and materials science. For
this purpose, also a Peta-Flops supercomputer is really necessary.

4 Conclusions

A dream to construct an ultra large scale computer simulation environment
con-necting multiple supercomputers distributed over Japan has been realized.
Although it has been a test phase, up to the present, already more than 4
supercomputer sites actively on service have been connected via SuperSINET
and have been used for actual large scale computer simulations for nano-science
and technology. The present project selected ITBL, which has been developed
mainly by JAERI for the basis of connection over the firewalls set at all the
supercom-puters fully utilized in the present study, which has reduced the time
and human effort to develop such a complex computer networking environment.
By applying this newly established environment, atomic structure optimizations
for zeolites and hydrate crathlates and absolute energy estimation of quasipar-
ticles in fullerene were conducted by TOMBO program with LDA and GWA.
Another important system we have developed is a data visualization environment
for remote computers.

Acknowledgments

The present large scale computing environment has been established as a special
joint use of the ISSP, JAERI, IMS, and IMR supercomputer systems. Support by
JAERI is highly appreciated, since without ITBL this research could never have
been realized. We would like to acknowledge the crew of the Center for Compu-
tational Materials Science, Institute for Materials Research, Tohoku University
for their continuous support of the SR8000 supercomputer and the Nanotech-
VPN network systems.

References

1. http://www.sinet.ac.jp/
2. http://www.itbl.riken.go.jp/symp/pdf/kawazoe.pdf
3. http://www.itbl.riken.jp/
4. http://www-lab.imr.edu/∼marcel/tombo/tombo.html
5. http://www-vizj.kgt.co.jp/contents/ver1/user/tohoku-u.html
6. http://www.top500.org/

http://www.sinet.ac.jp/
http://www.itbl.riken.go.jp/symp/pdf/kawazoe.pdf
http://www.itbl.riken.jp/
http://www-lab.imr.edu/~marcel/tombo/tombo.html
http://www-vizj.kgt.co.jp/contents/ver1/user/tohoku-u.html
http://www.top500.org/

Realization of a Computer Simulation Environment 433

7. http://nanogrid.ims.ac.jp/nanogrid/
8. Sluiter, M., Belosludov, R.V., Jain, A., Belosludov, V.R., Adachi, H., Kawazoe,

Y., Higu-chi, K., Otani, T.: High Performance Computing. In: Veidenbaum, A.,
Joe, K., Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 330–341.
Springer, Heidelberg (2003)

9. Ishii, S., Ohno, K., Kawazoe, Y.: Mat. Trans. 45, 1411–1413 (2004)
10. Noguchi, Y., Ishii, S., Kawazoe, Y., Ohno, K.: Sci. and Tech. Adv. Mat. 5, 663–665

(2004)
11. Shirley, E.L., Louie, S.G.: Phys. Rev. Lett. 71, 133–136 (1993)
12. Muigg, D., Sheier, P., Becker, K., Mark, T.D.: J. Phys. B. 29, 5193 (1996)
13. Wang, X.B., Ding, C.F., Wang, L.S.: J. Chem. Phys. 110, 8217–8220 (1999)

http://nanogrid.ims.ac.jp/nanogrid/

Computations of Global Seismic Wave

Propagation in Three Dimensional Earth Model

Seiji Tsuboi1, Dimitri Komatitsch2, Chen Ji3, and Jeroen Tromp3

1 Institute for Research on Earth Evolution, Jamstec
2 Geophysical Imaging Laboratory, Universite de Pau et des Pays de

l’AdourUniversite
3 Seismological Laboratory, California Institute of Technology

Abstract. We use a Spectral-Element Method implemented on the
Earth Simulator in Japan to simulate broadband seismic waves gener-
ated by various earthquakes. The spectral-element method is based on a
weak formulation of the equations of motion and has both the flexibility
of a finite-element method and the accuracy of a pseudospectral method.
The method has been developed on a large PC cluster and optimized on
the Earth Simulator. We perform numerical simulation of seismic wave
propagation for a three-dimensional Earth model, which incorporates
3D variations in compressional wave velocity, shear-wave velocity and
density, attenuation, anisotropy, ellipticity, topography and bathymetry,
and crustal thickness. The simulations are performed on 4056 processors,
which require 507 out of 640 nodes of the Earth Simulator. We use a mesh
with 206 million spectral-elements, for a total of 13.8 billion global inte-
gration grid points (i.e., almost 37 billion degrees of freedom). We show
examples of simulations for several large earthquakes and discuss future
applications in seismological studies.

Keywords: seismic wave propagation, 3–D Earth models, spectral-
element method.

1 Introduction

Accurate modeling of seismic wave propagation in fully three-dimensional (3–
D) Earth models is of considerable interest in seismology in order to determine
both the 3–D seismic-wave velocity structure of the Earth and the rupture pro-
cess during large earthquakes. However, significant deviations of Earthfs internal
structure from spherical symmetry, such as the 3–D seismic-wave velocity struc-
ture inside the solid mantle and laterally heterogeneous crust at the surface of
the Earth, have made applications of analytical approaches to this problem a
formidable task. The numerical modeling of seismic-wave propagation in 3–D
structures has been significantly advanced in the last few years due to the intro-
duction of the Spectral-Element Method (SEM), which is a high-degree version
of the finite-element method that is very accurate for linear hyperbolic problems
such as wave propagation. The 3–D SEM was first used in seismology for local

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 434–443, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computations of Global Seismic Wave Propagation 435

and regional simulations [1]–[3], and more recently adapted to wave propagation
at the scale of the full Earth [4]–[7].

Here we show that our implementation of the SEM on the Earth Simulator in
Japan allows us to calculate theoretical seismic waves which are accurate up to
3.5 seconds and longer for fully 3–D Earth models. We include the full complexity
of the 3–D Earth in our simulations, i.e., a 3–D seismic wave velocity [8] and
density structure, a 3–D crustal model [9], ellipticity as well as topography and
bathymetry. Synthetic waveforms at such high resolution (periods of 3.5 seconds
and longer) allow us to perform direct comparisons of arrival times of various
body-wave phases between observed and synthetic seismograms, which has never
been accomplished before. Usual seismological algorithms, such as normal-mode
summation techniques that calculate quasi-analytical synthetic seismograms for
one-dimensional (1-D) spherically symmetric Earth models [10], are typically
accurate down to 8 seconds [11]. In other words, the SEM on the Earth Simulator
allows us to simulate global seismic wave propagation in fully 3–D Earth models
at periods shorter than current seismological practice for simpler 1-D spherically
symmetric models.

The results of our simulation show that the synthetic seismograms calculated
for fully 3–D Earth models by using the Earth Simulator and the SEM agree well
with the observed seismograms, which illustrates that the current 3–D seismic
velocity model captures the general long-wavelength image of Earth’s interior
with sufficient resolution.

2 Spectral-Element Method

We use the spectral-element method (SEM) developed by Komatitsch and Tromp
(2002a, 2002b) [5,6] to simulate global seismic wave propagation throughout a
3–D Earth model, which includes a 3–D seismic velocity and density structure, a
3–D crustal model, ellipticity as well as topography and bathymetry. The SEM
first divides the Earth into six chunks. Each of the six chunks is divided into
slices. Each slice is allocated to one CPU of the Earth Simulator. Communication
between each CPU is done by MPI. Before the system can be marched forward
in time, the contributions from all the elements that share a common global
grid point need to be summed. Since the global mass matrix is diagonal, time
discretization of the second-order ordinary differential equation is achieved based
upon a classical explicit second-order finite-difference scheme.

The maximum number of nodes we could use for this simulation is 4056 pro-
cessors, i.e., 507 nodes out of 640 of the Earth Simulator. Each slice is allocated
to one processor of the Earth Simulator and subdivided with a mesh of 48 48
spec-tral-elements at the surface of each slice. Within each surface element we
use 5 × 5 = 25 Gauss-Lobatto-Legendre (GLL) grid points to interpolate the
wave field [12,13], which translates into an average grid spacing of 2.0 km (i.e.,
0.018 degrees) at the surface. The total number of spectral elements in this mesh
is 206 million, which corresponds to a total of 13.8 billion global grid points, since
each spectral element contains 5×5×5 = 125 grid points, but with points on its

436 S. Tsuboi et al.

Fig. 1. The SEM uses a mesh of hexahedral finite elements on which the wave field is
interpolated by high-degree Lagrange polynomials on Gauss-Lobatto-Legendre (GLL)
integration points. This figure shows a global view of the mesh at the surface, illus-
trating that each of the six sides of the so-called ‘cubed sphere’ mesh is divided into
26 × 26 slices, shown here with different colors, for a total of 4056 slices (i.e., one slice
per processor)

faces shared by neighboring elements. This in turn corresponds to 36.6 billion
degrees of freedom (the total num-ber of degrees of freedom is slightly less than
3 times the number of grid points be-cause we solve for the three components
of displacement everywhere in the mesh, except in the liquid outer core of the
Earth where we solve for a scalar potential). Using this mesh, we can calculate
synthetic seismograms that are accurate down to seismic periods of 3.5 seconds.
This simulation uses a total of approximately 7 terabytes of memory. Total per-
formance of the code, measured using the MPI Program Runtime Performance
Information was 10 teraflops, which is about one third of the expected peak
performance for this number of nodes (507 nodes 64gigaflops = 32 teraflops).
Figure 1 shows a global view of the spectral-element mesh at the surface of the
Earth. In Figure 2, we compare the vertical component of displacement from
synthetic seis-mograms calculated using 507 nodes of the Earth Simulator and
observed records for several broadband seismic stations of the F-net array op-
erated by the National Institute of Earth Science and Disaster Prevention in
Japan. The earthquake we simulated is a deep earthquake of magnitude 6.3 that
occurred in South of Japan on November 12, 2003, at a depth of 382 km.

It is surprising that the global 3–D seismic velocity model used in this simu-
lation still produces fairly good agreement with the observations even at periods
of 3.5 sec-onds, because it is supposed that the crustal and mantle structure
beneath Japanese Islands are highly heterogeneous and are not captured by
the long-wavelength global 3D Earth model. However, Figure 2 also shows that

Computations of Global Seismic Wave Propagation 437

the theoretical seismograms calcu-lated with 507 nodes of the Earth Simulator
do not reproduce some of the fine features in the observation and suggests the
limitation of this global 3–D seismic velocity model.

For those stations located to the north-east of the epicenter (the azimuth is
about 20 degrees), the observed waves show large high-frequency oscillations
because the waves travel along the subducting pacific plate, but this feature is
not modeled in the theoretical seismograms. This shows that we need to improve
our 3–D seismic wave velocity model to calculate theoretical seismic waves that
are accurate at 3.5 seconds and longer.

Fig. 2. Broadband data and synthetic displacement seismograms for the 2003 South
of Honshu earthquake bandpass-filtered with a two-pass four-pole Butterworth filter
between periods of 3.5 and 150 seconds. Vertical component data (black) and synthetic
(red) displacement seismograms aligned on the arrival time of the P wave are shown.
For each set of seismograms the azimuth is printed above the records to the left, and
the station name and epicentral distance are printed to the right.

3 Simulation of the 2004 Sumatra Earthquake

Because we have found that we do not have a 3–D Earth model which has suf-
ficient resolution to simulate seismic wave propagation accurately in regional
scale, we de-cide to use 243 nodes (1944 CPUs) of the Earth Simulator for the
simulation using the SEM. Using 243 nodes (1944 CPUs), we can subdivide the

438 S. Tsuboi et al.

six chunks into 1944 slices (1944 = 6 × 18 × 18). Each slice is then subdivided
into 48 elements in one direction. Because each element has 5 Gauss-Lobatto
Legendre integration points, the average grid spacing at the surface of the Earth
is about 2.9 km. The number of grid points in total amounts to about 5.5 bil-
lion. Using this mesh, it is expected that we can calculate synthetic seismograms
accurate up to 5 sec all over the globe. For the 243 nodes case, the total per-
formance we achieved was about 5 teraflops, which also is about one third of
the peak performance. The fact that when we double the number of nodes from
243 to 507 the total performance also doubles from 5 teraflops to 10 tera-flops
shows that our SEM code exhibits an excellent scaling relation with respect to
performance. We calculate synthetic seismograms for a 3–D Earth model using
the SEM code and 243 nodes of the ES for the December 26, 2004 Sumatra
earthquake (Mw 9.0, depth 15.0 km) in the same manner as Tsuboi et al (2003)
[14] and Komatitsch et al (2003) [15], which was awarded 2003 Gordon Bell prize
for peak performance in SC2003.

The December 26, 2004 Sumatra earthquake is one of the largest earthquakes
ever recorded by modern seismographic instrument. The earthquake started its
rupture at the west of northern part of Sumatra Island and propagated in a
northwestern direction up to Andaman Islands. Total length of the earthquake
fault is estimated to be more than 1000 km and the rupture duration lasts for
more than 500 sec. This event has caused devastating tsunami hazard around
the Indian Ocean. It is important to know the detailed earthquake fault slip
distribution for this earthquake because the excitation mechanism of tsunami is
closely related to the earthquake source mechanisms. To simulate synthetic seis-
mograms for this earthquake, we represent the earthquake source by more than
800 point sources distributed both in space and time, which are obtained by seis-
mic wave analysis. In Figure 3, we show snapshots of seismic wave propagation
along the surface of the Earth. Because the rupture along the fault propagated
in a northwest direction, the seismic waves radiated in this direction are strongly
amplified.

This is referred as the directivity caused by the earthquake source mechanisms.
Figure 3 illustrate that the amplitude of the seismic waves becomes large in the
northwest direction and shows that this directivity is modeled well. Because
there are more than 200 seismographic observatories, which are equipped with
broadband seismometers all over the globe, we can directly compare the synthetic
seismograms calculated with the Earth Simulator and the SEM with the observed
seismograms.

Figure 4 shows the results of this comparison for vertical ground motion and
demonstrates that the agreement between synthetic and observed seismograms
is generally excellent. These results illustrate that the 3–D Earth model and
the earthquake rupture model that we have used in this simulation is accurate
enough to model seismic wave propagation on a global scale with periods of 5 sec
and longer. Because the rupture duration of this event is more than 500 sec,
the first arrival P waveform overlapped with the surface reflected wave of P-
wave, which is called PP wave. Although this effect obscures the analysis of

Computations of Global Seismic Wave Propagation 439

Fig. 3. Snapshots of the propagation of seismic waves excited by the December 26,
2004 Sumatra earthquake. Total displacement at the surface of the Earth is plotted
at 10 min after the origin time of the event (top) and at 20 min after the origin time
(bottom).

440 S. Tsuboi et al.

Fig. 4. Broadband data and synthetic displacement seismograms for the 2004 Sumatra
earthquake, bandpass-filtered with a two-pass four-pole Butterworth filter between
periods of 5 and 150 seconds. Vertical component data (black) and synthetic (red)
displacement seismograms aligned on the arrival time of the P wave. For each set of
seismograms the azimuth is plotted above the records to the left, and the station name
and epicentral distance are plotted to the right.

Computations of Global Seismic Wave Propagation 441

earthquake source mechanism, it has been shown that the synthetic seismograms
computed with Spectral-Element Method on the Earth Simulator can fully take
these effects into account and are quite useful to study source mechanisms of
this complicated earthquake.

4 Implications for the Earth’s Internal Structure

The Earth’s internal structure is another target that we can study by using our
synthetic seismograms calculated for fully 3–D Earth model. We describe the
examples of Tono et al (2005) [16]. They used records of ∼ 500 tiltmeters of
the Hi-net, in addition to ∼ 60 broadband seismometers of the F-net, operated
by the National Research Institute for Earth Science and Disaster Prevention
(NIED). They analyzed pairs of sScS waves, which means that the S-wave trav-
eled upward from the hypocenter reflected at the surface and reflected again at
the core-mantle boundary, and its reverberation from the 410- or 660-km reflec-
tors (sScSSdS where d=410 or 660 km) for the deep shock of the Russia-N.E.
China border (PDE; 2002:06:28; 17:19:30.30; 43.75N; 130.67E; 566 km depth;
6.7 Mb). The two horizontal components are rotated to obtain the transverse
component.

They have found that these records show clearly the near-vertical reflections
from the 410- and 660-km seismic velocity discontinuities inside the Earth as
post-cursors of sScS phase. By reading the travel time difference between sScS
and sScSSdS, they concluded that this differential travel time anomaly can be at-
tributed to the depth anomaly of the reflection point, because it is little affected
by the uncertainties associated with the hypocentral determination, structural
complexities near the source and receiver and long-wavelength mantle hetero-
geneity. The differential travel time anomaly is obtained by measuring the arrival
time anomaly of sScS and that of sScSSdS separately and then by taking their
difference. The arrival time anomaly of sScS (or sScSSdS) is measured by cross-
correlating the observed sScS (or sScSSdS) with the corresponding synthetic
waveform computed by SEM on the Earth Simulator. They plot the measured
values of the two-way near-vertical travel time anomaly at the corresponding
surface bounce points located beneath the Japan Sea. The results show that
the 660-km boundary is depressed at a constant level of ∼ 15 km along the
bottom of the horizontally extending aseismic slab under southwestern Japan.
The transition from the normal to the depressed level occurs sharply, where the
660-km boundary intersects the bottom of the obliquely subducting slab. This
observation should give important imprecations to geodynamic activities inside
the Earth.

5 Conclusions

We have shown that the use of both the Earth Simulator and the SEM has
allowed us to reach unprecedented resolution for the simulation of global seis-
mic wave propagation resulting from large earthquakes. We have successfully

442 S. Tsuboi et al.

attempted for the first time an independent validation of an existing 3–D Earth
model. Such 3–D calculations on the Earth Simulator reach shorter periods than
quasi-analytical 1-D spherically-symmetric solutions that are current practice in
seismology. By using the SEM synthetics calculated for a realistic 3–D Earth
model, it is possible to determine dif-ferences in the arrival times between the-
oretical seismograms and observations. As we have discussed in the present pa-
per, these differences in arrival time can be interpreted as depth variations of
the discontinuities. This kind of study would not have been possible without the
combination of a precise seismic wave modeling technique, such as the SEM, on
a powerful computer, such as the Earth Simulator, and a dense seismic obser-
vation network. If we extrapolate the numbers we used for our simulation, it is
expected that we will get synthetic seismograms that are accurate up to 1 second
for fully 3D Earth if we can use 64,896 CPUs of the Earth Simulator.

Acknowledgments. All the simulations were performed at the Earth Simu-
lator Center of JAMSTEC by S.T. Broadband seismograms used in this study
were recorded at Global Seismic Network stations and were obtained from the
IRIS Data Management Center (www.iris.washington.edu) and F-net and Hi-
net stations operated by the National Institute of Earth Science and Disaster
Prevention.

References

1. Komatitsch, D.: Spectral and spectral-element methods for the 2D and 3D elasto-
dynamics equations in heterogeneous media. PhD thesis, Institut de Physique du
Globe, Paris, France (1997)

2. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2D and 3D elastic wave
propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1,
237–251 (1997)

3. Seriani, G.: 3–D large-scale wave propagation modeling by a spectral element
method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg. 164,
235–247 (1998)

4. Chaljub, E.: Numerical modelling of the propagation of seismic waves in spherical
geometry: applications to global seismology. PhD thesis, Universit Paris VII Denis
Diderot, Paris, France (2000)

5. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave
propagation-I. Validation.? Geophys. J. Int. 149, 390–412 (2002a)

6. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave
propagation-II. 3–D models, oceans, rotation, and self-gravitation. Geophys. J.
Int. 150, 303–318 (2002b)

7. Komatitsch, D., Ritsema, J., Tromp, J.: The spectral-element method, Beowulf
computing, and global seismology. Science 298, 1737–1742 (2002)

8. Ritsema, J., Van Heijst, H.J., Woodhouse, J.H.: Complex shear velocity struc-ture
imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999)

9. Bassin, C., Laske, G., Masters, G.: The current limits of resolution for surface
wave tomography in North America. EOS Trans. AGU. Fall Meet. Suppl., Abstract
S12A–03 81 (2000)

Computations of Global Seismic Wave Propagation 443

10. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth
Planet. Inter. 25, 297–356 (1981)

11. Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princeton Uni-versity
Press, Princeton (1998)

12. Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to
simulate the seismic response of 2D and 3D geological structures. Bull. Seismol.
Soc. Am. 88, 368–392 (1998)

13. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3–D
seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

14. Tsuboi, S., Komatitsch, D., Ji, C., Tromp, J.: Broadband modeling of the 2003
Denali fault earthquake on the Earth Simulator. Phys. Earth Planet. Int. 139,
305–312 (2003)

15. Komatitsch, D., Tsuboi, S., Ji, C., Tromp, J.: A 14.6 billion degrees of freedom, 5
teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: Proceed-
ings of the ACM/IEEE SC2003 confenrence (published on CD-ROM) (2003)

16. Tono, Y., Kunugi, T., Fukao, Y., Tsuboi, S., Kanjo, K., Kasahara, K.: Mapping
the 410- and 660-km discontinuities beneath the Japanese Islands. J. Geophys.
Res. 110, B03307 (2005), doi:10.1029/2004JB003266

Lattice QCD Simulations as an HPC Challenge

Atsushi Nakamura

RIISE, Hiroshima University, Higashi-Hiroshima739-8521, Japan
nakamura@riise.hiroshima-u.ac.jp

Abstract. We overview the present status of lattice QCD (Quantum
Chromodynamics) simulations. Although it is still far from the final goal,
the lattice QCD is reaching a level to have a predictive power as a first
principle study for the strongly interacting elementary particles, hadron.
This is due to many improvements of techniques and rapid development
of computational power. We then look into the hot spot of the calculation
explicitly. Finally we discuss what kind of achievement can be expected
by using Peta-flop computers.

Keywords: QCD (Quantum Chromodynamics), Quark, Strong Interac-
tion, Quantum Field Theory, Sparse Matrix.

1 Introduction

Philosophers in old Greek and China were wondering what the matter is made
from: Tree, Fire, Water, .. ? Now we have (probably) the answer for it. The
matter is made from quarks and gluons, and their dynamics is governed by
QCD. QCD - Quantum Chromo-Dynamics - is a part of the standard theory in
modern elementary particle theory. The mesons consist of a quark and an anti-
quark, while nucleons are made of three quarks. The force among the quarks are
mediated by the gluons. See Fig.1

The synthesis of elementary particles from constituents is controlled by QCD,
where the quarks interact through the gluons. QCD has many common char-
acters with quantum electrodynamics, where the electrons interact through the
photons. However, there is an essential difference among them: QCD is described
by a non-Abelian group SU(3), so-called color group and it is believed that the
theory has a remarkable feature, the confinement, i.e., the quarks and the gluons
do not appear out of elementary particles.

The only available tool for the quantitative study of the phenomena is the
treatment of a discretized Eucledian version of the theory (lattice QCD) by
Monte Carlo simulation [1]. Lots of computational resources have been devoted
to QCD simulations in the world. In order to get reliable results we need more
than several hundred CPU hours with 100 GFLOPS class machines.

The fundamental ingredients of lattice gauge theories are link variables, Uμ(n),
where the four dimensional vector n = (nx, ny, nz, nt) stands for a site on a
lattice and μ = x, y, z and t represents the direction of the link. In computer
simulations the size of a lattice is finite,

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 444–451, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Lattice QCD Simulations as an HPC Challenge 445

ix = 1, 2, ..., Lx, iy = 1, 2, ..., Ly, iz = 1, 2, ..., Lz, it = 1, 2, ..., Lt.

Uμ(n) corresponds to gluonic degrees of freedom and is 3 × 3 complex unitary
matrix with unit determinant (SU(3) matrix). A set of link variables is called
a configuration and a Monte Carlo step to produce a configuration is called a
sweep.

The Feynmann path integral for the lattice QCD has the following form,

< O >=
∫

O[U]P [U]ΠnΠμdUμ(n) (1)
where

P [U] = exp(−SG[U]) detD/

∫
exp(SG[U]) detDΠnΠμdUμ(n). (2)

Here O is an observable. The sum in (2) is not only on a classical path, but also
over those fluctuating around the classical path, since this is a quantum theory.

The action SG is the sum of so-called plaquette energy, Eplaq, which is the
products of Uμ(n) on the minimal closed loops, i.e., squares on the lattice called
plaquettes,

Eplaq =
1
3
Re TrUμ(n)Uν(n + eμ)U †

μ(n + eν)U †
ν (n), (3)

where eμ is a unit vector along the direction μ and U † is an hermitian conju-
gate (transpose + complex conjugate) of U . Eplaq represents the gluon kinetic
energy, and is the product of four SU(3) matrices. This part requires many
operations to compute, and was hot spot in early days of lattice QCD. The
calculation of the determinant part, which represents the quark-antiquark pair-
creation/annihilation in the vacuum, was considered as too heavy and usually
ignored. As we will see, later, now lattice QCD simulations are going to in-
clude the determinant part, so-called full QCD simulations, because we strongly
feel that the full QCD is necessary for the real world simulation and the next-
generation computational power endure such hard simulations.

The quark kinetic energy and quark-gluon interaction are included in detD.
The rank of D is 3×4×Lx ×Ly ×Lz ×Lt, where 3 is the number of color, and 4
is the spin and particle-antiparticle degrees of freedom. The matrix comes from
the discretization of Dirac operator which includes the derivatives with respect
to x,y,z and t. As a consequence, it is a sparse matrix. The explicit form of the
matrix D is given later.

Determinant is very time consuming numerical object, and therefore usually
it is rewritten as

detD =
∫

dφ†dφ exp(−φ†D−1φ) (4)

The inverse of the matrix, D−1 stands for the quark propagator, and for example
the nucleon is given by superposition of three D−1. The inversion is usually
calculated by solving

DX = b (5)

Modern lattice QCD consumes most of the computer resource in this
calculation.

446 A. Nakamura

Atom

Nucleus

Nucleon Meson

Quark
Anti-Quark

Fig. 1. Hierarchy from atoms to quarks

Quark

Gluon

Quark Quark

Quark Gluon

Gluon

Gluon

Gluon Gluon

Photon

Electron Electron

Electron Electron

a) QCD interaction b) QED interaction

Fig. 2. QCD Interaction and QED Interaction

x,y,z

t

ψ ψ
Aμ μ

Fig. 3. Quarks and Gluons on the Lattice

Lattice QCD Simulations as an HPC Challenge 447

2 Lattice QCD – Many Years to Establish Its Reliability

Wilson proposed the lattice formulation of gauge field theories in 1974[1], and
since then numerical study of QCD has begun. See Ref.[2] as a good text book.
In early days, the quark part was dropped because of its hard computation,
and the gluon dynamics were studied. These are without doubt very important
studies, especially because QCD includes gluon self energy, which does not exist
in the electro-magnetic interaction, and this self energy is expected to contribute
the confinement. The result is theoretical and can not be compared with the
experiment.

In Fig.4, we show our results for the mass splitting of charmonium mesons
in the quench approximation, where detD is ignored. Using an improved dis-
cretization scheme, ’Clover action’, we see that the lattice spacing artifact is very
small in the regions. Nevertheless, there is a clear deviation from the experiment,
which is due to the lack of det D.

Fig. 4. Charmonium mass simulation results as a function of the lattice spacing. Using
clover action, the lattice spacing dependence is small in these regions.

3 Lattice QCD for Exploring New Phenomenon

QCD has been successful to describe many phenomena at very high energy. When
the energy is very large, the coupling of the non-Abelian gauge theories such as
QCD becomes small because of their asymptotically free character, and the per-
turbation works well. On the other hand, at low energy the non-perturbative
nature dominates and lattice QCD is a tool to investigate elementary particle
physics. This is great, but these works are to confirm well-established experi-
ments. Now lattice QCD is well matured, and we hope it is powerful enough to
predict new phenomena.

3.1 Finite Temperature and Density

As shown in Fig.5, high energy nuclear experimentalists are performing heavy-
ion collision experiments in order to create finite temperature and finite density
states. At RHIC (Relativistic Heavy Ion Collider) in USA, they announced the
discovery of a “new state of matter”[6,7]. One of the main purposes of these
experiments is to recreate the state just after the big-bang.

448 A. Nakamura

It is very surprising that this new state of matter behaves like a perfect fluid.1

Its viscosity as a unit of the entropy is one or two order of magnitude less than
water, liquid helium etc.

Very important task for lattice QCD is to simulate the viscosity of gluon
matter. In Fig.6, we show our simulation result of the ratio of the viscosity to
the entropy. We see, indeed, it is less than one, which is much less than ordinary
matter. This calculation was performed on SX-5.

Another important and challenging area is QCD at finite density. There many
exciting phenomenon such as quark super conductivity are expected. Lattice
QCD simulation is, however, very difficult, because detD appeared as measure
in Eq.(2) becomes complex, and induces the sign problem in Monte Carlo cal-
culation. The detailed analyses and recent overview is given in Ref.[8,9].

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

μ B [GeV]

T
em

pe
ra

tu
re

 [M
eV

]

Tc

const. energy density
freeze--out curve

 Density

RHIC

SPS

AGS

SIS

Fig. 5. Temperature-Density Region covered by Present Experiment together with
Lattice QCD result. Ref.[5].

3.2 Exotic Hadrons

Until recently, we thought that all hadrons are consist of quark-antiquark or
three quarks, and they are well classified in the old quark model. But many
experimental activities in such as J-Lab, B-factories provides many new precise
data, and we should check what kind of states are allowed in QCD. One of such
trials we calculate the scalar meson, σ which once disappeared and reestablished
recently. In Fig.7, we show our result of the masses of π, ρ and σ. This calculation

1 The viscosity of perfect fluid is zero, while that of free gas diverges.

Lattice QCD Simulations as an HPC Challenge 449

Fig. 6. Transport Coefficient of Gluon Matter

Fig. 7. Masses of the pion, rho and sigma mesons as a function of the hopping param-
eter (quark mass)

is indeed very heavy because it required the quark propagators from any point
to any point, which is difficult by solving Eq.5 and also this calculation should
be done in full QCD.

4 QCD as HPC

4.1 History

In the table, we show computers which the author used for lattice QCD sim-
ulations. We can see that (1) one can now play lattice QCD simulations even
on PC, because its power is comparable with old super-computers; (2) modern

450 A. Nakamura

super-computer power is really high, and we can be ambitious to challenge real-
world QCD simulations.

VAX-11 1 MIPS
CRAY-1M 75 MFlops
VP200 400 MFlops
VP400 800 MFlops
AP1000 5.6G Flops
NWT 280 GFlops
SR8000,SX-4, SX-5 a few G ∼ 10G/Node
PEN4x8+GbE in my lab. 3.8x8 GFlops

4.2 Hot Spot

As we stressed in the previous chapters, for the real-world QCD simulations, we
need full QCD simulations, where we must solve the inverse matrix, D−1. The
standard method is the conjugate gradient type algorithm. This is because our
matrix D is large but sparse:

D = I − κ

4∑
μ=1

{
(r − γμ)Uμ(x)δx′,x+μ̂ + (r + γμ)U †

μ(x′)δx′,x−μ̂

}
, (6)

In the conjugate type calculation, we need the matrix times vectors: Y = DX

Y a
α (x) = Xa

α(x) − κ

4∑
μ=1

4∑
β=1

3∑
b=1

{
(r − γμ)αβUμ(x)abXb

β(x + μ̂)

+(r + γμ)αβU †
μ(x − μ̂)abXb

β(x − μ̂)
}

(7)

4.3 Future

The operation (7) is very suitable for the vector computers, and many cluster
type machines if the network is fast enough. In near future, we can expect the
speed-up of CPU, but it is not clear if the network speed is fast enough. Then a
new algorithm is desirable for such new machines.

There have been many technical development which make lattice QCD much
more high quality, such as improved actions, anisotropic lattice, and chiral
fermion formalism. The last one is especially a good news, because it keeps
the most important symmetry of QCD, chiral symmetry. But a bud news is that
it requires much more computer resources.

The speed of the hot spot (7) in QCD was measured on a prototype of IBM
BlueGene/L machine[11]. A good news is that its sustained is over 1 TFLOPS,
while not so good news is that it is less than 20 percent of the peak speed. In the
real-world simulation, we use a formula which is more complicated than Eq.(6),
i.e., there are more operations. Therefore we can expect higher efficiency. In any
case, it is now time to prepare the real-world QCD simulations and to design
the code to fit the Peta-flops machines.

Lattice QCD Simulations as an HPC Challenge 451

5 Concluding Remarks

Lattice QCD has reaching a level of quantitative science, which was only a
dream twenty years ago. This achievement could not be possible if there were
enough development of computational power. Especially the vector type super-
computers match lattice QCD calculations. Lattice QCD has nearest neighbor
interaction and therefore is suitable also for parallel computation.

If we can utilize the next generation Peta-FLOPS machines, lattice QCD
becomes surely a realistic quantitative tool to study hadron physics. However,
there are two obstacles before us:

1. Next generation machines have very high peak performance without ques-
tion, but it is not yet clear if the communication speed vs. computational
power is as good as now.

2. We have now several methods for very high quality lattice QCD calculation,
but they require often long range type calculations together with the nearest
type interaction. This makes the parallelization inefficient.

In order to overcome these difficulties, it is inevitable to have a good collab-
oration among lattice QCD physicists and computer scientists.

References

1. Wilson, K.G.: Phys. Rev. D10, 2445–2459 (1974)
2. Montvay, I., Muenster, G.: Quantum Fields on a Lattice, Cambridge monographs

on Mathematical Physics. Cambridge University Press, Cambridge (1994)
3. Choe, S., et al.: QCD-TARO collaboration. JHEP 0308, 22 (hep-lat/0307004)

(2003)
4. Davies, C.T.H., et al.: Phys.Rev.Lett. 92, 022001 (2004)
5. Braun-Munzinger, P., Redlich, K., Stachel, J.: Particle Production in Heavy Ion

Collisions. In: Hwa, R.C., Wang, X.-N. (eds.) Quark Gluon Plasma 3, pp. 491–599.
World Scientific Publishing, Singapore (nucl-th/0304013)

6. BRAHMS, PHENIX, PHOBOS, and STAR, Hunting-the-QGP,
http://www.bnl.gov/bnlweb/pubaf/pr/PR display.asp?prID=05-38

7. Ludlam, T.: Talk at New Discoveries at RHIC – The Strongly Interactive QGP.
BNL (May 14-15, 2004), http://quark.phy.bnl.gov/∼mclerran/qgp/

8. Muroya, S., Nakamura, A., Nonaka, C., Takaishi, T.: Prog. Theor. Phys. 110, 615–
668 (2003)

9. Prog. Theor. Phys. Suppl. 153 (2003), Nakamura, A., et al. (eds.): Proceedings of
International Workshop on Finite Density QCD

10. Kunihiro, T., et al.: Scalar collaboration. Phys.Rev. D70, 34504 (2004)
11. Bhanot, G., Chen, D., Gara, A., Sexton, J., Vranas, P.: hep-lat/0409042

http://www.bnl.gov/bnlweb/pubaf/pr /PR_display.asp?prID=05-38
http://quark.phy.bnl.gov/~mclerran/qgp/

Energy-Efficient Embedded System Design at

90nm and Below
– A System-Level Perspective –

Tohru Ishihara

System LSI Research Center, Kyushu University,
3-8-33, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan

ishihara@slrc.kyushu-u.ac.jp
http://www.slrc.kyushu-u.ac.jp/

Abstract. Energy consumption is a fundamental barrier in taking full
advantage of today and future semiconductor manufacturing technolo-
gies. This paper presents our recent research activities and results on
estimating and reducing energy consumption in nanometer technology
system LSIs. This includes techniques and tools for (i) estimating in-
stantaneous energy consumption of embedded processors during an ap-
plication execution, and (ii) reducing leakage energy in instruction cache
memories by taking advantage of value-dependence of SRAM leakage
due to within-die Vth variation.

Keywords: energy estimation, energy characterization, nanometer tech-
nology, leakage power, cache memory, compiler optimization, embedded
system.

1 Introduction

There is a wide consensus that the energy consumption is a fundamental bar-
rier in taking full advantage of today and future semiconductor manufacturing
technologies. As the demands of system integration, high performance, and low
power operation have pushed chip vendors down to 90nm and below, NRE (non-
recurring engineering) costs and design complexity have increased significantly.
A remedy for the NRE explosion is to reduce the number of developments and sell
tens of millions of chips under a fixed hardware design. In such a situation, em-
bedded software plays much more important role than today. Our research focus
is mainly on software-oriented approaches to estimating and reducing the energy
consumption of embedded real-time systems. In this paper, we present our recent
research activities and results in the following two categories: estimating soft-
ware energy consumption and reducing leakage energy of the memory subsystem.
Firstly, we present a technique to estimate instantaneous energy consumption of
embedded processors during an application execution. We train a per-processor
energy-model which receives statistics from the processor instruction-set simula-
tor (ISS) and gives the instantaneous energy consumption. Secondly, we show our

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 452–465, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.slrc.kyushu-u.ac.jp/

Energy-Efficient Embedded System 453

technique for reducing leakage energy in instruction cache memories by taking
advantage of value-dependence of SRAM leakage due to within-die Vth variation.
We propose a technique to reduce the leakage power of ultra-leaky SRAM cells
by storing less-leaky logic values to the corresponding SRAM cells in the cache.

The rest of this paper is organized as follows. The instantaneous energy es-
timation technique is presented in Section 2. Section 3 presents a techniques
for reducing the leakage power of instruction cache memory by exploiting the
value-dependence of SRAM leakage due to within-die Vth variation. Section 3
summarizes our approaches and concludes the paper.

2 Software Power Estimation

This section shows an overview of our energy characterization tool which helps
designers in developing a fast and accurate energy model for a target processor-
based system. We use a linear model for energy estimation and find the coeffi-
cients of the model using multiple linear regression analysis. For more detailed
information of our tool see [1].

2.1 Energy Characterization

The energy consumption of a processor can be estimated using the following
linear formula,

Eestimate =
N∑

i=0

ci · Pi (1)

where Pi’s, ci’s and N are the parameters of the model, the corresponding coeffi-
cients and the number of parameters, respectively. The first step for the modeling
is to find Pi’s required for estimating the energy consumption of the target pro-
cessor system. The Pi’s should be parameters whose values can be easily obtained
using a fast simulator like an instruction-set simulator (ISS). For example, Pi’s
can be the number of load and store instructions executed, the number of cache
misses, etc. Once the required set of parameters is obtained, the next step is to
find a training bench for the energy characterization. More detailed explanation
for our method to generate the training bench is given in [1]. The final step is to
find the coefficients, ci’s corresponding to the Pi’s. This is done by using multiple
linear regression analysis. The energy consumption Eestimate is then calculated
using Equation (1). Figure 1 shows an overview of our energy characterization
flow. To obtain the reference energy values, we simulate the processor system
at gate-level using the training bench. The training bench is divided into sub-
sequences as shown in Fig.2. We refer to this sub-sequence as the instruction
frame. The width is the same for all instruction frames. Since we perform gate-
level simulation and calculate the energy consumption values for all instruction
frames, this step is time-consuming. However, it needs to be done only once for
the characterization. In addition to this, the number of cycles simulated for the
training bench is much smaller than that for target application programs. More
specifically, our training bench is simulated only about 500,000 cycles while the

454 T. Ishihara

Gate-Level
Simulation

Instruction-Set
Simulation

Parameter Extraction

Linear Equation

Linear Programming

Energy Calculation

E'1

P11

= c P111 +c P122 +c P133

, P12, P ...

...
E'2= c P211 +c P222 +c P233 ...

E'n

E1
E2

En = c Pn11 +c Pn22 +c Pn33 ...

13 Pn1, Pn2, P ...n3

Netlist

EnE1

 Library Training Bench

Fig. 1. Overview of Energy Characterization

full simulation of the target application programs needs billions of cycles. Thus,
total time required for the energy estimation using our approach is much smaller
than that of gate-level or RT-level simulation-based approaches.

We, next, obtain an instruction trace for each application program using an
instruction-set simulator. The traces are divided into small segments correspond-
ing to instruction frames. Pi’s should be parameters that can be easily extracted
from instruction traces. For a set of Pi’s, we find coefficients which minimize∑ |Eestimate(i) − Egate−level(i)|, where Egate−level(i) and Eestimate(i) are the
energy consumption values obtained by gate-level simulation and Equation (1)
for the ith instruction frame, respectively. Once the energy model is developed,
the energy consumption of software running on the processor system can be es-
timated using a cycle-inaccurate instruction-set simulator (ISS) with the speed
of 300,000 instructions per second.

0.0

0.5

1.0

1.5

En
er

gy
 C

on
su

m
pt

io
n

[J
]

Executed Frames

Instruction Frame

Fig. 2. An Example of Instruction Frame

Energy-Efficient Embedded System 455

2.2 Experimental Results

We target a system which consists of a CPU core, on-chip cache memories, and
SDRAM as an off-chip main memory as shown in Fig.3. For the off-chip main
memory, we assumed a Micron’s SDRAM. We used an M32R-II processor and
an SH3-DSP processor as CPU cores as follows.

I-CacheCPU
core D-Cache

 SDRAM
(Micron’s DDR2)

Processor Main Memory

Fig. 3. A Target System Model

– M32R-II processor A 32-bit RISC microprocessor with 5-stage pipeline devel-
oped by Renesas Technology Corporation. It has 8KB 2-way set associative
separate caches for instruction and data, a 32KB SRAM, and a 16-entry
TLB on the chip.

– SH3-DSP processor A 32-bit RISC microprocessor developed by Renesas
Technology Corporation. It has a digital signal processor core, a 32KB 4-
way set associative unified cache, a 128KB SRAM, and a 18KB SRAM on
the chip.

We use 0.18 m CMOS standard cell library and SRAM module library for syn-
thesizing the above two processors. Five benchmark programs shown in Table 1
are used in our experiment. Each benchmark program was simulated 1,000,000
instructions for evaluating our approach. Each instruction frame was 5,000 in-
structions long and there were total of 200 instruction frames.

Table 1. Description of Benchmark Programs

Benchmark Program Program Description

JPEG JPEG encoder version 6b

MPEG2 MPEG2 encoder version 1.2

compress File compression program

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

First, we generate the Switching Activity Interchange Format (SAIF) file
through gate-level simulation using NC-V erilogTM from Cadence design sys-
tems. The SAIF file has the information about the values of the signals that
change during simulation. Then, the energy consumption, Ei, is calculated for
the ith instruction frame using DesignPowerTM , a gate-level power calculation

456 T. Ishihara

tool from SYNOPSYS. The average energy consumption per access for the in-
struction cache and the data cache are calculated using library data sheets. We
used the Micron System Power Calculator [2] for calculating the energy con-
sumption of SDRAM. Similarly, we generate an instruction trace using GNU C
debuggers for M32R-II and SH3-DSP processors. Note that the many of ISSs
used in the GNU C debugger is cycle-inaccurate. We divide the instruction trace
into small sub-traces each of which corresponding to an instruction frame and
calculate the value of each parameter for each instruction frame. Finally, the
optimal set of coefficients is found using CPLEXTM , a Linear Programming
solver form ILOG. The set of coefficients found minimizes the sum of estimation
errors (i.e., |Ei − E′

i|). After finding the optimal values of coefficients, we can
use the linear equation to estimate the energy consumption for any instruction
trace.

Table 2. CPU-Time for Characterization (Minutes)

Target Processor M32R-II SH3-DSP

Gate-Level Simulation 127 328

Power Calculation 32 41

Instruction-Set Simulation < 1 < 1

LP Solver < 1 < 1

Total CPU Time 160 370

Table 2 shows the characterization results. The characterizations for M32R-II
and SH3-DSP took 160 minutes and 370 minutes, respectively. Although this step
is time-consuming, it needs to be done only once for a target processor system.
We start with a set of predetermined parameters which include 82 parameters
and select some of them for a given microprocessor. We generate the training
bench so that the standard deviations of every predetermined parameter values
are large enough and every correlation factors between any two parameters are
small enough. The generated training benches are simulated 475,000 instructions
and 140,000 instructions for M32R-II and SH3-DSP processors, respectively. If
the value of the parameter multiplied by its corresponding coefficient is very
small compared to the other values, the parameter will not be used due to its
weak impact on the energy estimation. In addition to this, several parameters
are merged into a single parameter if corresponding coefficient values are very
close to each other. As a result, we chose 30 and 19 parameters for M32R-II and
SH3-DSP processors, respectively. The parameters include the following:

– The number of the following classes of instructions executed: 1) multiply, 2)
divide, 3) multiply-add, 4) the other arithmetic operations, 5) logic, 6) shift,
7) register transfer, 8) load, and 9) store operations.

– The number of taken and untaken branches executed.
– The number of data and instruction cache misses.
– The number of times the instruction and data caches simultaneously miss.

Energy-Efficient Embedded System 457

– The number of times the read-after-write hazard occurs.
– The numbers of other events which cause a pipeline stall occur.

Table 3. Energy Estimation Results for M32R-II Processor

Average Maximum Standard Deviation
Error Error of Error Percentage

JPEG 2.70% 10.32% 2.76

JPEG Opt 0.69% 16.46% 6.17

MPEG2 1.54% 3.97% 0.94

MPEG2 Opt 1.78% 5.15% 0.96

compress 5.00% 6.41% 1.19

compress Opt 4.35% 7.18% 0.93

FFT 1.55% 6.87% 0.92

FFT Opt 1.45% 5.59% 0.89

DCT 1.42% 8.58% 0.72

DCT Opt 1.47% 8.07% 0.69

Total 2.74% 16.46% 2.82

Table 4. Energy Estimation Results for SH3-DSP Processor

Average Maximum Standard Deviation
Error Error of Error Percentage

JPEG 3.17% 11.89% 3.11

JPEG Opt 6.33% 10.02% 2.79

MPEG2 1.32% 3.41% 0.98

MPEG2 Opt 1.31% 5.63% 0.97

compress 5.73% 10.84% 1.37

compress Opt 1.73% 15.15% 1.27

FFT 1.27% 3.25% 0.76

FFT Opt 1.15% 4.75% 0.88

DCT 1.12% 2.20% 0.46

DCT Opt 1.51% 3.04% 0.52

Total 2.47% 15.15% 2.45

Average, maximum, and standard deviation of energy estimation errors for
M32R-II and SH3-DSP processors are shown in Table 3 and 4, respectively.
A suffix of each benchmark program ” Opt” represents that the program is
compiled with a ”-O3” option. The energy estimation error of our approach is
on an average 2.7% and worst case 16.5% for M32R-II processor. For SH3-DSP
processor, the error is on an average 2.5% and worst case 15.2%. The accuracy
of energy estimation is overall very good. The notable point is that the standard
deviation of error percentage is very small. This shows that our estimation results
have a similar trend to the gate-level results even though absolute errors are not
very small in some cases.

458 T. Ishihara

0

50

100

150

200

The Number of Instructions Executed

En
er

gy
 C

on
su

m
pt

io
n

[
J]

Gate Level
Our Approach

Fig. 4. Results for JPEG encoder run on M32R-II

0

50

100

150

The Number of Instructions Executed

En
er

gy
 C

on
su

m
pt

io
n

[
J]

Gate Level
Our Approach

Fig. 5. Results for JPEG encoder run on SH3-DSP

Figures 4 and 5 show the detailed results for JPEG encoder which runs on
M32R-II and SH3-DSP processors, respectively. Horizontal and vertical axes rep-
resent instruction frame number and energy consumption per instruction frame,
respectively. The energy consumption includes the energy for a CPU core, on-
chip caches, and off-chip SDRAM. As one can see, the estimation errors for every
instruction frames are very small.

Energy-Efficient Embedded System 459

2.3 Summary

An energy characterization framework for processor-based embedded system is
proposed. Experimental results obtained with two commercial microprocessors
with their on-chip instruction and data caches, and an off-chip SDRAM demon-
strated that the error of our technique is on an average 3% and worst case 16%
compared to the gate-level estimation results. Our energy estimation method
works very well even with a cycle-inaccurate simulator like a GNU debugger
which is a de facto standard of software debugger. Once the model has been
obtained, the energy consumption can be calculated with the speed of 300,000
instructions per second.

Today’s SoC chips are usually implemented with off-the-shelf processor IPs.
Even for those SoC chips, our method can accurately model the energy con-
sumption since our tool does not need to know a detailed internal architecture
nor the RTL description of the target processor. SoC vendors can easily generate
an accurate energy model using our tool and provide it to their customers. This
helps compilers or programmers to customize software codes to meet customers’
needs for low power. Our future work will be devoted to extending the current
framework to consider multi-core processor systems.

3 Cache Leakage Reduction

Random Dopant Fluctuation (RDF) [3] within the same die results in changes
in the Vth of transistors. Transistors of cache SRAM cells are more affected
since they have minimal physical channel area. The mismatch among Vth of
transistors of a single SRAM cell results in different leakage currents depending
on the value stored in the cell. Thus leakage of the cache memory can be reduced
if the values with less leakage can be more often stored in each SRAM cell. We
propose techniques to reduce instruction-cache leakage using this phenomenon.

3.1 Value Dependence of SRAM Leakage

When the SRAM cell is storing a 1 (Fig.6) only three transistors contribute to the
total leakage (M1, M2, M5); when storing a 0, the other three transistors leak [4].
Since subthreshold leakage exponentially depends on Vth, total leakage can be
significantly different in the two states. Figure 7 shows probability distribution
of SRAM leakage differences between two states. The standard deviation divided
by the mean value of SRAM access latency is assumed to be a 5%. The variation
of SRAM access latency is closely corresponding to the Vth variation since the
latency of an SRAM read access is almost linear to the Vth of an SRAM cell. Note
that the values in Fig.7 are obtained from SPICE simulation for our original
SRAM modules designed with a commercial 90nm process technology. In our
case, the total leakage power of a 4KB SRAM module is 206μW at 75 degree
Celsius if more-leaky values are stored to every SRAM cells. Contrary, if less-
leaky values are stored to the every cells, the leakage power dissipated is only
53μW . If the logic values stored in the SRAM is random, the typical case leakage

460 T. Ishihara

bit line bit line

word lineword line

M5

M4

M3

M2

M1
M6

1
0

Fig. 6. Different transistors leak based on cell value

power is about 130 μW which is an intermediate value between 206μW and
53μW . Therefore, we can save about 50% of the leakage power by storing less-
leaky values to the SRAM cells. Another important observation is that only 10%
of cells consume more than 50% of the total leakage power if there is 5% of delay
variation (i.e., there is a 5% Vth variation). In case of a 10% delay variation in
the SRAM cells, more than 65% of the total leakage power is dissipated by 10%
of the SRAM cells. This means that we can save a large amount of leakage power
by storing less-leaky values to the small number of ultra-leaky SRAM cells.

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

-8.0E+04 -4.0E+04 0.0E+00 4.0E+04 8.0E+04
Leakage difference between two states [pW]

Pr
ob

ab
ili

ty

Fig. 7. SRAM leakage variation

3.2 Cache Leakage Power Reduction

Our approach exploits an unused combination of existing flag bits (i.e., valid
bit=0 and lock bit=1) to indicate ultra-leaky SRAM cells in a specific cache-
line [5]. Suppose we have a 4-way set associative cache with lock and valid
bits as shown in Fig.8. If the lock bit of the way1 in the 5th cache-set is ”1”,

Energy-Efficient Embedded System 461

the corresponding cache-line will not be used for replacement even in case of
a cache miss. If the valid bit of way1 in the 5th cache-set is ”0”, accessing to
the corresponding block will always cause a cache miss. Thus, correct cache
operation is guaranteed even in case that invalid values (i.e., less-leaky values)
are locked in several cache lines. The basic idea of our approach is to reduce the
leakage power of SRAM cells by locking less-leaky values in several cache lines
which contain the ultra-leaky SRAM cells.

Tag0L V

L
0

0
1
2
3
4
5
6
7

1

0 1 0 1 0 1
1 0

1 0
1 0

1 0

1 0

0 1 0 1
V L V L V L V

Way0 Tag1L V Way1 Tag2L V Way2 Tag3L V Way3

Lock bit
Valid bit

Cache Replacement Flow

Ultra-leaky SRAM cells

Fig. 8. Cache locking function

Table 5 shows the results of leakage savings by our approach compared to
the typical case where the values stored in the SRAM are random. The “power-
saving cache-line” in Table 5 represents a cache line which stores less-leaky values
in every bits in the cache line. The results show that we can save more than 20%
of leakage power if the delay variation is more than 8% and if we store less-leaky
values to the 25% of cache-lines.

Table 5. Leakage power reduction

Standard deviation divided by mean latency 4% 8% 12% 16%

Percentage of power-saving cache-lines = 6.25% 4.20% 5.89% 6.48% 6.54%

Percentage of power-saving cache-lines = 12.50% 7.98% 11.05% 12.33% 12.53%

Percentage of power-saving cache-lines = 18.75% 10.79% 16.81% 17.78% 18.34%

Percentage of power-saving cache-lines = 25.00% 14.87% 21.38% 23.37% 23.91%

3.3 Cache Performance Improvement

As shown in Table 2, the more cache lines are power-saving lines, the more leak-
age power can be saved. However, this leads to an increase of cache misses due to
a decrease of an effective cache capacity. In this sub-section, we present a leakage-
aware code placement technique which reduces the performance degradation of a
partially unused cache memory. Our approach is to modify the placement of ba-
sic blocks or functions in the address space so that the number of cache misses

462 T. Ishihara

Detect locations of
ultra-leaky SRAM cells

Mark leaky cache-lines

Execute object code

 Generate object code
(Perform leaky-line-aware code placement)

Fabricated Chip

Target Application Testing
 Phase

Compiling
 Phase

Booting
 Phase

Running
 Phase

Fig. 9. Compiler optimization flow

is minimized for a given cache having unused cache lines. More detail of our
code placement algorithm is explained in [6]. An overview of our approach is
depicted in Fig.9. First, we detect the locations of ultra-leaky SRAM cells in a
cache memory. Next, our code placement technique generates the object code
such that the number of cache misses can be lower than a given number even
if several cache lines which contain the ultra-leaky cells are unused. Therefore,
we perform recompilation only if the original object code does not satisfy the
required performance for a specific chip. If the original object code or an object
code previously generated for another chip can satisfy the required performance,
we use it. Every time the chip is turned on, it executes an initialization step dur-
ing which based on the information collected during test, ultra-leaky cache-lines
are marked using lock and valid bits. Then the chip executes the compiled code.

3.4 Experiments and Results

We used three benchmark programs; compress version 4.0, JPEG encoder version
6b, and MPEG2 encoder version 1.2. All programs are compiled with ”-O3”
option. We used GNU C compiler and debugger for ARMv4T architecture to
generate address traces. We used the following four types of cache memories:

Cache-1. A 32Kb direct mapped cache with 128 cache-sets whose cache-line
size is 32 bytes.

Cache-2. A 32Kb 2-way set-associative cache with 64 cache-sets whose cache-
line size is 32 bytes.

Cache-3. A 32Kb 4-way set-associative cache with 32 cache-sets whose cache
line size is 32 bytes.

Cache-4. A 16Kb 2-way set-associative cache with 32 cache-sets whose cache
line size is 32 bytes.

Energy-Efficient Embedded System 463

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

average case best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s R

at
e

(%
)

C
ac

he
 M

is
s R

at
e

(%
)

Percentage of Unused Cache-Lines (%)

Percentage of Unused Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0
1
2
3
4
5

w
or

st
 c

as
e

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

ave
rag

e c
ase

ave
rag

e c
ase

Fig. 10. Results for compress

In this experiment, we randomly chose ultra-leaky cache-lines (i.e., unused
cache lines), and after that, we applied our leaky-line-aware code placement.
We tried 480 different patterns of locations of ultra-leaky cache-lines for each
benchmark program. Figures 10, 11, and 12 show the results for compress, JPEG
encoder, and MPEG2 encoder, respectively. Black dots represent results of our
leaky-line-aware code placement. In case of compress, there is no noticeable per-
formance degradation even if 20% of total cache lines are unused. The results for
the 4-way set associative cache show that 25% of cache lines can be deactivated
for all benchmark programs without noticeable performance degradation. In this
case, we can save about 20% of leakage power consumption. This implies that
it is better idea to deactivate several cache lines in a highly associative cache
and to save leakage power of these deactivated cache lines by storing less-leaky
values if there is a large process variation.

3.5 Summary

In this section, a leaky-line-aware code placement technique is presented. Ex-
periments demonstrate that our code placement technique offsets the impact
of the reduced cache capacity on performance in most cases for 4-way set-
associative caches even if 25% of cache lines are unused. In this case, about 20%
of cache leakage power can be saved by locking less-leaky values in the unused
lines.

464 T. Ishihara

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

average case

best case

best case
best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s R

at
e

(%
)

C
ac

he
 M

is
s R

at
e

(%
)

Percentage of Unused Cache-Lines (%)

Percentage of Unused Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0
1
2
3
4
5

w
or

st
 c

as
e

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

ave
rag

e c
ase

ave
rag

e c
ase

best case

Fig. 11. Results for JPEG encoder

w
or

st
 c

as
e

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

0 5 10 15 20 25
0
1
2
3
4
5

average case

best case

best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s R

at
e

(%
)

C
ac

he
 M

is
s R

at
e

(%
)

Percentage of Unused Cache-Lines (%)

Percentage of Unused Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0
1
2
3
4
5

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

ave
rag

e c
ase

ave
rag

e c
ase

best case

best case

Fig. 12. Results for MPEG2 encoder

Energy-Efficient Embedded System 465

4 Conclusion

As the transistor size scales down to 90nm and below, non-recurring engineering
(NRE) costs associated with mask set costs increase significantly. A remedy for
the NRE explosion is to reduce the number of developments and sell tens of
millions of chips under a fixed hardware design. In such a situation, embedded
software plays much more important role than today. Our main focus is on
software-oriented approaches to estimating and reducing the energy consumption
of embedded real-time systems. We believe our research activities presented here
will be a major trend in nanometer SoC design.

Acknowledgments. This work is supported by VDEC, the university of Tokyo
with the collaboration of Renesas Technology, STARC, Panasonic, NEC Elec-
tronics, Toshiba, ROHM, Toppan Printing, Cadence Design Systems, Synopsys
and Mentor Graphics. This work is also supported by CREST program of JST.

References

1. Lee, D., Ishihara, T., Muroyama, M., Yasuura, H., Fallah, F.: An Energy Charac-
terization Framework for Software-Based Embedded Systems. In: ESTIMedia 2006.
Proc. of IEEE workshop on Embedded Systems for Real-Time Multimedia, pp. 59–
64 (October 2006)

2. The Micron System Power Calculator,
http://www.micron.com/support/designsupport/tools/powercalc/powercalc.aspx

3. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University
Press, Cambridge (1998)

4. Goudarzi, M., Ishihara, T., Yasuura, H.: A Software Technique to Improve Yield
of Processor Chips in Presence of Ultra-Leaky SRAM Cells Caused by Process
Variation. In: ASPDAC 2007. Proc. of Asia and South Pacific Design Automation
Conference, pp. 878–883 (January 2007)

5. Ishihara, T., Fallah, F.: A Non-Uniform Cache Architecture for Low Power Sys-
tem Design. In: ISLPED 2005. Proc. of International Symposium on Low Power
Electronics and Design, pp. 363–368 (August 2005)

6. Ishihara, T., Fallah, F.: A Cache-Defect-Aware Code Placement Algorithm for Im-
proving the Performance of Processors. In: ICCAD 2005. Proc. of International
Conference on Computer Aided Design, pp. 995–1001 (November 2005)

Empirical Study for Optimization of

Power-Performance with On-Chip Memory

Chikafumi Takahashi1, Mitsuhisa Sato1, Daisuke Takahashi1, Taisuke Boku1,
Hiroshi Nakamura2, Masaaki Kondo2, and Motonobu Fujita2

1 Center for Computational Sciences, University of Tsukuba
{takahasi, msato, daisuke, taisuke}@ccs.tsukuba.ac.jp

2 Research Center for Advanced Science and Technology, The University of Tokyo
{nakamura, kondo, mfujita}@hal.rcast.u-tokyo.ac.jp

Abstract. Power-performance (performance per uniform power con-
sumption) recently has become a more important factor in modern high-
performance microprocessors. In processor design, it is a well-known that
off-chip memory access has a large impact on both performance and
power consumption. On-chip memory is one solution for this problem,
so that many processors such as the Renesas SH-4 and some ARM ar-
chitecture type processors adopt on-chip memory, which resides on the
same layer as the cache memory. In this study, the effectiveness of the
on-chip memory in an SH-4 processor was quantitatively examined by
directly measuring the real power of the processor. For these experi-
ments, we proposed a method that made use of the on-chip memory for
power reduction. The experimental results show that the optimization of
data transfer using on-chip memory reduces EDP(energy delay product)
by up to 15.2%. As an extension of on-chip memory, we have proposed
an on-chip RAM architecture called SCIMA (software controllable inte-
grated memory architecture) which enables DMA (direct memory access)
transfer to the on-chip memory. According to the empirical data from
the SH-4 processor, it was found that the additional DMA transfer using
SCIMA reduces EDP by up to 26.3%.

1 Introduction

In recent years, the clock frequency of modern microprocessors has been in-
creased, due to advances in device technology and architecture. However, a high
clock frequency causes extreme heat generation so that greater improvement
of performance is prevented. Therefore, it is important to pursue improvement
of performance related to power consumption (power performance), not only
computational power.

In processor design, it is a well-known problem that the off-chip memory ac-
cess has a large impact on both performance and power consumption. Modern
processors have a cache used to transfer data between the register and the main
memory. Cache utilization may reduce power consumption due to the reduction
of off-chip main memory access. However, the cache holds data that is auto-
matically selected by the hardware according to an access pattern. Furthermore,

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 466–479, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Empirical Study for Optimization of Power-Performance 467

the cache holds data in a fixed unit size. These limitations cause useful data to
drop from the cache and non-useful data to be acquired from the main memory.
Transfer of non-useful data requires extra execution time, resulting in unnec-
essary energy consumption. Use of an on-chip memory is one solution to this
problem. On-chip memory resides on the same layer as the cache memory, and
is accessed as a part of the main memory. Many processors, such as the Renesas
SH-4 and some ARM architecture processors adopt on-chip memory.

In this study, we quantitatively examine the effectiveness of the on-chip mem-
ory by directly measuring the real power of the processor. We then propose a
method to use on-chip memory for the power reduction. Utilizing on-chip mem-
ory can improve power performance, because of software controlled memory
access. As an extension of the on-chip memory, we have proposed an on-chip
RAM architecture called SCIMA (software controllable integrated memory ar-
chitecture) which enables DMA (direct memory access) transfer to the on-chip
memory. Power performance improvement for this SCIMA architecture is then
predicted based on the experimental data.

The contributions of this paper are as follows:

– We quantitatively examine the effectiveness of the on-chip memory in a real
processor, SH-4, by directly measuring the real power of the processor.

– We propose a method to make use of on-chip memory for power reduction.
– We demonstrate that SCIMA can provide greater power-performance im-

provement by addition of DMA transfer from off-chip to on-chip memory.

Note that many quantitative evaluations of power performance have been per-
formed by simulation, but few have been reported using real power measurements
within processor architecture research.

The next section provides an overview of on-chip memory architecture as
the background of our research, in addition to a method for use of on-chip
memory. Section 3 details the experimental settings used for the evaluation of
power performance of the SH-4 processor. The experimental results are given in
section 4, and in section 5, improvement of power performance is discussed with
consideration for the SH-4 processor with DMA as an assumption of SCIMA.
Concluding remarks and future work are described in section 6.

2 Optimization of Power Performance with On-Chip
Memory

2.1 On-Chip Memory Architecture

The on-chip memory is a type of memory located on the same silicon chip as the
processor core. Many on-chip memory architectures have been proposed. We pro-
posed an on-chip memory architecture called SCIMA[1,2]. SCIMA is an architec-
ture which has SRAM on the same memory hierarchy layer as the cache. Kogge
et al. [3] proposed a SIMD architecture called PIM (Processor-In-Memory), that
has a processing unit on the memory module. Draper et al. [4] proposed to con-
nect many PIM, in the so-called Data-IntensiVe Architecture (DIVA). Patterson

468 C. Takahashi et al.

Register

CACHE On-Chip RAM

Processor chip

Main Memory

Fig. 1. On-chip memory model

et al.[5] proposed Intelligent RAM (IRAM), that has on-chip DRAM. In ad-
dition, some production processors have on-chip memory. For example, the L3
cache of a PowerPC processor in BlueGene/L can be used as on-chip memory[6].
The Renesas SH-4 processor has an on-chip memory mode, which allows half of
the data cache to be reconfigured as on-chip memory[7]. There are also several
chips that store intermediate data on the scratch pad memory[8,9].

In this paper, we propose to optimize power performance with on-chip mem-
ory that resides on the same layer as the cache. The on-chip memory model is
shown in Figure 1. Efficient management of data transfers between the on-chip
memory and main memory decreases power consumption. On-chip memory has
the following advantages.

(1-1) By explicitly specifying the transferred data necessary for computation,
unexpected cache misses and non-useful data transfers caused by fixed cache
line size data transfer can be avoided.

(1-2) Prefetching the data transfer enables overlap with computation by the
DMA function, so that data transfer time can be hidden as in cache prefetch.

On the other hand, there are disadvantages of the on-chip memory, as follows:

(2-1) The requirement for software support to insert codes for explicit data
transfer.

(2-2) The data transfer codes may increase the number of instructions.

To make use of on-chip memory, a programmer or compiler must insert data
transfer instruction(s) explicitly.

2.2 Metrics of Power Performance

The power consumed in a processor can be divided into two parts. One is static
power consumption, which is derived from leakage power consumption and is

Empirical Study for Optimization of Power-Performance 469

consumed constantly. The other is dynamic power consumption, which arises
from switching activity on the bus and memory, and is consumed when the
processor is working.

In this paper, we define the power consumption in the idle state as static power
in order to simplify the discussion. This is different from the above definition. For
example, although the power consumption in the clock line should be classified
as dynamic power consumption, according to our definition, it is classified as
static power consumption. Therefore, static power consumption is defined as
stationary consumed power, and the dynamic power consumption is that after
subtraction of static power from the working power.

The total power consumption is defined by:

Eall = Pstatic ∗ t + Edynamic

where Pstatic is the static power, Edynamic is the dynamic energy, and t is working
time.

Reduction of data transfer by optimizing memory access results in a decrease
of the switching activities of the bus and memory modules. Therefore, opti-
mization of memory access results in the reduction of dynamic power consump-
tion Edynamic. In addition, the improvement of performance by (1-1) and (1-2);
that is, shortening the working time t, can reduce the static power consump-
tion Pstatic. Therefore, it is expected that improved use of on-chip memory will
enable reduction of power consumption.

The model used in this study is similar to the SCIMA model. The power
performance of SCIMA has already been evaluated by simulation, and the ef-
fectiveness is reported in [8,10]. In this study, we examine the effectiveness of
on-chip memory usage with a real processor.

2.3 Optimization Methods for On-Chip Memory

In this subsection, methods to optimize programs for on-chip memory on the
same layer as the cache are presented. The basic strategy of the optimization is
similar to that for the cache, which employs the concept of temporal locality.
The steps for optimization of on-chip memory are as follows:

1. Find data which can be re-used, and transfer the data to the on-chip memory
from the main memory.

2. Execute computation using data in the on-chip memory.
3. Restore dirty data from the on-chip memory to the main memory.

If the data set size is larger than the on-chip memory size, the data should be
divided into several chunks of smaller data.

Another possible optimization method is to hide the data transfer time. If
the on-chip memory supports Direct Memory Access (DMA) and it can be over-
lapped with the computation, data pre-fetching can avoid stalling in the pipeline
by waiting for data transfer completion. In this situation, performing software
pipelining for data transfer and computation is effective.

470 C. Takahashi et al.

The optimizations are effective when the access pattern for the main memory
is predictable. It is difficult to optimize unpredictable memory access, because
it is not possible to specify data transfer instruction(s) at the programming or
compilation phase. Therefore, on-chip memory is used only for memory access
with a predictable access pattern, and unpredictable memory access is performed
by the traditional cache.

In this work, the optimizations are coded manually by hand. Fujita presented
the automatic optimization by a compiler for SCIMA, which can be applied to
our model. [11]

3 Experimental Setting

3.1 Target Processor

We have examined the power performance of the Renesas SH7751R SH-4 32-
bit super scalar RISC processor, which is a commodity product. The SH7751R
can use the 32 KB 2-way set associative data cache as 16 KB on-chip memory
and 16 KB direct map cache. There are two modes in this processor: “OCR
mode” (on-chip RAM mode) is a mode where on-chip memory is available, and
“CACHE mode” is a mode where all the memory is used as a cache. The detailed
specifications for the SH4 on-chip memory are provided in Table 1. In OCR
mode, half of the data cache is mapped on a specific address area. This area
can be accessed by the move instruction and so on. A Hitachi Ultra LSI system
Solution Engine was used as the mother board for the evaluation. The installed
OS is Linux. Details of the processor are given in Table 2.

3.2 Power Measurement Environment

A power measurement environment was built using a Hall device, which measures
the electric current on a conducting wire by observing changes in the magnetic
field. Sensors were set on the ATX power supply output line, input and output
of a 3-terminal regulator. Two types of power data can be obtained as follows:

CORE. This is the power supplied to the SH-4 processor core. It is measured
at the output of the 3-terminal regulator(1.5 V), which connects to the pro-
cessor core. This power is consumed at the registers, cache, on-chip memory,
and other processor core, except the chip I/O.

Table 1. SH4 (SH7751R) On-chip Memory

Mode D-Cache On-chip memory

CACHE mode 32 KB (2- way) 0 KB
OCR mode 16 KB (1-way) 16 KB

Empirical Study for Optimization of Power-Performance 471

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000

Time (msec)

P
o
w

e
r

(W
)

MEMORY

CORE

Fig. 2. Power Consumption from the Data Scan Program

MEMORY&BUS. This is the power for memory and I/O. It is calculated
by subtracting the 3-terminal regulator input from the ATX 3.3 V output.
This 3.3 V power is supplied to the memory modules, the processor I/O
(bus), and other on board devices. Changes in power consumption for these
memory related devices are observed from this power data.

The motherboard consumes ATX 5.0 V power. However, almost all of the
power is consumed in unrelated devices. Therefore, only the CORE and MEM-
ORY&BUS are discussed, not the ATX 5.0 V consumption.

3.3 Basic Power Characteristics

As a preliminary experiment, the power consumption was measured by executing
a simple data scan program. The results are shown in Figure 2. The program se-
quentially scans the data in the memory area , and repeats the scan by gradually
increasing the accessed area . Using this experiment, we can observe the behav-
ior of power consumption related to the cache, because by gradually increasing
the access area a cache miss is eventually caused.

Table 2. Solution Engine detail

Name SuperH Solution Engine
Type MS7751RSE01
CPU SH7751R (SH-4) 240 MHz
Memory 64 MB SDRAM 60 MHz
I/O CompactFlash, IDE, etc
OS Linux 2.4.18
Compiler gcc 3.2.3

472 C. Takahashi et al.

As shown in Figure 2, the program starts at approximately 0.2 seconds, and
the CORE increases to approximately 360 mW. Initially, the MEMORY&BUS is
maintained at 1.6 W. However, after 1.7 seconds, the MEMORY&BUS increases
to approximately 500 mW, and the CORE decreases to approximately 15 mW.
The MEMORY&BUS is increased because cache misses occur frequently, result-
ing in many off-chip memory accesses, and the CORE is decreased due to the
pipeline stall caused by the wait for data transfer.

The program stopped at 5.3 seconds, and the processor returned to idle state.
At this time, the MEMORY&BUS is approximately 2.3 W, which is very large
compared to the CORE 65 mW. This is due to the mother board used for
development, which has many additional devices that constantly consume a large
amount of power.

3.4 On-Chip Memory Optimization for SH-4 On-Chip Memory

For the SH-4, which has no DMA support from main memory to on-chip memory,
data transfer between the on-chip memory and main memory is performed by
transfer instructions. In addition to this, the instructions support only transfer
between registers and the main memory or registers and the on-chip memory, so
that transfer of data between the on-chip memory and the main memory should
occur via a register. Furthermore, the size of the data transfer from the main
memory to the on-chip memory is fixed to 32 bytes on the bus, because trans-
ferred data must go through the cache. This may cause transfer of unnecessary
data from the main memory to the cache in the case of data transfers smaller
than 32 bytes.

In the experiment, we have optimized three programs: matrix multiplication,
NPB CG (sequential version) and FFT. As shown in Table 1, the on-chip memory
size is only 16 KB, which is half of the cache in CACHE mode. Consequently, in
some cases, not only on-chip memory but also cache is used even in OCR mode.

Matrix Multiplication. We have optimized the matrix multiplication (MM)
program, expressed by C = A × B, where A, B and C are square matrices of
the same size, with on-chip memory.

In the traditional cache architecture, cache blocking (or tiling) [12] is usually
used to make the working set small enough to fit the cache size and to improve
the data locality. However, unfortunate line conflicts may occur and degrade
performance. In matrix multiplication, data access to non-contiguous addresses
(row-ordered access to matrix B) may cause line conflicts. Therefore, these line
conflicts should be avoided in order to obtain higher performance. Although this
problem is partially solved by the set associativity of the cache, the data access
pattern must be modified with software to completely avoid these conflicts. How-
ever, such optimization requires complicated programming to fit the properties
of the cache size, line size, associativity, etc.

In OCR mode, the data of matrices A, B and C are blocked (as in the tiling
transformation for cache). Next, the portion of matrices A and B are transferred
to on-chip memory via registers. Therefore A and B do not cause cache conflicts.

Empirical Study for Optimization of Power-Performance 473

A portion of C is transferred to the cache to utilize the cache area. However, C
has hardly any cache line conflict because the cache is only used for matrix C.

A matrix size of 500×500 was used for these experiments. The block size used
in the blocking optimization was selected with consideration for the capacity
of the on-chip memory or cache and the results obtained by the trial run. The
following block sizes were carefully selected: 36×36 for CACHE mode and 32×32
for OCR mode.

NPB Kernel CG. The second workload is the CG (Conjugate Gradient) kernel
of the NPB (NAS Parallel Benchmarks) [13]. This is a kernel loop to compute the
eigenvalues of a large-scale symmetric randomsparse matrix using the CG method.
The kernel consists of double-nested loops, which include the multiplication of a
sparse matrix and a vector. This part dominates the total execution time.

To perform multiplication of a sparse matrix and dense vector efficiently, the
actual computation is expressed as q =

∑
i(A(i) × p(colidx(i))), where q is

an element of the resultant vector, A is a packed array of non-zero elements
of the target matrix, colidx is an array for match-making between elements
of the matrix and vector, and p is the target vector. As for the data access
characteristics , A and colidx are sequentially accessed, whereas p is randomly
accessed.

Because matrix A and colidx are sequentially accessed, they have spatial
locality. However, they do not have data reusability. On the other hand, vector
p has significant reusability. Data access to A and colidx strongly degrades the
cache-hit ratio for data access of vector p, since it is accessed randomly under
capacity pressure on the cache. To improve the cache-hit ratio for p, one solution
is to use cache blocking for p. By the application of blocking, vector p is divided
into several portions, and each portion is calculated with partial data of matrix
A that is associated to that portion. The elements of A and colidx can be pre-
sorted before multiplication to make a set of data that restricts the data accesses
of p to each block. This is possible because the contents of A and colidx are never
modified through calculation in the CG method and this modification is only
required once in the entire calculation.

In OCR mode, the same blocking optimization can be applied. The block of p
is transferred to on-chip memory. In CACHE mode, the cache miss caused by the
random access of vector p may degrade performance. However, in OCR mode,
such an unexpected data swap-out never occurs and the reusability of vector p
can be utilized. Each of the blocks of A and colidx are transferred using only
the cache. There is the possibility that A and colidx are in conflict with each
other. However, the conflict may be insignificant, because the access patterns of
these matrices are sequential. Furthermore, the effect of cache miss is very small,
because these matrices have no reusability.

A problem size of class-W was used. With a problem size of class-W, the size
of the original (not-packed) matrix is 7000×7000 and the sparsity (ratio of non-
zero elements) is approximately 1%. The block size of vector p is set at 1750
elements (elements of vector p are divided into four portions). The optimal size
was determined by trial run.

474 C. Takahashi et al.

Fast Fourier Transform. The third workload is the Fast Fourier Transform
(FFT). The FFT is an algorithm used to compute the discrete Fourier transform
quickly, and is used for various purposes. In this study, a three-dimensional
double precision complex FFT program was used.

The 3-D FFT is computed by data pair of each dimensional axis. In this
computation, stride memory access is caused at two directions of the dimensional
axis . The stride access affects only 16 Bytes, which is smaller than the cache line
size. This fine grain data access is inefficient, because half of the transferred data
is non-useful data, and therefore unusable for the computation. To improve this
problem, blocking optimization is applied for the sequential address direction of
both modes. The optimization packs data to a coarse grain data size, which is
larger than the cache line size[14]. Cache line conflicts caused by stride memory
access can be improved by padding with non-useful data. However, this padding
is not a perfect solution for improvement. In OCR mode, using on-chip memory
clearly improves the cache line conflicts. However, OCM mode has a disadvantage
because the on-chip memory size is half of the cache in CACHE mode, so that
the blocking size is reduced.

A data size of 64×64×64 was used, and repeated twice. The block size used in
the blocking optimization was selected by preliminary experiment. The following
data sizes are selected: 16 for CACHE mode and 8 for OCR mode.

4 Power-Performance on SH-4

In this paper, the Energy Delay Product (EDP) was employed as an index of
power performance. EDP is a widely used index in the field of low power research.
EDP is defined by EDP = P × t × t, where P is average power, and t is time.

The experimental results are shown as Table 3. The EDP ratio, which is
normalized by the EDP of CACHE mode, is shown as Figure 3. Figure 3 shows
that EDPs are decreased when using on-chip memory for any application. The
EDP is decreased to approximately 12.4% for MM, 7.4% for CG, and 15.2% for
FFT.

Table 3 shows that the dynamic power consumption Edynamic is reduced in
OCR mode for all applications. A reduction of MEMORY&BUS was observed,
which results from the reduction of transferred data. It is expected that this will
effect an improvement of cache line conflicts. The reduction of the CORE power
is considered to be a result of decreasing cache renewal caused by cache misses.
A reduction of the EDP results from these effects and results in the shortening
of execution time.

The percentage of power reduction for Estatic is larger than that for Edynamic.
This is because of the larger static power of the MEMORY&BUS, which is
referred to in the previous section. If a different production motherboard (not
the evaluation board) was used, the contribution to dynamic power reduction
would be larger, because the power consumption of external devices would be
smaller than the current environment.

Empirical Study for Optimization of Power-Performance 475

Table 3. Power-Performance of SH-4

Matrix Multiplication NPB CG 3D FFT
CACHE OCR CACHE OCR CACHE OCR

EDP CORE 35.5 31.4 761.0 699.8 2.892 2.561
(W ∗ sec2) MEMORY&BUS 207.0 181.0 4615 4258 17.10 14.38

Total 242.5 212.5 5376 4958 19.99 16.95

Edynamic CORE 2.848 2.675 14.16 13.48 0.826 0.801
(W ∗ sec) MEMORY&BUS 1.876 1.470 22.54 20.89 0.766 0.669

Total 4.723 4.145 36.70 34.36 1.592 1.471

Estatic CORE 0.621 0.585 2.781 2.681 0.177 0.164
(W ∗ sec) MEMORY&BUS 18.32 17.27 80.20 77.44 5.163 4.751

Total 18.94 17.86 82.98 80.13 5.340 4.915

Execution time (sec) 10.25 9.66 44.93 43.30 2.88 2.66

0

0.2

0.4

0.6

0.8

1

1.2

C
A

C
H

E
m

od
e

O
C

R
m

od
e

C
A

C
H

E
m

od
e

O
C

R
m

od
e

C
A

C
H

E
m

od
e

O
C

R
m

od
e

Matrix Multiply NPB CG 3D FFT

E
D

P
 r

at
io

CORE

MEMORY&BUS

Fig. 3. EDP Ratio of SH-4

5 Discussion

5.1 Improvement of Power Performance by SH-4 On-Chip Memory

The experimental results show that utilizing on-chip memory improves power
performance for the SH-4 processor. Considering the number of execute instruc-
tions, OCR mode may have some disadvantage for power consumption, because
the OCR mode requires extra instructions to transfer data between the on-chip
memory and main memory, and this causes an increase in the dynamic power
consumption of the CORE. However, Table 3 shows a power consumption that
is smaller than that of the CACHE mode . This indicates that the OCR mode
performs better than CACHE mode, because off-chip memory access is reduced
and the program runs faster due to less off-chip memory accesses.

476 C. Takahashi et al.

The CORE dynamic power consumption shown in Figure 3 indicates that
OCR mode has a lower value compared with CACHE mode. The on-chip memory
reduces non-useful data transfer caused by cache misses. However, since data
transfer between on-chip memory and main memory must go through the cache,
the CORE power on OCR mode should include power consumed at the cache.
This indicates the gain from removing non-useful data transfer exceeds the loss
caused by passing the cache. As a result, the OCR mode has better power-
performance than the CACHE mode.

It should be noted that the block size for the OCR mode became smaller
than the CACHE mode, because the size of the on-chip memory is smaller than
the full size of the cache. For example, for MM, while the maximum block size
is 36 × 36 in in CACHE mode, it is only 32 × 32 in OCR mode. That is
approximately 79% of the block size compared to the CACHE mode. For FFT,
the OCR mode has only 50% block size. This is unavoidable because sufficient
data size must be guaranteed for unpredictable memory access. However, the
results of our experiments show that using on-chip memory has sufficient benefits
when appropriately optimized.

5.2 Power Performance on SH-4 with DMA

Assumption of SH-4 with DMA. As shown in the previous section, data
transfer between the on-chip memory and main memory must pass the cache
and register. This limitation forces the OCR mode to consume more power by
non-useful data transfer and execution of pipeline stall caused by non-useful data
transfer. In addition, passing via the registers may obstruct the computation. It
is expected that the adaptation of a DMA controller for on-chip memory will
avoid these problems.

DMA support removes the obstructing computations, and enables the overlap
of computations with data transfer in some situations. That is, it can be used in
software pipelining. This is not only advantageous, but it also allows selection of
data granularity and flexible transfer of data. Coarse grain data transfer can re-
duce the data transfer overhead, and fine grain data transfer reduces non-useful
data transfer. These advantages might reduce power consumption through the
reduction of data transfer and cause shorter execution time. The power perfor-
mance using FFT was investigated under the assumption that DMA support is
available for the SH-4 processor.

Assumption and Method. We assumed DMA support for the SH4 (SH7751R)
processor, and DMA supports direct data transfer between the on-chip memory
and main memory with block stride data transfer. Preliminary examination con-
firmed the data transfer time was sufficiently shorter than the computation time
for the FFT program. Therefore the program was optimized by software pipelin-
ing. For pipelining, the on-chip memory is divided into two portions, which are

Empirical Study for Optimization of Power-Performance 477

0

0.2

0.4

0.6

0.8

1

1.2

CACHE mode OCR mode OCR with DMA

E
D

P
 r

at
io

CORE

MEMORY&BUS

Fig. 4. EDP Ratio of SH-4 with DMA

alternately used for computation or transfer. This optimization makes the block
size small, and it is only “2”. The rate of pipelined data transfer is shown as:

5 ∗ NX ∗ log2 NX ∗ (NY − NBLK ∗ 2) ∗ NZ+
5 ∗ NY ∗ log2 NY ∗ (NX − NBLK ∗ 2) ∗ NZ+
5 ∗ NZ ∗ log2 NZ ∗ (NX − NBLK ∗ 2) ∗ NY

5 ∗ NX ∗ NY ∗ NZ ∗ log2(NX ∗ NY ∗ NZ)

where the element size is NX × NY × NZ, and the block size is NBLK.
This equation shows that 93.75% of data transfer can be pipelined for this

evaluation. Power performance is calculated by this ratio and the evaluation re-
sults of the actual SH-4 processor. We assume that the static power consumption
can be reduced by shortening the execution time, which is enabled by software
pipelining. The time required for data transfer on the SH-4 processor with DMA
is calculated by the time difference between the pipelined program and the pro-
gram without data transfer.

Results. The calculated EDP ratio is shown as Figure 3. The figure shows that
OCR mode with adopted DMA decreases EDP by 26.3% compared with the
CACHE mode, and by 13.1% EDP compared with OCR mode without DMA.
As this estimation does not regard the influence of memory traffic reduction
caused by variable grain data transfer, the power consumption for a real DMA
is expected to be smaller than this result.

The result of the evaluation is worse than that for the SCIMA results. The
SCIMA evaluation shows a 70% decrement of EDP for NPB CG [10], which is
a larger effect than the result in this study. This is because SCIMA has a larger
number of cache / on-chip memory way than SH-4 processor and it can switch
every way to on-chip memory or cache. It reduces the disadvantage of OCR
mode in SH-4 processor.

The technique of cache prefetching can achieve a similar efficiency to software
pipelining for the on-chip memory. Cache prefetching can also reduce EDP in
CACHE mode. However, to prefetch data precisely, it is necessary to execute

478 C. Takahashi et al.

the prefetch instruction with accurate timing. Poor execution may eliminate
prefetched data from the cache, and a grain of data transfer is fixed to the
cache line size. Therefore, we propose that use of an on-chip memory has more
advantages than cache prefetch for power performance improvement.

6 Conclusion

In this paper, we have presented an empirical study for the optimization of power
performance with an on-chip memory. We have proposed a method to make
use of on-chip memory and quantitatively examined the effectiveness of the on-
chip memory in a SH-4 processor by directly measuring the real power usage
of the processor, The experimental results show that utilizing on-chip memory
enables optimum data transfer, and reduces EDP by up to approximately 15.2%.
According to our empirical evaluation of the SH-4 processor, we evaluate the
effectiveness of DMA transfer between the on-chip memory and main memory.
It was found that DMA transfer can reduce EDP by up to 26.3%.

Future work will include the investigation of other recent processors. Cur-
rently, we are planning to make a detailed examination of the SH-4A processor,
which is a new processor that has DMA supported on-chip memory.

Acknowledgment

This research is supported by “Research & Development Project for Enabling
Technologies for Future Supercomputing” project in “Research and Development
For Next-Generation Information Technology” program, which is funded by the
Ministry of Education, Culture, Sports, Science and Technology.

References

1. Kondo, M., et al.: SCIMA: Software controlled integrated memory architecture for
high performance computing. In: Proc. ICCD 2000, pp. 105–111 (2000)

2. Kondo, M., et al.: Software-controlled on-chip memory for high-performance and
low-power computing. ACM SIGARCH Computer Architecture News 30, 7–8
(2002)

3. Sunaga, T., et al.: A processor in memory chip for massively parallel embedded
applications. IEEE J. of Solid State Circuits, 1556–1559 (October 1996)

4. Draper, J.T., et al.: The architecture of the DIVA processing-in-memory chip. In:
Proc. ICS 2002, pp. 14–25 (2002)

5. Patterson, D., et al.: A Case for Intelligent RAM: IRAM. IEEE Micro 17(2), 34–44
(1997)

6. Almasi, G., et al.: Unlocking the performance of the bluegene/l supercomputer. In:
Proc. SC 2004, vol. 57 (2004)

7. Renesas: SuperH RISC engine SH-4 Programming Manual, 5th edn. (2001)
8. Diefendorff, K.: Sony’s emotionally charged chip. Microprocessor Report 13(5)

(April 1999)
9. Turley, J.: Strongarm speed to triple. Microprocessor Report 13(6) (May 1999)

Empirical Study for Optimization of Power-Performance 479

10. Kondo, M., et al.: Reducing Memory System Energy by Software-Controlled On-
Chip Memory. IEICE Trans. on Electronics (E86-C)4, 550–588 (2002)

11. Fujita, M., et al.: Data Movement Optimization for Software-Controlled On-Chip
Memory. In: INTERACT-8. Workshop on Interaction between Compiler and Ar-
chitecture (2004)

12. Lam, M., et al.: The cache performance and optimizations of blocked algorithms.
In: Proc. ASPLOS-IV, pp. 63–74 (1991)

13. Bailey, D.: et al.: The NAS parallel benchmarks 2.0. In: NASA Ames Research
Center Report. NAS-05-020 (1995)

14. Takahashi, D.: Efficient implementation of parallel three-dimensional FFT on clus-
ters of PCs. Computer Physics Communications 152, 144–150 (2003)

Performance Evaluation of Compiler Controlled
Power Saving Scheme

Jun Shirako1, Munehiro Yoshida1, Naoto Oshiyama1, Yasutaka Wada1,
Hirofumi Nakano1, Hiroaki Shikano1,2, Keiji Kimura1, and Hironori Kasahara1

1 Dept. of Computer Science, Waseda University, Tokyo, 169-8555, Japan,
{shirako, kimura, kasahara}@oscar.elec.waseda.ac.jp

2 Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo 185-8601, Japan

Abstract. Multicore processors, or chip multiprocessors, which allow us to real-
ize low power consumption, high effective performance, good cost performance
and short hardware/software development period, are attracting much attention.
In order to achieve full potential of multicore processors, cooperation with a par-
allelizing compiler is very important. The latest compiler extracts multilevel par-
allelism, such as coarse grain task parallelism, loop parallelism and near fine grain
parallelism, to keep parallel execution efficiency high. It also controls voltage and
clock frequency of processors carefully to reduce energy consumption during ex-
ecution of an application program. This paper evaluates performance of compiler
controlled power saving scheme which has been implemented in OSCAR multi-
grain parallelizing compiler. The developed power saving scheme realizes volt-
age/frequency control and power shutdown of each processor core during coarse
grain task parallel processing. In performance evaluation, when static power is as-
sumed as one-tenth of dynamic power, OSCAR compiler with the power saving
scheme achieved 61.2 percent energy reduction for SPEC CFP95 applu without
performance degradation on 4 processors and 87.4 percent energy reduction for
mpeg2encode, 88.1 percent energy reduction for SPEC CFP95 tomcatv and 84.6
percent energy reduction for applu with real-time deadline constraint on 4 pro-
cessors.

1 Introduction

Multicore processors are attracting much attention, since they allow us to realize low
power consumption, high effective performance, good cost performance and short hard-
ware/software development period, with compiler supports. For example, Fujitsu FR-
V[1], ARM MPCore[2], IBM, SONY and Toshiba Cell[3], Intel Xeon dual-core[4] and
IBM Power5+[5] have been developed for consumer electronics, PCs, servers and so
on. In order to achieve efficient parallel processing on multicore processors, cache and
local memory optimization to cope with memory wall problem and minimization of
data transfer among processors using DMAC (Direct Memory Access Controller) are
necessary, in addition to extraction of parallelism from an application program. There
have been a lot of researches to extract parallelism for multicore processors in the ar-
eas of loop parallelizing compilers [6,7,8]. However, loop parallelization techniques are
almost matured and new generation of parallelization techniques like multi-grain par-
allelization are required to attain further speedup. There are a few compilers trying to

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 480–493, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Evaluation of Compiler Controlled Power Saving Scheme 481

BPA

RB

SB

Program

Near fine grain parallelism

Loop level parallelism

Coarse grain parallelism

Coarse grain parallelism

all system 1st layer 2nd layer 3rd layer

Near fine grain parallelism
in loop body

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

Fig. 1. Hierarchical Macro Task Definition

exploit multiple levels of parallelism, for example, NANOS compiler[9] extracts multi-
level parallelism including coarse grain task parallelism by using extended OpenMP
API. Also, OSCAR multigrain parallelizing compiler [10,11,12] extracts coarse grain
task parallelism among loops, subroutines and basic blocks and near fine grain paral-
lelism among statements inside a basic block, in addition to loop parallelism. Further-
more, OSCAR compiler automatically determines the suitable number of processors
for each part of a program in consideration for processing overhead and applies global
cache memory optimization over different loops.

Improving processing performance has been one of the most important problems for
a long time. Recently, the need of power reduction of computing systems has increased
rapidly. For power saving, various methods by hardware and OS have been proposed.
Adaptive Processing[13] estimates workloads of computing resources using counters
for cache misses and instruction queues and powers off unnecessary resources. On-
line Methods for Voltage and Frequency Control [14] settles on the fitting voltage and
frequency for each domain of processors using instruction issue queue occupancies as
feedback signals.

This paper describes compiler controlled power saving scheme for a multicore pro-
cessor, which realizes voltage/frequency (V/F) control and power shutdown under con-
straints of the minimum time execution or real-time execution with deadline.

2 Multigrain Parallel Processing

The developed power saving scheme in OSCAR compiler[15,16] is mainly used with
coarse grain task parallelization in multigrain parallel processing. This section describes
an overview of coarse grain task parallel processing.

2.1 Generation of Macro-tasks [10,11,12]

In multigrain parallelization, a program is decomposed into three kinds of coarse grain
tasks, or macro-tasks (MTs), such as block of pseudo assignment statements (BPA),
repetition block (RB) and subroutine block (SB)[12]. Macro-tasks can be hierarchi-
cally defined inside each un-parallelizable repetition block, or sequential loop, and a
subroutine block as shown in Figure 1. Repeating macro-task generation hierarchically,
a source program is decomposed into nested macro-tasks as in Figure 1.

482 J. Shirako et al.

8PE

PG0(4PE) PG1(4PE)

PG1-0(2PE) PG1-1(2PE)2nd layer

1st layer

PG0-0 PG0-1 PG0-2 PG0-3

0th layer

Fig. 2. Hierarchical processor grouping

2.2 Extracting Coarse Grain Task Parallelism

After generation of macro-tasks, data dependency and control flow among macro-tasks
are analyzed in each nested layer and hierarchical macro flow graphs (MFG) represent-
ing control flow and data dependencies among macro-tasks are generated [10,11,12]. In
order to extract coarse grain task parallelism among macro-tasks, Earliest Executable
Condition analysis [10,11,12], which analyzes control dependencies and data depen-
dencies among macro-tasks simultaneously, is applied to each Macro flow graph. Ear-
liest Executable Conditions mean conditions on which macro-task may begin its exe-
cution earliest. By this analysis, a macro-task graph (MTG)[10,11,12] is generated for
each macro flow graph. Macro-task graph represents coarse grain parallelism among
macro-tasks.

2.3 Hierarchical Processor Grouping

OSCAR compiler groups processors hierarchically to execute hierarchical macro-task
graphs efficiently. This grouping of processor elements (PEs) into Processor Groups
(PGs) is performed logically, and macro-tasks are assigned to processor groups in each
layer. Figure 2 shows an example of a hierarchical processor grouping with 8 proces-
sors. For execution of a macro-task graph in the 1st nest level, or 1st layer, 8 processors
are grouped into 2 processor groups each of which has 4 processor elements. This is
represented as (2PGs, 4PEs). The macro-task graph in the 1st nest level is processed
by the 2PGs. 4 processors are available in each macro-task graph in the 2nd nest level,
hence (4PGs, 1PE) grouping is chosen for the left PG and (2PGs, 2PEs) is chosen for
the right PG.

2.4 Automatic Determination Scheme of Parallelizing Layer

In order to improve performance of multigrain parallel processing, it is necessary to
determine the optimal number of PGs and PEs for coarse grain and loop parallelism of
each nested macro-task graphs. OSCAR compiler with Automatic Parallelized Layer
Determination Scheme [17,18] estimates parallelism of each macro-task graph and de-
termine suitable (PGs, PEs) grouping. It also determines the suitable number of pro-
cessors executing each macro-task, considering trade-off between parallelization and
scheduling and data transfer overhead. Therefore, OSCAR compiler doesn’t assign
tasks to excessive processors to reduce parallel processing overhead.

Performance Evaluation of Compiler Controlled Power Saving Scheme 483

CMPm

CSM / L2 Cache

PE0 PE1 PE n

Intra-chip connection network
(Multiple Buses, Crossbar, etc)

DSM

LDM/
D-cacheLPM/

I-Cache

CMP (chip multiprocessor 0)0

Inter-chip connection network (Crossbar, Buses, Multistage network, etc)

CSMj

CSM

I/O
CMPk

CPU

DMAC

I/O
DevicesI/O

Devices

Network Interface

CSM : central shared mem.
DSM : distributed shared mem.

LDM : local data mem.
LPM : local program mem.

Fig. 3. OSCAR multicore processor

2.5 Macro-Task Scheduling

In coarse grain task parallel processing, a macro-task in a macro-task graph is assigned
to a processor group. At this time, static scheduling or dynamic scheduling is chosen
for each macro-task graph. If a macro-task graph has only data dependencies and is
deterministic, static scheduling is selected. In this case, OSCAR compiler schedules
macro-tasks to processor groups. Static scheduling is effective since it can minimize
data transfer and synchronization overhead without runtime scheduling overhead. If a
macro-task graph is un-deterministic by conditional branches among coarse grain tasks,
dynamic scheduling is selected to handle runtime uncertainties. Dynamic scheduling
routines are generated by OSCAR compiler and inserted into a parallelized program
code to minimize scheduling overhead.

This paper evaluates the power reduction static scheduling scheme of OSCAR com-
piler.

3 Compiler Control Power Saving Scheme

Multigrain parallel processing can take full advantage of multi level parallelism in a
program. However, there isn’t always enough parallelism for all available resources
through a whole program. In such a case, shutting off power supply to idle proces-
sors, which execute no task, can reduce static and dynamic power consumption. Fur-
thermore, execution at lower voltage and frequency may reduce the total energy con-
sumption in real time processing with deadline constraints. Compiler controlled power
saving scheme realizes the following two modes of power saving. The first is the fastest
execution mode that doesn’t apply power reduction to the critical path of a program
to guarantee the fastest processing speed. The second is real-time processing mode
with deadline constraint that minimizes the total energy consumption within the
given deadline.

484 J. Shirako et al.

Table 1. Rate of frequency, voltage, dynamic energy and static power

state FULL MID LOW OFF
frequency 1 1/2 1/4 0

voltage 1 0.87 0.71 0
dynamic energy 1 3/4 1/2 0

static power 1 1 1 0

3.1 Target Model for the Power Saving Scheme

In this paper, it is supposed that target multicore processors have the following functions
with hardware supports like OSCAR multicore processor shown in Figure 3. The OS-
CAR (Optimally Scheduled Advanced Multiprocessor) architecture has been proposed
to support optimization of multigrain parallelizing compiler [19,10,11], especially static
and dynamic task scheduling [20,19,21]. In the OSCAR architecture, a simple processor
core (PE) has local and/or distributed shared memory which can be accessed by DTCs
(Data Transfer Controllers), or DMACs, of remote processor cores. Processor cores
are connected by interconnection network like multiple busses or cross bar switches
to control shared memory (CSM) [20,19,21,22]. In addition to the traditional OSCAR
architecture, the target multicores of this paper have the following power control func-
tions.

– Frequency for each processor can be changed in several levels separately.
– Voltage can be changed with frequency.
– Each processor can be powered on and off individually.

Here, memories, DMACs and networks are not the target of the power saving scheme
described in this paper. The developed power saving scheme assumes frequency changes
discretely, and the optimal voltage is fixed for each frequency. Table 1 shows an exam-
ple of the combinations of voltage, dynamic energy and static power at each frequency,
which supposes FULL is 400MHz, MID is 200MHz and LOW is 100MHz at 90nm
technology. In this table, dynamic energy rate means the rate of energy consumption at
each frequency to energy at FULL. Power supply is shut off completely at OFF, hence
static power at OFF becomes 0. According to architectures and technology, these pa-
rameters and the number of V/F states can be changed. This scheme also considers state
transition overhead that is given for each state.

3.2 Target MTG for the Power Control Scheme

OSCAR compiler selects dynamic scheduling or static scheduling for each MTG, as
to whether there is runtime uncertainty like conditional branches in the MTG. The de-
veloped scheme can be only applied to static scheduled MTGs. However, separating
static parts without branches from dynamic scheduled MTG, this scheme is applied for
static scheduling parts of MTGs. In static scheduling at compile-time, OSCAR compiler
estimates execution cost and consumed energy of each MT at each frequency using in-
struction cost and energy tables which are previously prepared for each target multicore
processor.

Performance Evaluation of Compiler Controlled Power Saving Scheme 485

PG0 PG1 PG2
MT1

MT2 MT3
MT4

MT5 MT6
MT7

MT8

time Given Dead Line

Margin

Phase 1

Phase 2

Phase 3

Fig. 4. Static scheduled MTG

3.3 Deadline Constraints for Target MTG

The developed scheme determines suitable voltage and frequency for each MT on a
MTG based on the result of static task scheduling. Here, OSCAR compiler uses some
different static task scheduling algorithms, such as CP/DT/MISF, DT/CP, ETF/CP and
so on, in order to minimize processing time including data transfer overhead. The
best schedule is chosen among different schedules generated by the different heuris-
tic scheduling algorithms. Figure 4 shows MTs 1, 2 and 5 are assigned to PG0, MTs 3
and 6 are assigned to PG1 and MTs 4, 7 and 8 are assigned to PG2. Edges among tasks
are data dependence.

The following is defined for MTi in order to estimate execution time of a target
MTG to which the developed scheme is applied.

Ti : execution time of MTi after V/F control
Tstarti : start time of MTi

Tfinishi : finish time of MTi

At the beginning of the developed scheme, Ti is unknown. The start time of the target
MTG is set to 0. If MTi is the first macro-task executed by a PG and has no data
dependent predecessor. Tstarti and Tfinishi are represented as shown below.

Tstarti = 0
Tfinishi = Tstarti + Ti = Ti

For instance, MT1 is the entry node of MTG, so it is the first and has no data dependent
predecessor. Hence, Tstart1 = 0, Tfinish1 = T1. In other cases, a previous macro-
task which is assigned to the same PG as MTi is represented as MTj . Data dependent
predecessors of MTi are defined as {MTk, MTl, ...}. MTi starts when MTj , MTk,
MTl, ... finish.

Tstarti = max(Tfinishj , Tfinishk
, Tfinishl

, ...)
Tfinishi = Tstarti + Ti

According to these rules,the finish time of MT8 which is the exit node is represented as
Tfinish8 = T1 + T8 + max(T2 + T5, T6 + max(T2, T3), T7 + max(T3, T4))
The finish time of exit node is generally represented by

Tfinishexit = Tm + Tn + ... + max1(...) + max2(...) + ...

486 J. Shirako et al.

PG0 PG1 PG2
MT1

MT2 MT3
MID

MT4

MT5
MID MT6 MT7

MT8
time

PG3
idle (1) idle (1)

idle (2) idle (2)

idle (3)

Fig. 5. Result of V/F control

The start time of the entry node is 0, therefore Tfinishexit expresses the execution
time of the target MTG, defined as TMTG. The given deadline for the target MTG is
defined as TMTG deadline. Now therefore, the next condition should be satisfied.

TMTG ≤ TMTG deadline

The developed scheme determines suitable clock frequency for MTi to satisfy this con-
dition.

3.4 Voltage / Frequency Control

This paragraph describes how to determine suitable voltage and frequency to execute
each MT using next conditions. The execution time of MTi is Ti, the execution time
of target MTG is TMTG, the real-time deadline of the target MTG is TMTG deadline,
hence

TMTG = Tm + Tn + ... + max1 + max2 + ... - - - (a)
TMTG ≤ TMTG deadline - - - (b)

For sake of simplicity, MTs corresponding to each term of expression (a), such as
Tm, Tn, ..., max1, max2, ..., are called Phase. Each term represents a different part
of TMTG. Therefore, different Phases are not executed in parallel on any account as
shown in Figure 4. The following parameters for Phasei at frequency Fn are defined.

Tschedi(Fn) : scheduling length at Fn

Energyi(Fn) : energy consumption at Fn

Tschedi(Fn) represents the execution time when all MTs in Phasei are processed at
Fn. Tschedi(FULL) is the minimum value of the correspondent term of expression (a).
Energyi(Fn) expresses the total energy consumption as Phasei is excuted at Fn.

Here, it is considered to change frequency from Fn to Fm. The scheduling length is in-
creased from Tschedi(Fn) to Tschedi(Fm). The energy is decreased from Energyi(Fn)
to Energyi(Fm). Using these values, Gaini(Fm) is defined as

Gaini(Fm) = −Energyi(Fm)−Energyi(Fn)
Tschedi

(Fm)−Tschedi
(Fn)

Gaini(Fm) represents reduction rate of energy on scheduling length when Fn is changed
into Fm. Therefore, if the increases of scheduling length are same, the more energy re-
duction can be expected by applying V/F control to Phasei with larger Gaini(Fm).

Next, to estimate the margin of the target MTG, the minimum value of TMTG

is calculated as the summation of Tschedi(FULL). Using this minimum value and
TMTG deadline, TMTG margin is defined as

Performance Evaluation of Compiler Controlled Power Saving Scheme 487

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

1CPU 2CPUs 4CPUs

mpeg2enc tomcatvapplu
benchmark

sp
ee

du
p

ra
ti

o

w/o saving
w saving

1CPU 2CPUs 4CPUs 1CPU 2CPUs 4CPUs

Fig. 6. Speedup in the fastest mode

TMTG margin = TMTG deadline − ∑
Tschedi(FULL)

As the target MTG must finish in minimum execution time, or TMTG margin = 0, each
Phase has to be executed at FULL. When TMTG margin > 0, the developed scheme
turns down voltage and frequency of each Phase, according to Gaini(Fm). If a Phase
has a single MT, the frequency of the MT is the same as the Phase. If a Phase includes
some MTs and corresponds to the max term, the developed scheme also defines sub-
Phases for each argument of the max term and determines voltage frequency of these
sub-Phases. The algorithm to determine frequency for each sub-Phase and MT is de-
scribed in [15,16].

3.5 Power Supply Control

Next, power supply control to reduce unnecessary energy consumption including static
power consumption by idle processors is applied. Idle time occurs, when a PG (proces-
sor group) is waiting for other PGs to execute their MTs (1), finished all scheduled MTs
(2) or has no MTs (3). Gray parts of Figure 5 are the idle in each case. Power supply to
a PG is turned off, if its idle time is longer than the frequency transition overhead and
its energy becomes lower by power shutdown considering the overhead.

3.6 Applying Power Saving Scheme to Inner MTG

If a MTi includes a MTGi inside, it may be more effective to control each MTi j

in MTGi than to process the whole MTi at the same clock frequency. Therefore, the
deadline for MTGi is defined as TMTGi deadline, which is given by Ti. The power
saving control described in paragraph 3.4 and 3.5 is applied to MTGi. Comparing the
case to execute whole MTi at the same frequency with the case to apply power saving
control to MTGi, the more effective one is selected.

4 Performance Evaluation

This section describes performance of OSCAR multigrain parallelizing compiler with
compiler controlled power saving scheme. Evaluation was performed by using static

488 J. Shirako et al.

0

500

1000

1500

2000

2500

1 4 1 2 4 1 2 4 1 2 4

rate of static power on dynamic power

en
er

gy
[m

J]

w/o saving
w saving

2
1% 10% 30% 50%

Fig. 7. Energy of mpeg2encode (fastest)

0

50

100

150

200

250

1 2 4 1 2 4 1 2 4 1 2 4
1% 10% 30% 50%

en
er

gy
[J

]

w/o saving
w saving

rate of static power on dynamic power

Fig. 8. Energy of applu (fastest)

scheduler in OSCAR compiler. Parameters used for this evaluation, such as frequen-
cies, voltages, dynamic energies, and static powers, are shown in Table 1 were used. In
this paper, only energy for processors was evaluated. The state transition overhead of
V/F control is 0.1[ms] and overhead of power shutdown is 0.2[ms]. Dynamic power at
FULL frequency is 220[ms]. It was measured by using Wattch[23]. Cooperative Volt-
age Scaling[24] was referenced to determine parameters like transition overhead, at-
tribute of voltage/frequency and dynamic power at MID and LOW frequency. Static
power is set to 2.2[mW] (1% of dynamic power), 22[mW] (10% of dynamic power),
66[mW] (30% of dynamic power) or 110[mW] (50% of dynamic power), supposing
various type of multicore processors from low power oriented multicores to high per-
formance multiprocessors. In this evaluation, MediaBench mpeg2encode which was
rewritten in Fortran[25], SPEC95 CFP applu and tomcatv were used. For applu, inline
expansion and loop aligned decomposition for the data localization scheme[26] were
applied. Also, the main loop in applu was divided into a static part without conditional
branch and dynamic parts with branches, in order to apply the power saving scheme.

4.1 Performance in the Fastest Execution Mode

Figure 6 shows the speedup ratio of each program for 1, 2 and 4 processors in the fastest
execution mode, when static power is equal to 1% of dynamic power. Left bars repre-

Performance Evaluation of Compiler Controlled Power Saving Scheme 489

0
20
40
60
80

100
120
140
160

1 2 4 1 2 4 1 2 4 1 2 4

en
er

gy
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Fig. 9. Energy of tomcatv (fastest)

Table 2. Energy reduction for 4 CPUs(fastest)

program static w/o saving w saving reduction
mpeg2 1 % 1336[mJ] 973[mJ] 27.2 %

10 % 1455[mJ] 1071[mJ] 26.4 %
30 % 1720[mJ] 1278[mJ] 25.7 %
50 % 1985[mJ] 1476[mJ] 25.6 %

applu 1 % 156[J] 58.5[J] 62.4 %
10 % 170[J] 65.9[J] 61.2 %
30 % 201[J] 81.9[J] 59.2 %
50 % 231[J] 95.1[J] 58.9 %

tomcatv 1 % 94.8[J] 90.4[J] 4.66 %
10 % 103[J] 98.4[J] 4.65 %
30 % 122[J] 116[J] 4.65 %
50 % 141[J] 134[J] 4.64 %

sent the results of OSCAR compiler without the power saving scheme and right bars
show the results of OSCAR compiler using compiler controlled power saving scheme.
As shown in Figure 6, there is no performance degradation by using the power saving
scheme in the fastest execution mode. When static power was changed to 22[mW] (10%
of dynamic power), 66[mW] (30% of dynamic power) or 110[mW] (50% of dynamic
power) assuming high performance processors, there were also no performance losses.
Figure 7, 8 and 9 show the total energy consumption of mpeg2encode, applu and tom-
catv for 1, 2, and 4 processors, changing the rate of static power on dynamic power to
1%, 10%, 30% or 50%. In mpeg2encode and applu, the power saving scheme using 2
or 4 processors reduces energy consumption at any rate of static power. These applica-
tions have sequential parts which can’t be parallelized, hence there is a certain amount
of processor idle time. The power saving scheme applied V/F control and power shut-
down, using this idle time. The developed scheme reduced consumed energy by 5.5 %
(from 1138[mJ] down to 1075[mJ]) for 2 processors, 26.4 % (from 1455[mJ] down to
1071[mJ]) for 4 processors in mpeg2encode and 35.4 % (from 101[J] down to 65.2[J])
for 2 processors, 61.2 % (from 170[J] down to 65.9[J]) for 4 processors in applu, as-

490 J. Shirako et al.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 4 1 2 4 1 2 4 1 2 4

en
er

gy
[m

J]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Fig. 10. Energy of mpeg2encode (deadline)

0

100

200

300

400

500

600

1 2 4 1 2 4 1 2 4 1 2 4

en
er

gy
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Fig. 11. Energy of applu (deadline)

suming the rate of static power on dynamic power is 10 %. The energy reduction rate
for 4 processors changing static power is shown in Table 2.

On the other hand, tomcatv has large parallelism to run all processors almost every
time during the program execution. Therefore, all processors must execute at full speed
to attain the minimum execution time. The parallel execution time of tomcatv with 4
processors is about one quarter of the sequential execution time. Therefore, though the
power consumption is quadrupled by using 4 processors, the total energy consumption
is almost equal to the energy of the sequential execution.

4.2 Performance in Real-Time Execution Mode with Deadline Constraints

Next, evaluation results of real-time execution mode with deadline constraint are de-
scribed. Figure 10, 11 and 12 show the total energy consumed until their real-time
deadline. Here, deadline was set to 150% of sequential execution time. Left bars rep-
resent the results of OSCAR compiler without any power saving scheme. In this case,
all processors run at FULL frequency until the deadline. Right bars show the results
of OSCAR compiler using the developed power saving scheme in real-time deadline
mode. These figures show the power saving scheme drastically reduced energy con-
sumption, because the developed scheme applied V/F control and power shutdown as

Performance Evaluation of Compiler Controlled Power Saving Scheme 491

0
100
200
300
400
500
600
700
800
900

1 2 4 1 2 4 1 2 4 1 2 4

en
er

gy
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Fig. 12. Energy of tomcatv (deadline)

Table 3. Energy reduct. for 4 CPUs(deadline)

program static w/o saving w saving reduction
mpeg2 1 % 5929[mJ] 592[mJ] 90.0 %

10 % 6458[mJ] 815[mJ] 87.4 %
30 % 7632[mJ] 1262[mJ] 83.5 %
50 % 8806[mJ] 1476[mJ] 83.2 %

applu 1 % 354[J] 49.5[J] 86.0 %
10 % 385[J] 59.5[J] 84.6 %
30 % 455[J] 81.7[J] 82.1 %
50 % 525[J] 95.1[J] 81.9 %

tomcatv 1 % 542[J] 48.3[J] 91.1 %
10 % 591[J] 70.2[J] 88.1 %
30 % 698[J] 114[J] 83.7 %
50 % 805[J] 134[J] 83.3 %

far as execution time didn’t exceed the deadline. Furthermore, the energy consump-
tion of mpeg2encode or tomcatv executed in parallel is lower than the energy of se-
quential execution, when static power is set to 2.2[mW], 22[mW] or 66[mW]. The
developed power saving scheme in real-time processing mode reduced energy by 73.3
% (from 3229[mJ] down to 861[mJ]) for 2 processors, 87.4 % (from 6458[mJ] down
to 815[mJ]) for 4 processors in mpeg2encode, 68.9 % (from 193[J] down to 59.8[J])
for 2 processors, 84.6 % (from 385[J] down to 59.5[J]) for 4 processors in applu and
73.8 % (from 295[J] down to 77.3[J]) for 2 processors, 88.1 % (from 591[J] down
to 70.2[J]) for 4 processors in tomcatv, assuming the rate of static power on dynamic
power is 10 %. Table 3 shows the energy reduction for 4 processors changing static
power.

Execution time with the developed power saving scheme was less than the deadline
in all the cases where static power was changed. This means the developed scheme
could satisfy the given deadline constraints.

492 J. Shirako et al.

5 Conclusions

This paper evaluated performance of compiler controlled power saving scheme for var-
ious type of multicore processors from low power oriented to high performance ori-
ented, changing the quantity of static power. This scheme gave us good processing
performance and low energy consumption for all the cases.

Evaluation assuming static power was 10% of dynamic power has shown that com-
piler controlled power saving scheme gave 61.2 percent energy reduction for SPEC
CFP95 applu using 4 processors without performance degradation and 87.4 percent
energy reduction for mpeg2encode, 88.1 percent energy reduction for SPEC CFP95
tomcatv and 84.6 percent energy reduction for applu using 4 processors with real-time
deadline constraint.

The power saving scheme described in this paper only controls processors in static
scheduling. Development of the power saving scheme for dynamic scheduling and
power saving methods for resources other than processors are future works.

Acknowledgments

A part of this research has been supported by NEDO “Advanced Heterogeneous Multi-
processor”, STARC “Automatic Parallelizing Compiler Cooperative Single Chip Mul-
tiprocessor” and NEDO “Multi core processors for real time consumer electronics”.

References

1. Suga, A., Matsunami, K.: Introducing the FR 500 embedded microprocessor. IEEE MI-
CRO 20, 21–27 (2000)

2. Cornish, J.: Balanced energy optimization. In: International Symposium on Low Power Elec-
tronics and Design (2004)

3. Pham, D., et al.: The design and implementation of a first-generation CELL processor. In:
Proceeding of the IEEE International Solid-State Circuits Conference. (2005)

4. Intel Multi core. http://www.intel.com/multi-core/
5. Kalla, R., Sinharoy, B., Tendler, J.: IBM Power5 chip: a dual-core multithreaded processor.

IEEE Micro 24(2), 40–47 (2004)
6. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley Publish-

ing Company, Reading (1996)
7. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the perfect

benchmarks. IEEE Trans. on parallel and distributed systems 9(1) (January 1998)
8. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S., Bugnion, E., Lam,

M.S.: Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer
(1996)

9. Gonzalez, M., Martorell, X., Oliver, J., Ayguade, E., Labarta, J.: Code generation and run-
time support for multi-level parallelism exploitation. In: Proc. of the 8th International Work-
shop on Compilers for Parallel Computing (January 2000)

10. Honda, H., Iwata, M., Kasahara, H.: Coarse grain parallelism detection scheme of a fortran
program. Trans. of IEICE J73-D-1(12), 951–960 (1990)

11. Kasahara, H., et al.: A multi-grain parallelizing compilation scheme on OSCAR. In: Proc.
4th Workshop on Language and Compilers for Parallel Computing (1991)

http://www.intel.com/multi-core/

Performance Evaluation of Compiler Controlled Power Saving Scheme 493

12. Kasahara, H.: Advanced automatic parallelizing compiler technology. IPSJ MAGA-
NIE (April 2003)

13. Albonesi, D.H., et al.: Dynamically tuning processor resources with adaptive processing.
IEEE Computer (December 2003)

14. Wu, Q., Juang, P., Martonosi, M., Clark, D.W.: Formal online methods for voltage/frequency
control in multiple clock domain microprocessors. In: Eleventh International Conference on
Architectural Support for Programming Languages and Operating Systems (October 2004)

15. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.: Compiler con-
trol power saving scheme for multi core processors. In: Ayguadé, E., Baumgartner, G., Ra-
manujam, J., Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, Springer, Heidelberg
(2006)

16. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.: Parallelizing
compilation scheme for reduction of power consumption of chip multiprocessors. In: CPC.
Proc. of 12th International Workshop on Compilers for Parallel Computers (January 2006)

17. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical parallelism
control for multigrain parallel processing. In: Proc. of 15th International Workshop on Lan-
guages and Compilers for Parallel Computing (August 2002)

18. Shirako, J., Nagasawa, K., Ishizaka, K., Obata, M., Kasahara, H.: Selective inline expansion
for improvement of multi grain parallelism. In: PDCN 2004 (February 2004)

19. Kasahara, H., Honda, H., Iwata, M., Hirota, M.: A compilation scheme for macro-dataflow
computation on hierarchical multiprocessor system. In: Proc. Int Conf. on Parallel Processing
(1990)

20. Kasahara, H., Narita, S., Hashimoto, S.: Architecture of OSCAR. Trans of IEICE J71-D(8)
(August 1988)

21. Kasahara, H., Honda, H., Narita, S.: Parallel processing of near fine grain tasks using static
scheduling on OSCAR. In: Proceedings of Supercomputing 1990 (November 1990)

22. Kimura, K., Ogata, W., Okamoto, M., Kasahara, H.: Near fine grain parallel processing on
single chip multiprocessors. Trans. of IPSJ 40(5) (May 1999)

23. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power
analysis and optimizations. In: Proc. of the 27th ISCA (June 2000)

24. Kawaguchi, H., Shin, Y., Sakurai, T.: uITRON-LP: Power-conscious real-time os based on
cooperative voltage scaling for multimedia applications. IEEE Transactions on multimedia
(February 2005)

25. Kodaka, T., Nakano, H., Kimura, K., Kasahara, H.: Parallel processing using data localization
for MPEG2 encoding on OSCAR chip multiprocessor. In: Proc. of International Workshop
on Innovative Architecture for Future Generation High-Performance Processors and Systems
(January 2004)

26. Ishizaka, K., Miyamoto, T., Shirako, M.o.J., kimura, K., Kasahara, H.: Performance of OS-
CAR multigrain parallelizing compiler on SMP servers. In: Proc. of 17th International Work-
shop on Languages and Compilers for Parallel Computing (September 2004)

Program Phase Detection Based

Dynamic Control Mechanisms
for Pipeline Stage Unification Adoption

Jun Yao1, Hajime Shimada1, Yasuhiko Nakashima2,
Shin-ichiro Mori3, and Shinji Tomita1

1 Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{yaojun,shimada,tomita}@lab3.kuis.kyoto-u.ac.jp

http://www.lab3.kuis.kyoto-u.ac.jp/
2 Graduate School of Information Science, NAIST, Nara 630-0192, Japan

nakashima@is.naist.jp
3 Graduate School of Engineering, Fukui University, Fukui 910-8507, Japan

moris@fuis.fuis.fukui-u.ac.jp

Abstract. To reduce the power consumption in mobile processors, a
method called Pipeline Stage Unification (PSU) is previously proposed
to work as an alternative for Dynamic Voltage Scaling (DVS). Based on
PSU, we proposed two mechanisms which dynamically predict a suitable
unification degree according to the knowledge of the program behaviors.
Our results show that the mechanisms can achieve an average Energy
Delay Product (EDP) decrease of 15.1% and 19.2%, respectively, for
SPECint2000 benchmarks, compared to the processor without PSU.

Keywords: power consumption, pipeline stage unification, program
phase detection.

1 Introduction

Recently, considering power consumption has shown its importance in the mod-
ern processor design, especially for portable and mobile platforms such as cellular
phones and laptop computers. To reduce the total energy, a method called Dy-
namic Voltage Scaling (DVS) is currently employed. Basically, DVS decreases
the supply voltage while the processor is experiencing low work load. This saves
energy consumption for program execution.

However, Shimada et al. [1,2] and Koppanalil et al. [3] have presented a dif-
ferent method, which is called Pipeline Stage Unification (PSU), to reduce the
processor power consumption via inactivating and bypassing the pipeline regis-
ters and using shallow pipelines during the program execution. PSU can save
power in the following ways:

1. Energy can be saved because of the clock gating of some pipeline registers;

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 494–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.lab3.kuis.kyoto-u.ac.jp/

Program Phase Detection Based Dynamic Control Mechanisms 495

2. After pipeline stage unification, a pipeline will become a shallow one with
fewer stages. Usually, a shallow pipeline will have a better IPC due to de-
creased branch misprediction penalties and functional unit latencies com-
pared to the deep pipeline, as illustrated in [4] and [5].

Such designs make PSU still applicable when the efficiency of DVS is restricted
by the process technology advancement, as described in paper [1].

Our research described is focused on controlling PSU hardware to achieve good
power savings. Currently there is only one research related to PSU control [6] and
it described execution with predefined throughput. The study did not consider
the effect of different program behaviors during the execution. In this paper,
we propose online mechanisms to adjust the pipeline to a suitable unification
degree according to the program behavior change, so as to achieve better Energy
Delay Product (EDP). By using the two different mechanisms described in this
paper, we obtained an average decrease of 15.1% and 19.2% in EDP, respectively,
compared to the EDP of processors under normal configuration. And compared
these two mechanisms with unification degree 2, which usually has a good EDP
efficiency, we achieved a decrease of 1.41% and 4.82%.

The rest of the paper is organized as follows: Section 2 describes the back-
ground techniques of this paper. Section 3 introduces the dynamic prediction
mechanisms for a PSU enabled system. Simulation methodology and metrics to
evaluate the efficiency of different unification degrees can be found in section 4.
In Section 5 we show the experiment results, together with some analyses. Sec-
tion 6 concludes the paper.

2 Related Works

This section describes the background techniques related to our research. Sec-
tion 2.1 describes briefly Pipeline Stage Unification and Section 2.2 introduces
the working set signature method.

2.1 Pipeline Stage Unification

In paper [1,2], Shimada et al. proposed an energy consumption reduction method
called Pipeline Stage Unification (PSU) to reduce the power consumption in
mobile processors as an alternative for Dynamic Voltage Scaling (DVS). PSU
is a pipeline reconfiguration method. Different from DVS, PSU unifies multiple
pipeline stages by bypassing pipeline registers when the processor runs with low
clock frequency, instead of scaling down the supply voltage.

Our work introduced in this paper is based on Shimada’s previous architec-
ture [1], in which a pipeline of 20 stages was adopted. We assume three unification
degrees in the latter part of this paper.

1. U1: The normal mode without bypassing any pipeline registers.
2. U2: Merge every pair of two adjacent pipeline stages by inactivating the

pipeline register between them. The new pipeline now contains 10 stages.

496 J. Yao et al.

3. U4: Based on U2, merge the adjacent stages one step further. It becomes a
5-stage’s pipeline.

2.2 Working Set Signature

Dhodapkar [7] and Sherwood [8] have shown that programs can be divided into
phases in which a program would have similar behaviors including the cache
miss, IPC and power consumption. It is described as program phase, which may
contain a set of instruction intervals, regardless of temporal adjacency. This
theory gives us an opportunity to study the pipeline reconfiguration at a high
level, i.e., from the view of the program behavior.

N
=

bi
t-

ve
ct

or
si

ze

b

hash function maps
m-bit into log2N bits
b = log2CacheLineSize

H

m

Signature
Working Set

...
1

0
1

1
0

0
1

...

Program Counter

Fig. 1. Mechanism for collecting a working Set Signature [7]

In order to detect the phase changes during the program execution, Dhodapkar
designed a working set signature to work as the compacted representation for a
program interval. The method to form a working set signature is shown in Fig. 1.
b in Fig. 1 is the number of bits which are used to index a instruction in the cache
block. If an instruction cache block contains 4 instructions, b is set to 2. During
the program execution, Dhodapkar selected m bits from the program counter
and used these bits to address 1 bit in the N-bit signature via a hash function.
The signature is cleared at the beginning of an instruction interval. After the
interval begins, a bit in the signature is set if the corresponding instruction cache
block is touched.

Dhodapkar used a 1024-bit signature in his paper. The hash function he de-
scribed is based on the C library srand and rand. He chose 100k instructions as
the instruction interval length.

After collecting working set signatures, a method to calculate the distance
between the two signatures S1 and S2 is given in [7] to classify intervals into
groups. The distance δ is calculated as follows:

δ =
num of “1”bit in(S1

⊕
S2)

num of “1”bit in(S1 + S2)
(1)

Where num of “1” bit in() represents the function that counts the number of
“1” bits in the bit vector. If the distance δ is larger than a predefined threshold,

Program Phase Detection Based Dynamic Control Mechanisms 497

the two instruction intervals are of different program phases. Dhodapkar used
0.5 as threshold in his paper.

3 Dynamic PSU Control Mechanisms

Based on the background in Section 2, it can be assumed that, since the energy
consumption keeps nearly flat in a stable program phase, we can use the same
pipeline stage unification degree in that phase and tune a new pipeline stage
unification degree at the phase switching point. In the following sections, we
design our algorithms as a framework of an interval based loop. The word interval
here refers to a large bundle of instructions. At each iteration, a calculation of
the energy and performance over the current interval is made and passed to
the algorithm core. The calculation is used to compare with the results of other
configurations to predict a suitable unification degree for the next interval based
on the history result of comparison.

Tow different control methods on the original PSU system are applied in this
paper. The first control method is basic phase detection method which needs only
phase switching detection hardware. The second is history table based method in
which we add table-structured hardware to store additional history information
for unification degree prediction.

3.1 Basic Phase Detection Method

The algorithm is altered slightly from Balasubramonian et al. [9] and Dhodapkar,
et al. [7] to work with the PSU system, as shown in Fig. 2. Fig. 3 outlines the
execution of this algorithm. There are three states in this algorithm:

1. stable: The adjacent intervals are of same phases;
2. unstable: A phase switching in program occurs and current interval is of

different phase with last interval;
3. tuning: The period when the adjacent intervals become similar again and

different unification degrees are being explored.

Fig. 3 is a sample of execution. First, we suppose that the program starts
from a stable state. After each program interval, we compare the signature of
current interval with the signature of the previous interval. If the distance is
larger than the threshold, the state is changed to unstable. For simplicity, U1
is used as the unification degree for the unstable phase. The next intervals are
unstable until the distance becomes smaller than the threshold again. Then, state
is changed to tuning, which will try different unification degrees in the following
three intervals and collect the corresponding power/performance data. After
tuning, if the interval is still under the same program phase, we can choose a
best unification degree for this phase and set the state to stable. This algorithm
is based on the assumption that program will show same behavior, including
energy and performance, in the same program phase.

498 J. Yao et al.

After each interval Ik:
δ = signature distance of Ik and Ik−1;
if (state == stable)

if (δ > threshold)
state = unstable;
unification degree = U1;

else if (state == unstable)
if (δ ≤ threshold)

state = tuning;
unification degree = U1;

else if (state == tuning)
if (δ > threshold)

state = unstable;
unification degree = U1;

else if (unification degree == U4)
state = stable;
unification degree=best from tuning;

else
unification degree

= next tuning unification degree;

Fig. 2. Algorithm of basic phase detection method

Because we only compare the signatures of each consecutive interval pair, this
method is of low cost. The corresponding control hardware will also show the
advantage of simplicity.

...

Ux= best Unification degree
 from tuning

U1 U2U1 U4 Ux

unstable tuning stable ...

...

T

Fig. 3. Outline of execution under basic phase detection method

3.2 History Table Based Method

In order to use the feature that a phase will recur during the program execution,
we designed the history table based method to keep the phase information in a
history table. If the program comes into a phase that has appeared in the past,
we can choose a suitable unification degree from the cached history information
without starting a new tuning procedure.

Fig. 4 is the diagram of the hardware approach of this table method. Fig. 5
shows the detailed algorithm of history table based method.

Program Phase Detection Based Dynamic Control Mechanisms 499

tuned?

(1) update table

best unification degree
for the next interval

... 0 1 0 ...

... 1 1 1 ...

Signature

1 (tuned)

0 (tuning)

U1 U2 U4
bestUState T

Power/Perf.

... 1 0 1 ... 1 (tuned) U4

U2

New Power/Perf.

Unification degree

... ...

=

similar?

Signature Vector

(2) predict (3
)

se
t n

ew
 p

re
v_

ta
bl

e_
in

de
x

pr
ev

_t
ab

le
_i

nd
ex

Fig. 4. Hardware approach for history table based method

The table employed in this algorithm is constructed as follows:

1. The signature field: Each different signature occupies one table entry so that
we can use this field to index the table items. This field has a same storage
size as the signature.

2. The state field: It denotes the state of the table entry. In this method, we
define two states: tuned and tuning. A state of tuning means that this entry
has just been added into the table and the best unification degree has not
been tuned out. After all three unification degrees have been tried, we select
a best unification degree from the tuned results (another field in the table)
and set the state as tuned. One bit is used for this field.

3. The Power/Perf. field occupies three fixed point storage units for each entry.
It holds the power/performance information for the interval represented by
this signature. We keep the tuning information of different unification degrees
in the three fields denoted as U1, U2 and U4, respectively. They are updated
when the entry is under the tuning state.

4. The bestU field: It holds the best unification degree for this signature. This
field is set after the tuning is complete. If this phase is observed again, we
can predict the suitable unification degree from this field. Two bits are used
for this field.

5. The T field: It records the time that the entry is touched. This field is referred
to when replacing old entries. Several bits are used according to the table
size.

At the point that we are about to predict a suitable unification degree for the
coming interval Ik+1, the signature Sk+1 that is needed as the index to look up

500 J. Yao et al.

After each interval Ik:
if (prev && prev->state == tuning)

prev->Power/Perf.[unif degree]
= Power/Perf. for Ik;

if (unif degree == U4)
prev->bestU

= best(prev->Power/Perf.[U1, U2, U4]);
prev->state = tuned;

v = find nearest signature();
δ = signature distance between v->sig and Ik;
if (!v || δ > threshold) /* miss */

v = new table entry();
v->sig = signature of Ik;
unif degree = U1;
v->state = tuning;

else if (v->state == tuned)
unif degree = v->bestU;

else /* v->state == tuning */
unif degree = next unif degree for v;

prev = v;

Fig. 5. Algorithm of history table based method

the bestU field in the history table, has not been determined. To solve this prob-
lem, we engage a specific register named prev table index to store the table index
of the previous interval. After each interval, we calculate the power/performance
of current interval and store it in the entry which prev table index refers to ((1)
in Fig. 4). Therefore the Power/Perf. field and bestU field of each current en-
try hold information for the next interval. After current interval is complete,
we can look for the current signature in the history table. If there is a hit, the
corresponding entry will probably carry the best unification degree for the next
interval. And we can predict the best unification degree based on this entry ((2)
in Fig. 4). The register prev table index is then updated to the current table
index before starting the next interval ((3) in Fig. 4).

In Fig. 5, prev denotes prev table index and v denotes a temporary table index.
Also the syntax like prev->state denotes the state field of the entry pointed by
prev. unif degree is the current unification degree.

There are two main actions which will be performed on the table:

1. Find the nearest signature. We simply look up the table, comparing the
new signature with all cached signatures to find a smallest distance. If this
smallest distance is larger than the threshold, we return a table miss and
insert the new signature for the late tuning. Otherwise we report a table hit;

2. Replace the Least Recently Used (LRU) table entry when there is no suffi-
cient room for the new signature, while we call new table entry() (in Fig. 5).

The performance of these two actions will greatly depend on the size of the
table. As indicated in paper [7], a program will not show many different sig-

Program Phase Detection Based Dynamic Control Mechanisms 501

natures during execution if the interval is set to be 100k instructions. We can
set the table size at a small level, for example, 16 entries. Hence the overhead
introduced by the process of looking up and replacing can be negligible. We will
discuss this in more detail in Section 5.4.

In this method we have an assumption that if interval Ik+1 happens once
after interval Ik and Ik occurs again, the next interval will probably be Ik+1.
It is similar to a simple history branch predictor. We can efficiently predict the
best unification level for Ik+1 if the next interval for Ik is always Ik+1, while we
must endure some misprediction penalty if the next interval for Ik is variable.
We will show the efficiency of this method in Section 5.

4 Simulation Methodology

We use a detailed cycle-accurate out-of-order execution simulator, SimpleScalar
Tool Set [10], to measure energy and performance of different unification degrees.
Table 1 lists the processor configuration. We assume a deep pipeline similar to
the current processors. Table 2 summarizes the latencies and penalties in pipeline
configuration of U1, U2 and U4, respectively.

We choose 8 integer benchmarks (gzip2, gcc, gzip, mcf, parser, perlbmk, vor-
tex and vpr) from SPECint2000, with train inputs. 1.5 billion Instructions are
simulated after skipping the first billion instructions.

To evaluate the energy and performance together in the tuning procedure, we
can use PDP, EDP and EDDP as the metric, which can be calculated as W

MIPS ,
W

(MIPS)2 and W
(MIPS)3 , respectively [11]. Each equation puts different emphasis

on energy and performance and will show different efficiency according to the
evaluated platforms. Basically, PDP is suitable for portable systems and EDP
is used for high end systems such as workstations and laptop computers, while
EDDP is good for server families. For simplicity, we apply one single metric
during each program execution. The experiments and analyses in Section 5 are
based on EDP because our PSU is targeted on high-performance mobile com-

Table 1. Processor configuration

Processor 8-way out-of-order issue,
128-entry RUU, 64-entry LSQ,
8 int ALU, 4 int mult/div,
8 fp ALU, 4 fp mult/div,
8 memory ports

Branch Prediction 32K-entry gshare, 13-bit history,
4K-entry BTB, 32-entry RAS

L1 Icache 64KB/32B line/2way

L1 Dcache 64KB/32B line/2way

L2 unified cache 2MB/64B line/4-way

Memory 64 cycles first hit,
2 cycles burst interval

502 J. Yao et al.

Table 2. Assumptions of latencies and penalty

unification degree U1 U2 U4

clock frequency rate 100% 50% 25%

branch mispred. resolution latency 20 10 5

L1 Icache hit latency 4 2 1

L1 Dcache hit latency 4 2 1

L2 cache hit latency 16 8 4

int Mult latency 3 2 1

fp ALU latency 2 1 1

fp Mult latency 4 2 1

puter. Our mechanisms can easily change to the metric of PDP or EDDP to fit
for different platforms.

In this paper, we are considering the energy saving in the processor. Energy
saving in U2 and U4 contains two parts (1) Energy saved by stopping clock
drivers of some pipeline registers in order to inactivate and bypass them; (2)
Pipeline stalls decreased by better IPC due to small latencies and penalties. We
get Equation 2 from paper [1,11,12] to calculate the energy saving under different
unification degrees.

EUx

Enormal
=

IPCnormal

IPCUx

× (1 − β) (2)

Where EUx is energy in unification degree Ux and Enormal is energy in nor-
mal execution mode; IPCnormal is IPC in normal execution while IPCUx is
IPC in Ux; β is the power saving part gained by inactivating pipeline registers.
According to paper [1], we assume β to be 15% under U2 and 22.5% under U4.

5 Results and Analyses

5.1 Two Non-phase Based Methods for Comparison

Before we apply our algorithms on the PSU controller, we run the benchmarks
under single unification degree method and optimal method. These two methods
are used to measure the efficiency of the phase detection based algorithms.

(1) Single unification degree method
Use a fixed unification degree U1, U2 or U4 in the whole program execution

and collect EDP data of each interval.
(2) Optimal method
Based on the data collected from single unification degree method, a best

unification degree for each interval can be found. By using such profiling data
the unification degree can be set to the best one at beginning of each instruction
interval. This method is a theoretical optimal one and can not be achieved in real
execution because it is based on the post-simulated trace analysis. It will have
a smallest EDP result among all the mechanisms we have mentioned. Therefore

Program Phase Detection Based Dynamic Control Mechanisms 503

if the EDP result of a mechanism is close to this optimal case, we can say the
mechanism is efficient.

5.2 General Analysis Via Comparing Average EDP

In the following experiments, the signature size was chosen to be 1024 bits and
the threshold to be 0.5. Each interval has 100k instructions. A simple hash
function based on masking and shifting is used to lower the signature collection
cost. Fig. 6 shows the EDP results for all 8 benchmarks. In Fig. 6, the horizontal
axis denotes benchmarks and the average value, and the vertical axis denotes
EDP value normalized by EDP of the optimal method for each benchmark. The
columns in one benchmark represent the normalized EDPs of U1, U2, U4, basic
phase detection and history table based method, from left to right. The average
results of all benchmarks are also listed. The method of smaller EDP result is
more efficient.

Table
����BD

U4
U2
U1

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

 0.8

 1.2

 1.4

 1.6

 1.8

mcf vpr Average

N
or

m
al

iz
ed

 E
D

P

bzip2 gcc perl vortexparsergzip

 1.0

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����

Fig. 6. Normalized EDP for SPECint2000 benchmarks

As shown in Fig. 6, we can see that not all of the benchmarks will show
the smallest EDP results under a single unification degree. For benchmarks like
bzip2, mcf and vortex, U1 is the most energy efficient unification degree. For
benchmarks like perlbmk, degree U4 has the smallest EDP result. For other
benchmarks, including gcc, gzip, parser, and vpr, U2 is better than U1 or U4.
These results confirm our assumption that there is no fixed pipeline configu-
rations which can always have best energy performance efficiency for all the
programs and reconfigurations during the execution are necessary.

For the efficiency of our mechanisms, Fig. 6 shows that the basic phase detec-
tion method can achieve an average EDP of 108%, compared with the optimal
method. This method has an EDP decrease of 15.1%, 1.41% and 16.4% when
compared with single U1, U2 and U4, respectively.

The history table based method shows better average results, as compared
with the basic phase detection method. It can achieve an average EDP of 103%
of the optimal method. Compared with single U1, U2 and U4, it can gain a total
EDP decrease of 19.2%, 4.82% and 20.5%.

504 J. Yao et al.

From these results, it can be seen that both basic detection method and his-
tory table based method can have the ability to reduce the processor energy
consumption by prediction the next suitable pipeline unification degree. As ex-
pected, the history table based method is more effective since it caches more
history information which can reduce the tuning cost.

5.3 Prediction Accuracy

Since we are designing the dynamic mechanisms to predict a suitable unification
degree for the next interval, the prediction accuracy is very important to the
final energy saving result. To study the efficiency of the design methods in more
detail, we list the prediction accuracy of the unification degrees in Table 3,
together with some benchmark characteristics.

Table 3. Prediction accuracy of each benchmark, together with benchmark character-
istics

Bench Stable nSigs Avg. Pred. Acc.(%)
mark Rate (%) ST Len. BD Table

bzip2 86.80 12 28.93 85.78 94.73

gcc 89.73 55 53.84 60.77 51.95

gzip 59.18 3 9.575 66.58 84.68

mcf 32.98 6 2.382 41.30 49.80

parser 67.63 33 11.75 49.24 60.12

perl. 99.97 1 14995 99.98 99.98

vortex 51.74 6 4.720 46.16 87.41

vpr 99.97 1 14995 99.98 99.98

In Table 3, the column of “stable rate” stands for the percentage of the total
intervals that are in stable time. The “nSigs” column denotes the number of dif-
ferent signatures when the programs are under the stable time. We obtain this
value by comparing the signatures of two stable phases. If the distance is larger
than the predefined threshold, we increase this count by 1. It can be roughly
used to represent the complexity of the benchmark. A higher value shows that
the programs can be classified into more different stable phase groups and may
require more tunings. It may potentially increase the complexity for dynamical
prediction. The column of “Avg. ST len” represents the average interval length
of the stable phase for each benchmark. These three columns are the statistical
results we got from the basic detection method. The accuracy of using working
set signature to identify the program phase is important for further reconfigu-
ration on processor and has been evaluated by Dhodapkar [7].

Another column named “Pred. Acc.” in Table 3 is the ratio of the precise
prediction of the unification degree for basic detection method and the history
table based method, respectively. We obtained these two columns by calculat-
ing the similarity of predicted unification degrees with those theoretical precise

Program Phase Detection Based Dynamic Control Mechanisms 505

unification degrees from the optimal method. In order to show the efficiency of
history table based method optimally, we simply choose an infinite table size in
Table 3. Fixed table size will be discussed in Section 5.4.

From Table 3, it is apparent that the prediction accuracy of the history table
based method is better than the basic detection based method. This is similar
to the conclusion obtained in Section 5.2.

It can also be seen from Table 3 that the prediction accuracy changes due to
the program characteristics. For simple benchmarks like perlbmk and vpr, most
intervals are of the same stable phase. For these two benchmarks, the prediction
accuracy of both dynamical methods can reach nearly 100%. The prediction ac-
curacy of the basic detection based method falls when the program becomes less
stable. This may related with the simple design of the basic detection method.
We compare only the signatures of consecutive intervals and start a tuning at
each point the program goes toward stable. If the stability of program is low,
the basic detection method will perform poorly because of the low energy saving
rate in the unstable and tuning periods.

Unlike the basic detection method, the history table base method is less sen-
sitive to the program stability as illustrated in the benchmarks gzip and vor-
tex. Although the stability ratios for these two benchmarks are less than 60%,
prediction accuracies of 84.68% and 87.41% are respectively attained. The in-
creased prediction accuracies can be attributed to the historical tuned infor-
mation recorded in the extra structures described by the history table based
method. If the jump direction from one signature to another signature is stable,
the prediction will be accurate. On the other hand, this method is sensitive to
the number of phase groups. For example, gcc is quite stable but the number of
different signatures during stable phase is large which lead to the uncertainty in
the jump directions. More detailed results of the history table based method for
gcc will be listed in Section 5.4.

5.4 Lower the Cost of History Table Based Method

The size of the history table is an important parameter for the table based
method. We can see from Table 3 that the numbers of different signatures in
stable phases are relatively small for most of the benchmarks and the majority
of the benchmarks are quite stable. Therefore it is possible to set a small fixed
table size, in order to lower the additional hardware cost introduced by the table
structure, without degrading the ratio of prediction accuracy.

In this serial of experiments, we set the table size as a fixed number, from 16
entries to 2 entries. We use the LRU mechanism to replace the table entry when
there is insufficient room for new signatures. The results are shown in Fig. 7. A
signature size of 1024 bit and a threshold of 0.5 are used for the configuration.

In Fig. 7, the columns for each benchmark represent the results of infinite
table size, 16-entry, 8-entry, 4-entry and 2-entry, respectively. We can see from
the results that there is almost no degradation between the infinite-entry, 16-
entry and 8-entry for all benchmarks. A sharp decrease of prediction accuracy
occurs on 4-entry table size for gzip and vortex. Other benchmarks like bzip2,

506 J. Yao et al.

24816infinite
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

 80%

 100%

 120%

vprvortexperlparsermcfgzipgccbzip2

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

 0%

 20%

 40%

 60%

Fig. 7. Prediction accuracy of different table sizes for table based method

perlbmk and vpr show no loss of accuracy even when the size shrinks to 2-
entry. For benchmark gcc, the accuracy actually increases after the table size is
reducted from infinite to 16 entries. It appears the old historical information for
gcc may sometimes cause misprediction of the best unification degree.

From these results, we can assume that an 8-entry table size will be sufficient
for SPECint2000 benchmarks. With a small table size, the table can be accessed
more quickly which introduces less overhead into the PSU control system.

6 Conclusions and Future Work

In this paper, we have designed two dynamic control mechanisms for PSU en-
abled processors in order to achieve good EDP. These two mechanisms are based
on phase detection via working set signature. By using these two methods, we
dynamically reconfigure the unification degree during the program execution ac-
cording to the program behavior change. Our simulations show that the two
methods can achieve an average EDP decreasing of 15.1% and 19.2%, compared
to the original system without PSU enabling. Such results are about 8.34% and
3.02% larger than the optimal mode. Both methods can reduce energy con-
sumption in the processor via dynamically predicting a unification degree for
the coming interval. The two dynamical methods have different advantages. The
basic detection method is simple and introduces less hardware complexity while
the history table based method demonstrates greater efficiency at prediction.

Currently the energy consumption model in this paper is still very rough. We
are planning to study the hardware approach so as to build a more accurate
model, including the detailed overhead introduced by the dynamical prediction
mechanisms. In addition, alternate program phase detection methods other than
the working set signature will be tried on the PSU system.

Acknowledgments. This research is partially supported by Grant-in-Aid for
Fundamental Scientific Research (S) #16100001 from Ministry of Education,
Culture, Sports, Science and Technology Japan.

Program Phase Detection Based Dynamic Control Mechanisms 507

References

1. Shimada, H., Ando, H., Shimada, T.: Pipeline stage unification: a low-energy con-
sumption technique for future mobile processors. In: Proceedings of the 2003 in-
ternational symposium on Low power electronics and design, pp. 326–329. ACM
Press, New York (2003)

2. Shimada, H., Ando, H., Shimada, T.: Pipelinig with variable depth for low power
consumption (in Japanese). In: IPSJ Technical Report, 2001-ARC-145, Information
Processing Society of Japan, pp.57–62 (2001)

3. Koppanalil, J., Ramrakhyani, P., Desai, S., Vaidyanathan, A., Rotenberg, E.: A
case for dynamic pipeline scaling. In: Proceedings of the 2002 international con-
ference on Compilers, architecture, and synthesis for embedded systems, pp. 1–8.
ACM Press, New York (2002)

4. Hrishikesh, M.S., Burger, D., Jouppi, N.P., Keckler, S.W., Farkas, K.I., Shivaku-
mar, P.: The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays.
In: Proceedings of the 29th annual international symposium on Computer archi-
tecture, Washington, DC, USA, pp. 14–24. IEEE Computer Society Press, Los
Alamitos (2002)

5. Srinivasan, V., Brooks, D., Gschwind, M., Bose, P., Zyuban, V., Strenski, P.N.,
Emma, P.G.: Optimizing pipelines for power and performance. In: Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture, pp.
333–344. IEEE Computer Society Press, Los Alamitos (2002)

6. Shimada, H., Ando, H., Shimada, T.: Power consumption reduction through com-
bining pipeline stage unification and DVS (in Japanese). IPSJ Transactions on
Advanced Computing Systems 48(3), 75–87 (2007)

7. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic
working set analysis. In: Proceedings of the 29th annual international symposium
on Computer architecture, Washington, DC, USA, pp. 233–244. IEEE Computer
Society Press, Los Alamitos (2002)

8. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23(6), 84–93 (2003)

9. Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A., Dwarkadas, S.: Memory
hierarchy reconfiguration for energy and performance in general-purpose processor
architectures. In: Proceedings of the 33rd annual ACM/IEEE international sym-
posium on Microarchitecture, pp. 245–257. ACM Press, New York (2000)

10. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. SIGARCH Com-
puter Architecture News 25(3), 13–25 (1997)

11. Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose microprocessors.
IEEE Journal of Solid-State Circuits 31(9), 1277–1284 (1996)

12. Gowan, M.K., Biro, L.L., Jackson, D.B.: Power considerations in the design of
the alpha 21264 microprocessor. In: Proceedings of the 35th annual conference on
Design automation, pp. 726–731. ACM Press, New York (1998)

Reducing Energy in Instruction Caches by Using

Multiple Line Buffers with Prediction

Kashif Ali1, Mokhtar Aboelaze2, and Suprakash Datta2

1 School of Computing, Queens University, Kingston on Canada
2 Department of Computer Science and Engineering, York University, Toronto on

Canada

Abstract. Energy consumption plays a crucial role in the design of em-
bedded processors especially for portable devices. Since memory access
consumes a significant portion of the energy of a processor, the design
of fast low-energy caches has become a very important aspect of modern
processor design. In this paper, we present a novel cache architecture for
reduced energy instruction caches. Our proposed cache architecture con-
sists of the L1 cache, multiple line buffers, and a prediction mechanism to
predict which line buffer, or L1 cache to access next. We used simulation
to evaluate our proposed architecture and compare it with the HotSpot
cache, Filter cache, Predictive line buffer cache and Way-Halting cache.
Simulation results show that our approach can reduce instruction cache
energy consumption, on average, by 75% without sacrificing performance

1 Introduction

On-chip caches can have a huge impact on the processor performance. Caches are
faster than the main memory, and consume less power per access than the main
memory. A well-designed cache results in a fast and energy efficient processor.

In modern processors, the cache takes a considerable portion of the chip area,
for the DEC 21164 processor, 43% of the total energy consumed in the chip is
consumed by the cache [3]. Therefore, reducing energy consumption in caches is
a priority for computer architects. In [7] the authors showed how to use a unified
cache to reduce the total area of the cache by 20-30% and maintain the same
hit rate as a split cache. Albonesi in [1] proposed the selective way cache. In the
selective way cache, preferred ways (a subset of all the ways) are accessed first;
in case of a miss, the rest of the ways are accessed. The savings in energy (by not
accessing all the ways) is accomplished at the expense of increasing the access
time. Zhang et al [12] proposed a cache where by setting a configuration register
they can reconfigure the cache size, the cache associativity, and the cache line
size. By fine-tuning the cache parameters to the application, they achieved a
power saving of up to 40%.

Way prediction was used in [13] to reduce cache energy. In order not to sacrifice
the cache speed, they used a 2-level prediction scheme. First, they decide if they
use way prediction or not; if not then all the ways in a set associative cache are
accessed. However, if the decision is to use way prediction, the predicted way is

J. Labarta, K. Joe, and T. Sato (Eds.): ISHPC 2005 and ALPS 2006, LNCS 4759, pp. 508–521, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reducing Energy in Instruction Caches 509

accessed first, in case of a miss, the rest of the ways are accessed. A non-uniform
cache was introduced in [6]. In this design, the cache has different values for
associativity. The optimal value for the number of ways is determined for each
application. They also proposed some techniques in order to minimize the access
to redundant cache way and cache tags to minimize energy consumption.

HotSpot cache was introduced in [10] where a small filter cache was used
to store loops that are executed more than a specific threshold. The loops are
detected by using the Branch Target Buffer (or BTB) and is promoted to the
HotSpot cache when they reach their threshold values. Their design resulted in
reducing the energy consumption of the cache. Jouppi in [5] showed how to use
a small fully associative cache and prefetching to improve the performance of a
direct-mapped cache without paying the price of a fully associative cache. Zhang
et al introduced the way-halting cache in [11] where they used some bits from
the tag in order to choose which way to access in a multi-way (set associative)
cache.

In this paper, we introduce a new cache architecture that has a slightly better
average cache access time than many existing architectures and consumes much
less energy compared to the existing architectures. We use MediaBench and
Mibench benchmark to compare our results with the standard cache without
any line buffers, the Filter cache, the HotSpot cache, the Way-halting cache and
the single predictive line buffer.

The organization of this paper is as follows. In Section 2, we discuss the
motivation behind our architecture. In Section 3 we propose and explain our ar-
chitecture. Section 4 gives details of our prediction and line placement algorithm.
Section 5 presents the simulation setup and compares our architectures with the
HotSpot cache, Filter cache and single line buffer cache. Section 6 concludes the
paper.

2 Motivation

The overall occurrences of branches are application dependent e.g. multimedia
application tends to have more structured conditional branches compared with
others applications (SPEC2000 applications). But no matter what type of work-
load, conditional branches represents a significant fraction of total instructions
executed by a program.

A loop block, sequence of instructions whose iterations is controlled by con-
ditional instruction, may contain minimal 2 instructions and can be up to 32
instructions or more. Over 75% of such control instructions jumps a maximum
of 16 instructions. For multimedia application (MediaBench/MiBench) on the
average, almost 50% of the control instructions jumps no more then 6 instruc-
tions. For such applications, a loop block can be captured within 2-3 line buffer.
By careful analysis of the programs in the MediaBench and SPEC2000 we found
the following

– More than 75% of the loops in the MediaBench suite include 16 or less
instructions.

510 K. Ali, M. Aboelaze, and S. Datta

– Almost 95% of the loops in the MediaBench suite contain 30 or less instruc-
tions

– Almost 90% of the loops in SPEC2000 contains 30 or less instructions.

In [2] we showed how to use a single line buffer with prediction in order to
reduce energy consumption in a direct-mapped cache. While 16-instruction loops
cannot be be captured using a single line buffer, they could be captured if 4-
8 line buffers are used with a good cache organization to guarantee that the
instructions in the loops are mapped to the entire set of line buffers instead of
replacing each other in a small number of line buffers. Increasing the line size
is not the solution since it affects the temporal locality and may reduce the hit
ratio.

3 Proposed Architecture

Our single predictive line buffer (proposed in [2]) does not have the ability to
capture most of the loop blocks i.e. cannot take advantage of temporal locality,
hence require accessing lower level (level-1) cache more often. To fully utilize
the temporal locality in a program, we now extend our single predictive line
buffer scheme by adding multiple line buffers between the CPU and L1 cache.
We are also proposing a new prediction scheme to control access to the buffers.
During the fetch cycle only one of the line buffers is accessed. In case of a miss
in the line buffer, the instruction will be fetched from L1 and the line containing
the fetched instruction is placed in one of the line buffers. Figure 1 shows a
schematic of the proposed architecture. with 4 line buffers, labeled as bb1, bb2,
bb3 and bb4, and the L1 cache. The optimal number of line buffers depends on
the application. In our simulations, we found that having anywhere between 4 to
8 line buffers achieves the best results for most of the applications in MediaBench
and Mibench benchmark. We present detail analysis relating to number of line
buffers in Section 5.2.

Fig. 1. Cache with Multiple Line Buffers

Reducing Energy in Instruction Caches 511

Our scheme dynamically selects either one of the line buffers or the L1 cache
for fetching instructions. We assume the existence of BTB (branch target buffer),
which is common in many modern processors. The added hardware for the se-
lection mechanism is minimum – it involves some extra registers (called tag-bit
registers) for storing a part of the tag for the cache lines in the line buffers.

3.1 Tag-Bit Registers

Our goal is to spread the loop(s) between the different line buffers and to keep the
loop(s) that are being currently executed in the line buffers. If we are successful
in doing that, the tags of the data in the line buffers are sequential, and they
differ only in the low-order bits. This observation can be effectively used to
predict the line buffer containing the instruction to be fetched. The main idea
of our proposed architecture is to cache a few of the low-order bits of tags in
special registers called tag-bit registers. The i low order bits of the tags in each
line in line buffer are kept in tag-bit registers.

Our algorithm compares the contents of the tag-bit register with the corre-
sponding bits of the instruction address. If one matches, this is the predicted line
buffer and we access it to get the instruction. This requires much less energy than
accessing the L1 cache. If our prediction is incorrect, then we have to go to the
L1 cache to access the required instruction. Figure 2 shows the organization of
the tag-bit register.

Fig. 2. Tag-Bit Registers

In the next section, we present the prediction mechanism and the placement
mechanism used in order to increase the probability of placing the long loops
successfully in the line buffers.

4 Prediction Scheme

In order to predict effectively between line buffers and the L1 cache we need
to keep some state information. These state information are fetch mode which
could be either L1 cache, or line buffer. If fetch mode points to the line buffer,
then curr bb is a pointer to the predicted line buffer that holds the instruction
to be fetched. Finally, TAG bits is an array which holds the low order i bits of
every tag in the line buffers. This may be a physical register, or could be just the
i bits in the TAG stored in every line buffer. Figure 3 shows the flow diagram
for the prediction algorithm.

512 K. Ali, M. Aboelaze, and S. Datta

Fig. 3. Flow Diagram for the Prediction Scheme

The main idea of the prediction algorithm is as follows. Once the instruction
is fetched, the program counter (PC) is checked against the BTB to see if that
instruction is a branch and predicted taken or not. If the instruction is a branch
and is predicted taken, the target address is loaded from the BTB into the PC,
otherwise the next sequential address is loaded in the PC (PC is incremented
according to the instruction length). The low order bits of the TAG part of the
address is checked against the TAG bits array. If there is a match, then the
fetch mode is set to that particular line buffer. Otherwise it is set to L1 cache,
the instruction will be then fetched from the L1 cache and will be stored in line
buffer curr bb+1.

If there is a match, then the instruction is fetched from the predicted line
buffer. The fetched instruction may or may not be the required instruction (we
checked only the low order i bits). If our prediction is correct, then the instruction
is sent to the CPU. If we miss-predicted, then the instruction is accessed from
the cache, the line contains that word is sent to the curr bb.

Reducing Energy in Instruction Caches 513

5 Experimental Results

In this section, we compare our proposed scheme, multiple predictive line with
various other scheme for both performance and energy. We first show the effect of
the number of bits in the tag-bit registers on the performance. We then evaluate
the effectiveness of multiple predictive line buffer scheme by comparing it to
Filter cache, HotSpot cache, single predictive line buffer and Way-halting cache.
And finally we’ll compare scheme’s optimization goal of reducing energy without
affecting performance.

5.1 Experimental Setup

We use SimpleScalar toolset [8] and CACTI 3.2 [9] to conduct our experiments.
We modified SimpleScalar to simulate Filter Caches, HotSpot caches, Predic-
tive Line buffer and Way-Halting cache. Our baseline architecture uses a 16KB
direct-mapped cache or 16KB 4-way set-associative cache. Our Line buffer is 32
bytes. We have used a 512 bytes, direct-mapped L0 cache for Filter cache and
HotSpot cache. The BTB is 4-way set-associative with 512 sets. We also used
a 2-level branch predictor in our simulation. We evaluated energy consumption
using 0.35μm process technology. For HotSpot cache, we used a value of 16 as
candidate threshold as was suggested in [10]. As our proposed scheme is tar-
geted toward embedded microprocessors, we have used multimedia benchmarks,
MediaBench and Mibench but our scheme yields similar results for other types
of workload. Each applications was limited to 500 million instructions using the
data set included with the benchmark suites. We choose sets of encoder/decoder
from different media types such as data, voice, speech, image, video and com-
munication. (See Table-1). Energy per cache access, as is obtained from CACTI
3.2 and is shown in Table-2

Table 1. Benchmark Applications Summary

Application Type Benchmark

crc32/fft Communication Mibench
epic Data MediaBench
adpcm/g721/gsm Voice/Speech MediaBench
jpeg Image MediaBench
lame Mp3 Mibench
mpeg2 Video MediaBench

5.2 Optimal Number of Line Buffers

The ideal number of Line buffer depends on each application. Our experiments
shows that 4-8 lines buffers are optimal for most applications.

514 K. Ali, M. Aboelaze, and S. Datta

Table 2. Energy per Access for Various Cache Configurations

Cache Energy

512 L0 cache 0.69nJ
line buffer 0.12nJ
16KB direct-map 1.63nJ
16KB 4-way set-assoc 2.49nJ

By analyzing average normalized energy for various applications of bench-
marks, we observed that number of line buffer to use depends upon the condi-
tional branches relatives target address. Knowing, on the average, how far these
instructions jumps to (i.e. size of loop block), we can relate them to how many
line buffers is required for that particular application. For instance, for com-
munication application crc32, using 6 line buffer is optimal and adding 7 or 8
line buffer does not improve the energy consumption. This is because for such
application, almost none of loop block are greater then 14 instruction and can
be easily captured using maximum of 6 line buffers. Similar observation can be
made for other applications in MediaBench and MiBench applications.

5.3 Tag-Bit Registers Misprediction

The key component for effectiveness of multiple predictive line buffer is tag-
bit registers. We experimented with numerous width of low-order tag bits. A
near-ideal tag bit size is the smallest tag-bit that can find the right line buffer,
hence less miss-prediction. By storing more bit in the register, that results in
slightly more accurate prediction but will also increase overhead as the register
size increases.

Table 3 and 4 show the result of using between 2 and 6 bits with 4 line buffer
and 4-8 bits with 8 line buffer for direct map cache. From the average of these
two tables we can see when using 2 tag bit with 4 line buffer, the miss prediction
can be as high as 22.43%. As we stated in Section 2, that almost 90% of loops
contains 30 or less instructions, using 2 bits we can only accurately distinguish
between maximum of 4 instructions in any loop block. Therefore using more bits
will help us predicts more efficiently. From the tables we can see that using 4 or
5 bits can gives satisfactory results for most of applications. In our experiment,
we use 5 bits for the tag-bit register.

5.4 Energy

In this section we compare energy savings of multiple predictive line buffer with
conventional line buffer, HotSpot Cache and single Predictive line buffer. Fig. 4
and Fig. 5 show normalized energy reduction using conventional direct-map and
4-way set-associative as base cache respectively. We can see that using multi-
ple line buffers significantly reduces energy consumption. For some applications

Reducing Energy in Instruction Caches 515

Table 3. Miss Prediction Ratio (4 Line Buffer, 2-6 bits for tag-bit Register) using
Direct-Map L1 cache

BenchMark 2-tag 3-tag 4-tag 5-tag 6-tag

apdcm-decode 26.59 0.18 0.14 0.00 0.00
apdcm-encode 25.88 3.86 0.06 0.05 0.01
crc32 20.02 0.02 0.01 0.00 0.00
epic 18.24 1.05 0.01 0.00 0.00
fft 27.70 8.63 3.37 1.47 1.20
fft-inv 27.70 8.63 3.37 1.47 1.20
g721-decode 19.18 3.97 1.88 0.90 0.47
g721-encode 18.47 2.66 1.15 0.40 0.17
gsm-decode 30.88 3.27 1.46 0.04 0.02
gsm-encode 26.56 0.57 0.17 0.10 0.00
jpeg2-decode 26.11 1.91 0.54 0.04 0.01
jpeg2-encode 19.64 3.90 0.45 0.08 0.03
lame 19.22 3.07 1.20 0.15 0.06
mpeg2-decode 15.25 4.32 2.34 2.24 2.20
mpeg2-encode 22.05 4.23 1.32 0.56 0.01
unepic 15.72 2.53 0.38 0.02 0.01

Average 22.45 3.30 1.12 0.47 0.34

Table 4. Miss Prediction Ratio (8 Line Buffer, 4-8 bits for tag-bit Register), using
direct-Map L1 cache

BenchMark 4-tag 5-tag 6-tag 7-tag 8-tag

apdcm-decode 0.16 0.01 0.00 0.00 0.00
apdcm-encode 0.07 0.06 0.00 0.00 0.00
crc32 0.01 0.00 0.00 0.00 0.00
epic 0.02 0.01 0.00 0.00 0.00
fft 7.20 3.85 2.70 1.31 0.71
fft-inv 7.20 3.85 2.70 1.31 0.71
g721-decode 4.19 1.35 0.76 0.25 0.24
g721-encode 2.71 1.05 0.55 0.08 0.07
gsm-decode 2.38 0.61 0.58 0.55 0.00
gsm-encode 1.72 1.15 0.05 0.04 0.00
jpeg2-decode 3.00 0.17 0.08 0.02 0.00
jpeg2-encode 2.28 1.40 0.34 0.28 0.28
lame 2.49 0.67 0.31 0.17 0.02
mpeg2-decode 2.84 2.57 2.36 0.04 0.03
mpeg2-encode 3.76 2.03 0.04 0.00 0.00
unepic 1.23 0.08 0.05 0.01 0.00

Average 2.58 1.18 0.66 0.25 0.13

516 K. Ali, M. Aboelaze, and S. Datta

Fig. 4. Normalized energy reduction using direct-map L1 cache

Fig. 5. Normalized energy using 4-way set-associative L1 cache

such as crc32, epic, mpeg2-decode and jpeg-encodes significantly reduces energy
consumption, when 8 line buffer are used, over 4 line buffer.

For these application, significant portion of control instruction jump can’t be
contained using 4 line buffer. Therefore using 8 line buffer significantly reduces
energy consumption for these application compared to others in benchmark. Us-
ing 8-multiple line buffer with line buffer reduces normalized energy consumption
by up to 74%, comparing with HotSpot Cache 47%.

Table 5 shows the average normalized energy consumption of various schemes.
From table, we can observe that using 8 multiple line buffer, on average, lower
energy consumption significantly compared with others.

Reducing Energy in Instruction Caches 517

Table 5. Various Schemes Average Normalized Energy Using Direct-map And 4-way
Set-associative Cache

Direct Set-
Scheme Mapped associative

4 PLB 0.32 0.29
8 PLB 0.26 0.22
Filter Cache 0.57 0.46
HotSpot Cache 0.53 0.41
Single PLB 0.40 0.36
Way-Halting Cache N/A 0.61

5.5 Delay

In this section we show that multiple predictive line buffer scheme does not
sacrifice performance in order to reduce energy consumption. We compare the
normalized delay for multiple predictive line buffer (using 4 and 8 line buffer),
with HotSpot Cache and single predictive line buffer, with both direct-map L1
cache.

Normalized delay using conventional direct-map L1 cache as the base archi-
tecture is shown in Fig. 6, while Fig. 7 shows the same results for a 4-way set
associative baseline cache. Using 4 predictive line buffer performs as good as
single predictive line buffer. Using 8 multiple line buffer have higher delay com-
pared to single predictive line buffer but still is significantly better then HotSpot
Cache. As we mentioned in Section 5.3, if using 6 tag width, the delay for 8 line
buffer can be improved, but improvement is still very minimal . Table 6 shows the
average normalized delay for HotSpot Cache, single predictive line buffer, 4 and

Fig. 6. Normalized Delay using direct-map L1 cache

518 K. Ali, M. Aboelaze, and S. Datta

Fig. 7. Normalized Delay using 4-way set-associative cache

Table 6. Various Schemes Average Normalized Delay Using Direct-map And 4-way
Set-associative Cache

Direct Set-
Scheme Mapped associative

4 PLB 0.993 0.997
8 PLB 0.999 0.997
Filter Cache 1.070 1.091
HotSpot Cache 1.027 N/A
Single PLB 1.004 1.007
Way-Halting Cache N/A 1.000

8 line buffers, when using direct-mapped as base L1 cache. Results clearly shows
that our scheme, on average, achieves near-ideal delay for various applications.

5.6 Energy ∗ Delay

To show that our scheme does not impose any performance overhead while de-
creasing energy consumption, Fig. 8 and Fig. 9 shows Energy ∗ Delay product
for HotSpot, single and multiple line buffer cache scheme, when using Direct-
mapped and 4-way Set-associative L1 cache respectively. Our proposed scheme
outperforms all the other schemes.

5.7 Off-Chip Memory Access

Accessing off-chip memory is expensive, both in terms of energy consumption and
delay. Accessing 512KB 4-way set-associative off-chip cache is almost 6 times as

Reducing Energy in Instruction Caches 519

Fig. 8. Normalized Energy ∗ Delay using direct-map L1 cache

Fig. 9. Normalized Energy ∗ Delay using 4-way set-associative L1 cache

expensive as accessing L1 cache (512KB 4-way set-associative caches consumes
14.21nJ per access, see Table 2). Although direct-map although relatively has
fast access, but can suffers from thrashing problem. Thrashing occurs when two
memory lines maps to same line in the cache. Thrashing can cause performance
issue as most of time is spend in moving data between memory and cache.
Thrashing can be avoided if the loop block can be captured in the upper level
cache hence avoiding conflicts. Our proposed scheme did not increase the off-chip
access. For certain application, such as jpeg-decode, we can even lower memory
access up to 50% comparing with HotSpot cache. On average, our scheme lowered
off-chip memory access compared to HotSpot and Filter Cache.

520 K. Ali, M. Aboelaze, and S. Datta

Fig. 10. Normalized Off-Chip Memory Access

6 Conclusion

In this paper, we extended our single predictive-line buffer scheme (proposed in
[2]) in order to capture long loops in the line buffers. We presented a cache archi-
tecture that utilizes 4-8 line buffers, the BTB and a simple prediction mechanism
to reduce the energy consumption in the instruction cache. Our Simulation re-
sults show that on the average, our scheme reduces instruction cache energy up
to 75% compared with a baseline cache, without sacrificing performance.

References

1. Albonesi, D.: Selective cache ways: on-demand cache resource allocation. In: Proc.
of the 32nd ACM/IEEE International Symposium on Microarchitecture, pp. 248–
259 (November 1999)

2. Ali, K., Aboelaze, M., Datta, S.: Predictive line buffer: A fast energy efficient cache
architecture (submitted) IEEE SoutheastCon 2006

3. Edmondson, J.F.: Internal organization of the Alpha 21164, a 300-MHz 64 bit quad-
issue CMOS RISC microprocessor. Digital Technology J. 7(1), 119–135 (1995)

4. Hasegawa, A., Kawasaki, I., Yoshioka, S., Kawasaki, S., Biswas, P.: SH3: High code
density, low power. IEEE Micro 15(6), 11–19 (1995)

5. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully associative cache and prefetch buffers. In: The 17th Annual International
Symposium on Computer Architecture ISCA, pp. 364–373 (May 1990)

6. Ishihara, T., Fallah, F.: A non-uniform cache architecture for low power system
design. In: ISLPED 2005. Proceedings of the 2005 International Symposium on
Low Power Electronics and Design (August 2005)

7. Mizuno, H., Ishibashi, K.: A separated bit-line unified cache: Conciliating small
on-chip cache die-area and low miss ratio. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 7(1), 139–144 (1999)

Reducing Energy in Instruction Caches 521

8. The Simplescalar simulator (May 2006), www.simplescalar.com
9. Shivakumar, P., Jouppi, N.: CACTI 3.0: An integrated cache timing, power, and

area model. Technical Report 2001.2 Compaq Research Lab (2001)
10. Yang, C.-L., Lee, C.-H.: HotSpot cache: joint temporal and spatial locality exploita-

tion for I-cache energy reduction. In: ISPLD 2004. Proc. of the 2004 International
Symposium on Low Power Electronics and Design, pp. 114–119 (August 2004)

11. Zhang, C., Vahid, F., Yang, J., Najjar, W.: A way-halting cache for low-power high-
performance systems. In: ISPLD 2004. Proc. of the 2004 International Symposium
on Low Power Electronics and Design (August 2004)

12. Zhang, C., Vahid, F., Najjar, W.: A Highly Configurable Cache for Low En-
ergy Embedded Systems. ACM Transactions on Embedded Computing Systems
(TECS) 4(2), 363–387 (2005)

13. Zhu, Z., Zhang, X.: Access mode prediction for low-power cache design. IEEE
Micro 22(2), 58–71 (2002)

www.simplescalar.com

Author Index

Aboelaze, Mokhtar 508
Abramson, David 254
Adachi, Hitoshi 427
Ali, Kashif 508
Amano, Hideharu 211
Aoki, Masaki 315
Aoki, Takayuki 271

Baba, Takanobu 191
Boku, Taisuke 466

Chan, Philip 254
Choi, Jaeyoung 246
Corbalán, Julita 117
Cristal, Adrian 56, 68

D’Alberto, Paolo 142
Datta, Suprakash 508
Duato, José 79

Flich, José 79
Fujishiro, Issei 176
Fujita, Motonobu 466
Fujita, Satoshi 152
Furukawa, Fumihito 191

Garćıa, Jorge 130
González, Antonio 43
González, Ruben 56, 68

Hamada, Yoshihiro 211
Hasegawa, Hiroki 358
Hayashi, Yasuharu 305, 329
Hayashida, Sachiko 279
Higo, Junichi 374
Horie, Tomoyoshi 262
Horiuchi, Nobutoshi 329
Horiuchi, Ritoku 329

Ichinoseki, Kyoko 427
Imaizumi, Yuichiro 33
Imamura, Toshiyuki 402
Ishiguro, Seiji 329, 358
Ishihara, Tohru 452
Ishii, Soh 427

Itoh, Satoshi 393
Iwashita, Hidetoshi 315
Iwashita, Takeshi 164
Izawa, Tetsu 211

Jain, Amit 427
Ji, Chen 434
Jiménez, Daniel A. 56
Joe, Kazuki 279
Ju, Youngkwan 199

Kasahara, Hironori 480
Kato, Kaori 271
Kawazoe, Yoshiyuki 427
Kejariwal, Arun 17
Kim, Dongseung 105
Kim, Dongyoung 105
Kim, Sukil 199
Kimura, Keiji 480
Kitakami, Hajime 227
Kitamura, Akira 211
Komatitsch, Dimitri 434
Kondo, Masaaki 466
Koyamada, Koji 295
Kwon, Sungju 246

Labarta, Jesús 117
Lee, Jysoo 246

Machida, Masahiko 402
Matsuyama, Shingo 414
Minami, Tomoki 295
Mito, Masaya 152
Miyabe, Yasuo 211
Miyasiro, Tomotaka 211
Mizobuchi, Yasuhiro 414
Mizuseki, Hiroshi 427
Molina, Carlos 43
Montañana, José M. 79
Mori, Shin-ichiro 494
Murai, Hitoshi 365
Murata, Takeshi 383

Nakajima, Noriyoshi 344
Nakajo, Hironori 211

524 Author Index

Nakamura, Atsushi 444
Nakamura, Hiroshi 466
Nakano, Hirofumi 480
Nakashima, Yasuhiko 494
Nemirovsky, Mario 130
Nicolaescu, Dan 93
Nicolau, Alexandru 17, 93, 142
Niho, Tomoya 262
Nishitani, Masashi 191
Noguchi, Katsuyuki 279

Ogawa, Satoru 414
Ohnishi, Shuhei 393
Ohno, Kaoru 427
Ohtani, Hiroaki 329
Okabe, Yasuo 365
Okada, Masaki 383
Okamoto, Masao 344, 358
Omura, Yoshiharu 383
Ootsu, Kanemitsu 191
Oshiyama, Naoto 480
Otsuka, Rieko 176

Pericàs, Miquel 56, 68
Polychronopoulos, Constantine D. 17

Ramirez, Alex 1
Robles, Antonio 79

Saburi, Tei 271
Sakai, Koji 295
Santana, Oliverio J. 1
Sasakura, Mariko 287
Satake, Shinsuke 344
Sato, Mitsuhisa 466
Sato, Toshinori 33
Sedukhin, Stanislav G. 219
Shih, Wen-Chung 238
Shikano, Hiroaki 480
Shimada, Hajime 494
Shimasaki, Masaaki 164
Shinjo, Junji 414
Shirako, Jun 480
Sluiter, Marcel 427

Suehiro, Kenji 305
Sugiyama, Tooru 383
Sutou, Toshihide 227

Tagashira, Shigeaki 152
Takahashi, Chikafumi 466
Takahashi, Daisuke 466
Takahashi, Shigeo 176
Takaki, Makoto 227
Takamaru, Hisanori 344
Takeshima, Yuriko 176
Tamura, Keiichi 227
Tanabe, Noboru 211
Tomita, Shinji 494
Touma, Eriko 279
Tromp, Jeroen 434
Tseng, Shian-Shyong 238
Tsuboi, Seiji 434
Tubella, Jordi 43

Ueda, Hiroko O. 383
Uh, Bongyong 199
Usui, Hideyuki 383
Utrera, Gladys 117

Valero, Mateo 1, 56, 68, 130
Veidenbaum, Alex 68
Veidenbaum, Alexander 93
Verdú, Javier 130

Wada, Yasutaka 480
Watanabe, Chiemi 279

Yamada, Susumu 402
Yamaguchi, Hiroshi 427
Yamasaki, Susumu 287
Yamauchi, Kazuko 279
Yang, Chao-Tung 238
Yao, Jun 494
Yokota, Takashi 191
Yoshida, Masatake 271
Yoshida, Munehiro 480

Zekri, Ahmed S. 219

	Title Page
	Preface
	Organization
	Table of Contents
	Multiple Stream Prediction
	Introduction
	Related Work
	Experimental Methodology
	Simulator Setup
	Fetch Models
	Branch Prediction Setup

	Analysis of Dynamic Instruction Streams
	Multiple Stream Prediction
	The Multiple Stream Predictor
	Multiple Stream Predictor Design

	Evaluation of the Multiple Stream Predictor
	Conclusions

	Enhanced Loop Coalescing: A Compiler Technique for Transforming Non-uniform Iteration Spaces
	Introduction
	Terminology
	Background
	Loop Coalescing
	Guided Self-Scheduling

	Problem Statement
	A Motivating Example
	The Approach
	Determining Workload Gradient
	The Transformation
	Analysis
	Hybrid Loops

	Case Study
	Related Work
	Conclusions

	Folding Active List for High Performance and Low Power
	Introduction
	Terminology
	Large Instruction Window
	Selective Checkpointing
	Waiting Instruction Buffer
	Speculative Register Release
	Folded Active List

	Evaluation Environment
	Processor Model
	Benchmark Programs

	Results
	Related Work
	Concluding Remarks

	Reducing Misspeculation Penalty in Trace-Level Speculative Multithreaded Architectures
	Introduction
	Trace-Level Speculative Multithreaded Architecture (TSMA)
	Trace-Level Speculation with Live-Output Test
	Microarchitecture
	Verification Engine

	Thread Synchronization Analysis
	Novel Verification Engine
	Performance Evaluation
	Experimental Framework
	Analysis of Results

	Related Work
	Conclusions and Future Work

	Exploiting Execution Locality with a Decoupled Kilo-Instruction Processor
	Introduction
	Motivation
	Execution Locality
	A Decoupled Kilo-Instruction Processor
	Heterogeneous Dual Core for Kilo-Instruction Processing

	Evaluation
	Simulation Infrastructure
	Instruction Level Parallelism

	Related Work
	Conclusions

	Decoupled State-Execute Architecture
	Introduction
	Related Work
	The Decoupled State-Execute Architecture
	Read Sharing
	Writeback Filtering

	Experimental Setup
	Performance Evaluation
	IPC
	Energy Consumption
	Writeback Filtering

	Conclusions

	A Scalable Methodology for Computing Fault-Free Paths in InfiniBand Torus Networks
	Introduction
	Motivation
	Mapping Conflicts in InfiniBand
	Description of SPFTR
	Steps Followed by SPFTR
	Routing Algorithm and SLtoVL Table Initialization
	Network Regions and Route Patterns

	Extending the Methodology
	Evaluation
	Evaluation Model
	Evaluation Results

	Conclusions

	Using a Way Cache to Improve Performance of Set-Associative Caches
	Introduction
	Related Work
	Way Caching
	The Way Cache Design
	Experimental Setup
	Performance Evaluation
	Comparison to Way Prediction
	Way Caching and Cached Load--Store Queue
	Way Caching for the I-Cache

	Conclusions

	Design of Fast Collective Communication Functions on Clustered Workstations with Ethernet and Myrinet
	Introduction
	Communication Model and Collective Communication
	Previous Implementation of Collective Communication
	New Algorithms
	Experiments and Discussion
	Conclusions and Future Work

	Dynamic Load Balancing in MPI Jobs
	Introduction
	Related Work
	Execution Framework: Resource Manager (CPUM)
	Processor Sharing Techniques Evaluated
	Local Queues
	Global Queues

	Our Proposal: The Load Balancing Detector (LBD)
	Evaluations
	Architecture
	Applications and Workloads
	Performance Results
	Global Queues
	Evaluating Our Proposal: LDB

	Conclusions and Future Work

	Workload Characterization of Stateful Networking Applications
	Introduction
	Related Work
	Environment and Methodology
	Benchmarks Selection
	Traffic Traces
	Evaluation Methodology

	Characterization of Benchmarks
	Instruction Mix and ILP
	State Categories
	Data Cache Behavior
	Branch Prediction
	Impact of Bottlenecks

	Conclusions

	Using Recursion to Boost ATLAS’s Performance
	Introduction
	Strassen's Algorithm for Any Square-Matrix Sizes
	Empirical Considerations on the Recursion Truncation Point
	Experimental Results
	Conclusions

	Towards Generic Solver of Combinatorial Optimization Problems with Autonomous Agents in P2P Networks
	Introduction
	Preliminaries
	Problem
	Branch-and-Bound Method

	Proposed Scheme
	Design Concept
	Upper Bound Agents
	System Configuration

	Switching of Policy
	First Static Scheme
	Second Static Scheme
	Dynamic Scheme

	Evaluation
	Environment
	Results

	Concluding Remarks

	New Evaluation Index of Incomplete Cholesky Preconditioning Effect
	Introduction
	ILU Preconditioning
	New Evaluation Index for Orderings
	Remainder Matrix
	P.R.I.
	P.R.I. for Variants of ILU Preconditioning

	Numerical Results
	Matrix Market Data (1)
	Matrix Market Data (2)
	Finite Difference Analysis of Poisson Equation
	Three-Dimensional Eddy-Current Analysis (Finite Edge-Element Analysis)

	Conclusion

	T-Map: A Topological Approach to Visual Exploration of Time-Varying Volume Data
	Introduction
	Preliminaries
	Reeb Graph (RG)
	Volume Skeleton Tree (VST)
	Quantizing RG and VST

	T-Map
	Index Space
	Progressive Drill-Down in T-Map
	Potentials of T-Map

	Application to Real Dataset
	Conclusions and Future Work

	Cross-Line — A Globally Adaptive Control Method of Interconnection Network
	Introduction
	Basic Design for Global Adaptability
	Cross-Line Routing
	Routing Algorithm
	Appropriateness of the Design

	Evaluation
	Evaluation Model
	Performance Comparison
	Sufficient VCinfo Bits
	Cross-Line as an Adaptive Routing

	Related Work
	Conclusions

	The Bandwidth Expansion Effectiveness of Cache Levels Block Prefetch
	Introduction
	Related Work
	Prefetch Buffer Architecture
	Victim Cache Architecture
	Prefetch Cache Architecture

	Hierarchical Prefetch Memory Architecture
	Target Architecture
	Prefetch Algorithm

	Hierarchical Memory Architecture with Expanded Bandwidth
	Experiments and Performance Analysis
	Simulation Environment
	Simulation Result and Analysis
	The Number of Instruction Per Cycle
	Cache Miss Rate Comparison

	Conclusions

	Implementation and Evaluation of the Mechanisms for Low Latency Communication on DIMMnet-2
	Introduction
	DIMMnet-2
	Prototype Board
	Network Interface Controller

	The Mechanisms for Low Latency Communication
	Communication of DIMMnet-2 Overview
	Block on the Fly (BOTF)

	Evaluation
	Method for Measuring the Latency
	Result and Discussion

	Conclusion and Future Work

	Computationally Efficient Parallel Matrix-Matrix Multiplication on the Torus
	Introduction
	Time-Space Mapping
	Time Scheduling
	Space Transformation

	Optimal Mapping
	Optimal Time-Space Allocations
	=-1, =-1, and =1.
	=-1, =1, and =-1.
	=1, =-1, and =-1.
	=-1, =-1, and =-1.

	Conclusions

	A New Dynamic Load Balancing Technique for Parallel Modified PrefixSpan with Distributed Worker Paradigm and Its Performance Evaluation
	Introduction
	Modified PrefixSpan
	Problem Definition
	Basic Philosophy

	Related Work
	Parallel Modified PrefixSpan with Distributed Worker Paradigm
	Task Definition
	Algorithms

	Cache-Based Random Steal Schema
	Key Idea
	Algorithm
	Example

	Experimental Results
	Environments
	Speed-Up
	Number of Task Request Messages

	Conclusion

	Performance-Based Loop Scheduling on Grid Environments
	Introduction
	Background
	Self-scheduling Schemes
	Grid Computing

	Our Approach: PLS (Performance-Based Loop Scheduling)
	Performance Ratio
	Our Algorithm

	Experimental Results
	Application 1: Matrix Multiplication
	Application 2: Mandelbrot
	Alpha Values vs. Precision of Performance Estimation

	Conclusions and Future Work

	Reconfigurable Middleware for Grid Environment
	Introduction
	Related Works
	MAGE Architecture
	Request-Broker
	Service-Manager
	Component-Manager
	Reconfiguration-Manager

	Service-Oriented Interface
	Conclusion

	Netfiles: An Enhanced Stream-Based Communication Mechanism
	Introduction
	Netfiles: Enhanced Pipes for IPC
	FAbrIC System Architecture and Implementation
	Communication FAbrIC: Netfile Lookup Service
	FAbrIC Coordinator and Runtime System

	Case Study 1: Parallel Shallow Water Equations
	Netfiles Version of Parallel Shallow
	Experimental Results

	Case Study 2: Parallel Jacobi Method
	Related Work
	Conclusions

	Performance of Coupled Parallel Finite Element Analysis in Grid Computing Environment
	Introduction
	Coupled Parallel Finite Element Analysis System in Grid Computing Environment
	Coupled Parallel Analysis in Grid
	Coupled Parallel Analysis Method for Electromagnetic and Structural Coupled Problem
	Process Allocation Considering CPU and Network Performance

	Coupled Parallel Finite Element Analysis
	Analysis Models and Conditions
	Coupled Parallel Analysis in Grid
	Verification of Process Allocation

	Conclusions
	References

	Photo-Realistic Visualization for the Blast Wave of TNT Explosion by Grid-Based Rendering
	Introduction
	Governing Equations
	Numerical Method
	Three-Dimensional Simulation for the Blast Wave Driven by the Explosion in the Magazine
	Visualization for the Blast Wave of TNT Explosion by Ray Tracing Method
	Conclusions

	Development of an Interactive Visual Data Mining System for Atmospheric Science
	Introduction
	Visual Data Mining Activities for Atmospheric Science Data
	Dimensionally Reduction of Atmospheric Science Data
	Prototype System
	Constructions and Future Works

	A Calculus Effectively Performing Event Formation with Visualization
	Introduction
	A Calculus Forming Events
	Soundness of Event Formation
	Event Formation and Visualization
	Concluding Remarks

	A Similarity Evaluation Method for VolumeData Sets by Using Critical Point Graph
	Introduction
	Background
	Proposed Method Using CPG
	Critical Point Graph (CPG)
	Proposed Algorithm

	Evaluation
	Comparison Using CPG-Based Method
	Comparison between CPG and CT-Based Matching Techniques

	Discussion
	Conclusions

	Hybrid Parallelization and Flat Parallelization inHPF (High Performance Fortran)
	Introduction
	Hybrid Parallelization and Flat Parallelization
	Parallelization in the HPF/SX V2
	Gather-to-All Communication
	Array Reduction
	Shift Communication
	Comparison between Hybrid Parallelization and Flat Parallelization

	Conclusion and Future Works

	Mapping Normalization Technique on the HPF Compiler fhpf
	Introduction
	HPF Translator fhpf
	Mapping Normalization
	Principle
	(1) Composition of alignment.
	(2) Affine transformation of array shape.
	(3) Affine transformation of loop index.

	Algorithm
	(1) Normalization of processors.
	(2) Normalization of distribution.
	(3) Normalization of alignment and templates
	(4) Normalization of data objects.
	(5) Normalization of loop variables.

	Example of Mapping Normalization

	Techniques Enabled by Mapping Normalization
	Detection of Local Access
	SPMD Code Generation

	Evaluation
	Evaluation of the fhpf Compiler
	Evaluation of SPMD Code Generation

	Related Work
	Conclusions

	Development of Electromagnetic ParticleSimulation Code in an Open System
	Introduction
	Distributed Parallel Computing Method
	High Performance Fortran
	Estimation of Calculation Cost
	Domain Decomposition and Particle Distribution
	Distribution of Particle Array

	Boundary Condition for Particle Variables
	Upstream Boundary
	Downstream Boundary

	Gather Process
	Performance
	Summary

	Development of Three-Dimensional Neoclassical Transport Simulation Code with High Performance Fortran on a Vector-Parallel Computer
	Introduction
	Development of FORTEC-3D Code with HPF
	Outline of FORTEC-3D Code
	Optimization
	Benchmark Results

	Summary

	Distributed Parallelization of Exact Charge Conservative Particle Simulation Code by High Performance Fortran
	Introduction
	Optimization
	Parallelization
	Vectorization

	Examination of Code
	Summary

	Pipelined Parallelization in HPF Programs on the Earth Simulator
	Introduction
	The PIPELINE Clause
	Syntax
	Semantics

	The HPFX Preprocessor
	Evaluation
	Evaluation Environment
	The LU Benchmark
	Evaluation Result

	Concluding Remarks

	Sampling of Protein Conformations withComputers to Predict the Native Structure
	Introduction
	Difficulty in the Conformational Sampling
	Equilibrium Sampling

	Effective Conformational Sampling Methods
	Algorithm
	Example of the Multicanonical MD Simulation

	Biophysical Interpretation of the Results
	Summary

	Spacecraft Plasma Environment Analysis ViaLarge Scale 3D Plasma Particle Simulation
	Introduction
	Basic Equations and Algorithms
	Models
	Summary

	PetaFLOPS Computing and ComputationalNanotechnology on Industrial Issues
	Introduction
	Metal Cluster as a Nanotechnology
	Parallel Computation in the ES for the Multi-center Problem in Clusters
	Nano-Metal Clusters

	Water at the Nano-Scale
	Simulation Method
	Numerical Results

	Concluding Remarks

	16.14 TFLOPS Eigenvalue Solver on the Earth Simulator: Exact Diagonalization for Ultra Largescale Hamiltonian Matrix
	Introduction
	Numerical Algorithms
	Power Method
	Lanczos Method
	Conjugate Gradient Method
	Performance Test of Three Algorithms

	Implementation on the Earth Simulator
	Matrix-Vector Multiplication
	Data Distribution, Parallel Calculation, and Communication
	Communication Overlap

	Performance on the Earth Simulator
	Conclusions

	Numerical Simulation of Combustion Dynamicsat ISTA/JAXA
	Introduction
	Numerical Approaches
	Recent Results of Numerical Simulation
	DNS Study
	LES Study

	Future Combustion Research and Computer Performance
	Summary

	Realization of a Computer SimulationEnvironment Based on ITBL and a Large ScaleGW Calculation Performed on This Platform
	Introduction
	Realization of the SuperSINET Computer Connection Environment
	Absolute Energy Level Estimation of Fullerene by All-Electron GW Program
	Conclusions

	Computations of Global Seismic WavePropagation in Three Dimensional Earth Model
	Introduction
	Spectral-Element Method
	Simulation of the 2004 Sumatra Earthquake
	Implications for the Earth's Internal Structure
	Conclusions

	Lattice QCD Simulations as an HPC Challenge
	Introduction
	Lattice QCD -- Many Years to Establish Its Reliability
	Lattice QCD for Exploring New Phenomenon
	Finite Temperature and Density
	Exotic Hadrons

	QCD as HPC
	History
	Hot Spot
	Future

	Concluding Remarks

	Energy-Efficient Embedded System Design at90nm and Below– A System-Level Perspective –
	Introduction
	Software Power Estimation
	Energy Characterization
	Experimental Results
	Summary

	Cache Leakage Reduction
	Value Dependence of SRAM Leakage
	Cache Leakage Power Reduction
	Cache Performance Improvement
	Experiments and Results
	Summary

	Conclusion

	Empirical Study for Optimization ofPower-Performance with On-Chip Memory
	Introduction
	Optimization of Power Performance with On-Chip Memory
	On-Chip Memory Architecture
	Metrics of Power Performance
	Optimization Methods for On-Chip Memory

	Experimental Setting
	Target Processor
	Power Measurement Environment
	Basic Power Characteristics
	On-Chip Memory Optimization for SH-4 On-Chip Memory

	Power-Performance on SH-4
	Discussion
	Improvement of Power Performance by SH-4 On-Chip Memory
	Power Performance on SH-4 with DMA

	Conclusion

	Performance Evaluation of Compiler ControlledPower Saving Scheme
	Introduction
	Multigrain Parallel Processing
	Generation of Macro-tasks Honda1990,OscarScheme,kasaharaTokusyu
	Extracting Coarse Grain Task Parallelism
	Hierarchical Processor Grouping
	Automatic Determination Scheme of Parallelizing Layer
	Macro-Task Scheduling

	Compiler Control Power Saving Scheme
	Target Model for the Power Saving Scheme
	Target MTG for the Power Control Scheme
	Deadline Constraints for Target MTG
	Voltage / Frequency Control
	Power Supply Control
	Applying Power Saving Scheme to Inner MTG

	Performance Evaluation
	Performance in the Fastest Execution Mode
	Performance in Real-Time Execution Mode with Deadline Constraints

	Conclusions

	Program Phase Detection BasedDynamic Control Mechanismsfor Pipeline Stage Unification Adoption
	Introduction
	Related Works
	Pipeline Stage Unification
	Working Set Signature

	Dynamic PSU Control Mechanisms
	Basic Phase Detection Method
	History Table Based Method

	Simulation Methodology
	Results and Analyses
	Two Non-phase Based Methods for Comparison
	General Analysis Via Comparing Average EDP
	Prediction Accuracy
	Lower the Cost of History Table Based Method

	Conclusions and Future Work

	Reducing Energy in Instruction Caches by UsingMultiple Line Buffers with Prediction
	Introduction
	Motivation
	Proposed Architecture
	Tag-Bit Registers

	Prediction Scheme
	Experimental Results
	Experimental Setup
	Optimal Number of Line Buffers
	Tag-Bit Registers Misprediction
	Energy
	Delay
	Energy Delay
	Off-Chip Memory Access

	Conclusion

	Author Index

